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Abstract— Early diagnosis and treatment can reduce
the symptoms of Attention Deficit/Hyperactivity Disorder
(ADHD) in children, but medical diagnosis is usually
delayed. Hence, it is important to increase the efficiency
of early diagnosis. Previous studies used behavioral and
neuronal data during GO/NOGO task to help detect ADHD
and the accuracy differed considerably from 53% to 92%,
depending on the employed methods and the number of
electroencephalogram (EEG) channels. It remains unclear
whether data from a few EEG channels can still lead to a
good accuracy of detecting ADHD. Here, we hypothesize
that introducing distractions into a VR-based GO/NOGO
task can augment the detection of ADHD using 6-channel
EEG because children with ADHD are easily distracted.
Forty-nine ADHD children and 32 typically developing chil-
dren were recruited. We use a clinically applicable system
with EEG to record data. Statistical analysis and machine
learning methods were employed to analyze the data. The
behavioral results revealed significant differences in task
performance when there are distractions. The presence of
distractions leads to EEG changes in both groups, indicat-
ing immaturity in inhibitory control. Importantly, the distrac-
tions additionally enhanced the between-group differences
in NOGO α and γ power, reflecting insufficient inhibition
in different neural networks for distraction suppression in
the ADHD group. Machine learning methods further con-
firmed that distractions enhance the detection of ADHD
with an accuracy of 85.45%. In conclusion, this system can
assist in fast screenings for ADHD and the findings of neu-
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ronal correlates of distractions can help design therapeutic
strategies.

Index Terms— Attention deficit/hyperactivity disorder
(ADHD), continuous performance test (CPT), electroen-
cephalography (EEG), go/no-go task, machine learning, vir-
tual reality (VR), distractions.

I. INTRODUCTION

ATTENTION Deficit/Hyperactivity Disorder (ADHD) is
one of the most common neurodevelopmental disorders

in childhood. Children with ADHD may exhibit difficulty
paying attention, easily get distracted, perform impulsive or
overly active behaviors, and be restless when compared with
age-matched healthy subjects, resulting in academic, fam-
ily and life difficulties [1]. These symptoms can affect an
individual from early childhood into adulthood [2], so early
diagnosis and treatment are important. Currently, the reference
guide used by clinicians to diagnose ADHD is known as
the Diagnostic and Statistical Manual of Mental Disorders
– 5th Edition (DSM-5). This diagnosis is based on observ-
ing behavior through interviews and questionnaires; there is
no standard objective laboratory tests (urine, blood, x-ray
or psychological analysis) to further support the diagnosis
of ADHD [3]. As a result, an increasing rate of ADHD
disorder misdiagnosis with other types of brain disorder has
been reported [4]. Furthermore, it has also been reported
that medical diagnosis of ADHD is often delayed due to
the heterogeneous nature of ADHD, combined comorbidities
and a global shortage of diagnostic clinicians [5]. Hence,
alternative ways to increase the efficiency of early diagnosis
is important [5]. For instance, GO/NOGO task has been used
in many studies to investigate the behavioral and neuronal
aberrations in ADHD children [6], [7], [8]. In this study,
we aim to use an intelligent VR system integrated with 6 chan-
nels of electroencephalogram (EEG) and machine learning
methods to help diagnose children with ADHD. Specifically,
given that children with ADHD are more easily distracted,
we hypothesized that introducing distractions into a VR-based
GO/NOGO task can augment the detection of ADHD.

This paper is organized as follows: Section II describes
the updated findings regarding ADHD, EEG and GO/NOGO

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3224-200X
https://orcid.org/0000-0002-1767-2773
https://orcid.org/0000-0002-4548-7620
https://orcid.org/0000-0001-8856-8685


CHEN et al.: NEURONAL CORRELATES OF TASK IRRELEVANT DISTRACTIONS ENHANCE THE DETECTION OF ADHD 1303

tasks in the literature. Section III describes the details of the
stimulation materials and the VR system used, along with
the experiment procedures, data analysis, and statistical tests.
Section IV presents the experimental results. The discussion
and conclusions are summarized in Section V.

II. RELATED WORK

ADHD is a neurodevelopmental disorder in which some
brain areas mature several years later than normal, such as
the amygdala, caudate, hippocampus, and putamen, as well
as cortical regions (prefrontal, parietotemporal cortex) and
cerebellum [9], [10], [11]. As a result, children with ADHD
exhibit a variety of symptoms, including inattention, impul-
siveness, and hyperactivity [1]. For clinical screening and/or
treatment evaluation of attention-related diseases, behavioral
and neuronal data have been used. For instance, the continuous
performance test (CPT) objectively measures the behavioral
performance of inattention and impulsivity, including the cor-
rect response, reaction time, omission error, and commission
errors [12] and can be used as a supportive measure in the
evaluation of ADHD [13]. Additionally, two electrophysio-
logical components of event-related evoked potentials (ERPs)
also provide an objective assessment of a subject’s attention
and response inhibition: (1) a negative peak around 200 ms
after stimulus onset (N200); and (2) a positive peak around
300 ms (P300) from the EEG during a GO/NOGO task,
a variation of CPT [14], [15]. Fisher et al. found that in the
NOGO trial, ADHD subjects made more commission errors
compared to controls and the P300 peak in ADHD group was
smaller [16]. In healthy adults, N200 and P300 amplitudes
were greater in NOGO trials than in GO trials [17]. These
increases in NOGO trials were thought to reflect the inhibitory
mechanism [18]. Specifically, the NOGO-N200 was related
to central inhibition or response conflict, while the P300 is
most probably related to inhibition of overt response [17].
In children with ADHD, significant differences were found in
N200/P200 amplitude over the right centro-frontal regions [19]
and in NOGO-P300 peak and latencies when compared with
typically developing children [20], suggesting immature or
impaired executive function associated with attention control
and inhibition [21].

Additionally, oscillatory EEG activity also plays impor-
tant functional roles in executive function, especially when
concerning interference inhibition (see [21] for a review).
For instance, theta power within the medial frontal cortex
was greatest between successful response inhibition in NOGO
events compared to GO responses, reflecting the recruitment
of executive control in interference situations [22]. Alpha
and beta power decreases were interpreted as greater cortical
activation when motor preparation was needed in the GO
condition while theta and gamma decreases could reflect inhi-
bition of competing neural networks [23]. Regarding ADHD,
Alexander et al. reported that low-frequency activity in the
ADHD subjects was inversely related to clinical and behavioral
measures of hyperactivity and impulsivity during CPT tasks
and this reversed relation was normalized following treatment
with stimulant medication [24]. Clarke et al. found that these

oscillatory abnormalities during eyes-closed resting state in
ADHD groups can help separate two subtypes of ADHD
[25]. Barry et al. reviewed the articles that used resting EEG
to assess ADHD and concluded that “elevated relative theta
power, and reduced relative alpha and beta, together with
elevated theta/alpha and theta/beta ratios, are most reliably
associated with AD/HD” [26]. In summary, neuronal data of
EEG during the GO/NOGO task or resting state can be used
to evaluate attention and response inhibition of ADHD.

Recently, machine learning methods have been applied to
EEG data to support the diagnosis of ADHD. Khoshnoud
et al. extracted the nonlinear features from 19-channel EEG
during eyes-closed resting state of 12 ADHD and 12 normal
age-matched children and achieved an accuracy of 83.33% for
separating the two groups using SVM [27]. Mueller et al. used
ERPs and independent component analysis to extract features
for 19 channel EEG for separating ADHD patients from
normal subjects during a visual two-stimulus GO/NOGO task
and reported an average classification accuracy of 92% [28].
Rodríguez et al. [29] and Areces et al. [30] used discriminant
analysis and achieved 56.60% and 76.1% accuracy in distin-
guishing ADHD and non-ADHD, respectively. In 2019, Vahid.
et al. used deep learning model and features extracted from
60 channel EEG during a time estimation task to distinguish
ADHD from healthy subjects with an accuracy up to 86% [31].
In 2020, we used the task performance and neuro-behavioral
data, such as head rotation (HR) and eye movements (EM),
during a CPT in a virtual-classroom to separate children with
ADHD from normally developing children with an accuracy
of 83.6% [32]. In summary, the use of behavioral and neuronal
data during GO/NOGO task to help detect ADHD can result
in a range of accuracy from 53% to up 92%, depending on
the employed methods and the number of EEG channels.
It remains unclear whether data from a few EEG channels
can still lead to a good accuracy of detecting ADHD.

Moreover, the GO/NOGO task was mostly given to subjects
in a well-controlled laboratory setting and hardly considered
the effect of unexpected distractions that occur regularly in
daily life. From the therapeutic perspective, it is also important
to study the impact of distractions as children with ADHD are
more easily distracted and a better understanding of the mecha-
nism underlying distraction suppression will help the design of
behavior treatment for ADHD. Indeed, in our previous study,
we demonstrated that introducing task-irrelevant distractions
into a VR-based GO/NOGO task can better explore the
functional roles of N200, theta, and beta oscillations in young
adults [33].

In this study, we aim to use an intelligent VR system
integrated with 6-channel EEG and machine learning methods
to help diagnose children with ADHD. Importantly, we test
whether introducing distractions into a VR-based GO/NOGO
task can augment the detection of ADHD and investigate the
neuronal correlates of distractions.

III. METHODS

A. System Equipment and Software
In this study, we used our previously validated VR- system

integrated with 6-channel EEG to collect multi-modal data
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Fig. 1. Brain electrodes and positions.

from participants. The details of this virtual classroom can be
found in our previous papers [32], [33]. The VR device used is
the HTC Vive™jointly developed by HTC International Elec-
tronics and Villefort. It provides users an immersive experience
of a three-dimensional virtual space and achieves experimental
purposes with a handheld remote controller. The EEG device is
produced by Looxid®, which can receive 6-channel EEG data
(Fig. 1). The virtual classroom environment was developed
using the game engine Unity3D. The HTC Vive™and VR
controllers are connected to the computer, enabling users to
interact with the virtual environment. Furthermore, the VR
system was also integrated with various sensors to measure
the physiological signals of galvanic skin response (GSR), and
eye movement.

This VR-based GO/NOGO paradigm was designed to be in
a virtual classroom environment and has been used in our
previous studies (see papers [32], [33] for details). During
the VR-based GO/NOGO task, participants were seated in
a fixed position within the precise range of the VR system
and were instructed to continually look at numbers on a
blackboard directly in front during the experiment. Throughout
the 10-minute experiment, numbers from 0 to 9 randomly
appeared on the blackboard with an interstimulus interval (ISI)
of 2 seconds. There were two conditions: GO and NOGO.
Subjects were asked to respond when they saw 0 after 1 as
the GO condition and hold their response when 0 was not
after 1 as the NOGO condition. The GO and NOGO stimulus
appeared randomly. Additionally, 25 trials (12 GO stimuli,
13 NO-GO stimuli) were accompanied by different task-
irrelevant auditory and visual distractions. Specifically, a total
of ten different distractive events were used and the physical
properties of those distractions, including type, loudness (in
dB) and duration (in second) were listed in Table I. Depending
the presence durations, the probabilities for visual, auditory
and visual-auditory hybrid distractions are 19%, 24%, and
57%, respectively. Figure 2A illustrates the VR scenario in
which the red dashed lines indicate the places of the introduced
distractions and 2B shows the rundown of the distractions.

B. Participants and Data Acquisition
The study was approved by the Institutional Review Board

(2) of Taipei Veterans General Hospital (TPEVGH IRB No.:
2020-11-001B) in accordance with the Declaration of Helsinki
and Good Clinical Practice Guidelines. Forty nine ADHD
children and 32 disease-free children with normal vision (or
normal after correction) participated in this study. All subjects
signed an informed consent after receiving an explanation of
the study. Throughout the experiment, EEG data from six
channels (AF3, AF4, Fp1, Fp2, AF7, and AF8; international

Fig. 2. VR scenario with distractions. (A) types and locations of the
distractions; (B) the rundown of the distractions.

TABLE I
THE PHYSICAL PROPERTIES OF THE DISTRACTIONS

10-20 system) were integrated into the VR headset (see Fig. 1
right) and recorded with a sampling rate of 512 Hz. In addition,
behavioral data were collected throughout the experiment
for the calculation of task performance, including correct
detection, reaction times, omission errors, and commission
errors.

C. EEG Data Processing and Feature Extraction
The steps for EEG data analysis have been described

in our previous studies in detail [33], [34]. Basically,
EEG data were bandpass filtered (2-56 Hz) offline
using SPM12 (Wellcome Trust Centre for Neuroimaging,
http://www.fil.ion.ucl.ac.uk/spm/) and then divided into GO
and NOGO trials with distraction (D) and without distraction
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(ND) conditions, resulting in four subsets for each group
for analysis: GO-D, GO-ND, NOGO-D, and NOGO-ND.
For ERPs analysis, the EEG were epoched into trials with
peristimulus time of −1000 ms to +1000 ms with respect to
the onset of visual cues. Then, the four subsets were averaged
across trials to obtain the ERPs. The baseline was set at −200
ms to 0 ms and the time windows for N2 and P3 were from150
to 400 and from 300 to 700 ms after visual cue, respectively.
We extracted four ERP features for comparison: the peak
amplitudes and latencies of N2 and P3.

To obtain frequency-related features, the four subsets for
each group were first transformed into the time-frequency
domain from 4 to 48 Hz using a Morlet wavelet (wavelet
number: 7). The spectral densities at each channel were
epoched into trials with peristimulus time of −1000 ms to
+2000 ms and then averaged across trials and frequencies
with respect to the four frequency bands of interest (FOI),
including the ⊖ (4-7 Hz), α (8-14 Hz), β (15-24 Hz), and γ

(25-48 Hz) bands. After baseline correction (-500 to 0 ms),
we extracted the frequency-specific peak power named event-
related spectral power (ERSP) [35]. We first identified the
peaks of ERSP and then the frequency-specific spectrum was
further averaged over time points from 0 to 1000 ms to obtain
the ERSP mean. Therefore, two frequency-related parameters
(i.e., ERSP peak and ERSP mean) for each subset of data were
identified for comparison.

D. Statistical Analysis and Machine Learning Methods
Task performance, ERPs and ERSP features were statis-

tically tested for the within-group factor of distractions (i.e.,
the D vs. ND; paired t-test) and the between-group differences
(i.e., healthy vs. normal groups; Welch’s t-test). The significant
level was set at p<0.05 after correction for multiple compar-
isons (Bonferroni correction). In addition to univariate analysis
of data, we employed 8 different machine learning methods for
multiple-variate analysis, including Support Vector Machine
(SVM), K-nearest neighbor (KNN), Logistic Regression (LR),
Decision Tree (DT), Random Forest (RF), Adaptive Boost-
ing (AB), Gradient Boosting (GB), and eXtreme Gradient
Boosting (XGB) to separate the data of the two groups for
two-class classification. Five-fold cross-validation was applied
for cross-validation. Finally, classification accuracy, sensitivity,
specificity, precision, F1-score and AUC were reported for
evaluating the performance of classifiers and data.

IV. RESULTS

A. Statistical Analysis on CPT Task Performance
Table II summarizes the statistical results of behavioral dif-

ferences between 32 normal children and 49 ADHD children
in different states (with or without interference) of CPT. It can
be seen that behaviorally the two groups showed significant
differences in reaction times and omission errors when there
are distractions. Children with ADHD exhibited significantly
shorter reaction times (p=0.004) and higher omission errors
(p<0.001) with distractions when compared to the normal
children (Table I, marked with grey). The between-group
performance differences in ND trials were insignificant after

Fig. 3. Significant differences in brain responses with and without
distraction trials.(A) Group-specific differences in ERPs; (B) Group-
specific differences in ERSP; (C) Between-group differences with and
without distractions.

correction for multiple comparisons. Furthermore, children
with ADHD had significantly higher omission errors with
the presence of distractions compared with no distractions
(p=0.0024) (Table I, marked with grey).

B. ERP and ERSP Results on Distractions
Paired t-test was used to identify group-specific significant

differences in brain responses with and without distraction
trials. Fig. 3 A shows the significant group-specific differences
in ERP peak and latency with and without distractions. The
ADHD group exhibited significantly smaller P300 peaks at
AF3 and AF4 in D trials in both GO an NOGO conditions
when compared to that in the ND trials (Fig. 3 A, upper
left). The latencies of GO-P3 and GO-N2 at Fp2, as well as
the NOGO-N2 latencies at AF4 and Fp2 were significantly
longer in D trials (Fig. 3 A, upper right). By contrast, the
healthy group only shows a significantly prolonged latency
in NOGO-N2 at Fp2 (Fig. 3 A, lower panel). There is no
significance in P3 peak or latency in the healthy group after
correction for multiple comparisons.

For ERSP, the ADHD group have significantly decreased α

power at AF3, AF4, AF7 and Fp1 in GO conditions and at
AF3 in NOGO conditions with distractions when compared
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TABLE II
BEHAVIOR RESULTS OF CPT TASK PERFORMANCE (∗ : P<0.05 AFTER CORRECTION FOR MULTIPLE COMPARISONS)

to without distractions (Fig. 3B, left). For the healthy group,
the α power at AF3 and β power at AF3, AF4 and Fp1
decreased only in GO conditions with distractions (Fig. 3 B,
right). No significant differences in ⊖ and γ ERSP were found
in this study.

C. ERP and ERSP Results on Normal and ADHD
Groups

Regarding the differences between the two groups, we used
Welch’s t test to examine the ERP and ERSP between normal
and ADHD groups with and without distractions. Fig. 3 C
shows the significant differences between the two groups.
We observed that the ADHD group has higher ERPS power
at different channels and frequencies when compared with
the healthy group, including θ , α, β and γ power at AF3
in NOGO-D trials and greater β and γ power at AF3 in
GO-D trials when there are distractions (Fig. 3C, left). Fewer
increases of ERSP in the ADHD group were identified under
ND conditions, including β and γ power at AF3 in GO-ND
trials and θ and β power at AF3 in NOGO-ND trials (Fig. 3C,
right).

D. Classification on Distraction
We first used machine learning classification to verify

whether distractions have any impact on brain signals. Specif-
ically, we tested different combinations of EEG features,
including ERPs, ERPS and both to see which features best
reflect the effects of distractions. TABLE III lists the classi-
fication results of the machine learning methods. To increase
readability, we coded the best accuracies given data in grey.
The ERP features can result in the best accuracy of 90.00%
in ADHD group using XGB but failed in the healthy group
(accuracy <70.00%). For ERSP features, the best classifi-
cations were 90.00% for the ADHD group using XGB and
84.62% for the healthy group using DT, RF, AB and XGB.
The combination of ERP and ERSP features leads to the best
accuracy of 100.00% in both the ADHD and healthy groups
using RF, GB and XGB. It should be noted that the variances
of accuracy across different classifiers were considerable in
both groups.

E. Classification on ADHD
Finally, we tested whether the presence of distractions can

enhance the separation of the ADHD group from the healthy

group by comparing the classification results with and without
distractions using both behavioral and EEG data because they
displayed significant within- and between-group differences.
Table IV lists the classification results with and without dis-
tractions. It can be seen that the presence of distractions
during the task increases the classification accuracies of all
classifiers tested. Specifically, the best separation accuracy of
all when used ND and D trials was 85.45% obtained by XGB,
followed by 83.64% of AB (Table IV). When used only ND
trials, the best accuracy was 80.00% for both DT and XGB.
When used only D trials, all classifiers failed to obtain a good
classification result (<80%).

V. DISCUSSION

A. The Effects of Distractions on Behaviors
Previous studies of ADHD using a VR classroom with

visual and auditory distractions has reported that children
with ADHD committed significantly more omission errors and
commission errors when compared with normal children [36].
Furthermore, it was suggested that virtual classrooms have
good potential for the controlled attention performance assess-
ment of children with ADHD compared to standard neuro-
psychological methods [37], [38]. In line with previous studies,
we found significantly higher omission errors and shorter reac-
tion times in the ADHD group compared with normal controls
using the VR classroom, confirming that children with ADHD
were more susceptible to distractions [36]. Furthermore, there
were no significant performance differences in the normal
group when comparing D and ND trials, but the ADHD group
exhibited significantly greater omission errors (<1%) in tasks
with distractions than without distractions. This behavioral
difference suggests that normal children were less impacted
by distractions.

It should be noted that a variety of distractions were used
to interfere the subjects’ attention. Because different forms of
distractions (for instance, visual or auditory stimulus) engage
different neuronal systems for processing the information
of these distractions (i.e. functional specialization in neuro-
science), it is possible that different distractions may have
different effectiveness in modulating attention [39]. However,
this effect is negligible in this study as the difference in the
probabilities of visual (19%) and auditory (24%) distractions
is only about 5%. The majority of the distractions (57%) have
simultaneously visual and auditory stimulus. Further study that
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TABLE III
FEATURE-SPECIFIC CLASSIFICATION ACCURACY

uses adequate uni-modal distractions can allow the comparison
of distraction-specific effects on attention.

B. The Effects of Distractions on ERPs
The functional roles of N2 peak were thought to be related

to inhibitory control, inference suppression [40] and monitor-
ing of conflict (see [41] for a review) in CPT tasks. In our

previous study, the NOGO-D N2 was greater than the GO-D
N2 in healthy adults and this suggests the inhibitory control
of N2 [33]. In a study of children with ADHD, it was reported
that the differences of N2 peak between NOGO and GO
trials diminished after correction for the confounding factors
of oppositional defiant/conduct disorder [42]. In this study,
we found that neither between ADHD and control groups nor
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TABLE IV
CLASSIFICATION RESULTS OF ADHD AND HEALTHY

between D and ND trials have any significant differences in
N2 peak. Instead, NOGO-N2 latencies were prolonged with
distractions in both groups. Taken together, our findings of
insignificant peaks and prolonged latencies of N2 may reflect
the fact that both groups of children are still immature in
inhibitory control.

The P3 amplitude is positively related with the attention
amount toward target [41]. In this study, we observed that
GO-P3 and NOGO-P3 amplitude in the ADHD group was sig-
nificantly smaller with distractions than without distractions.
Additionally, the presence of distractions prolonged the GO-P3
latency in the ADHD group. These P3 differences between
D and ND trials, however, were absent in healthy controls.
The P3 ERP findings signify that the ADHD group was dis-
tracted by inferences and diverted attentional resources toward
the distractions, rather than properly suppressing irrelevant
information.

C. The Effects of Distractions on ERSP
Local α oscillations are associated with cognitive perfor-

mance, memory, attention, and inhibitory control of motor

programs (see [43] for a review). Alpha power decrease
was often seen during visual stimulation of visual attention
[44] or during sensorimotor tasks for motor preparation [45],
[46]. In our previous study, we found that the α power was
decreased by the perturbations of distractions in GO but not
NOGO trials in adult subjects, indicating α-related attention
toward the task. Beta ERSPs also play an important role in
attention regulation [47], [48], [49]. For instance, intentionally
attending to sensory stimulus results in the decrease of beta
power [50], [51]. In this study, we observed that both groups
showed decreased α and β ERSPs in D trials compared to
ND trials, suggesting attention shifting toward distractions
(Fig. 3 B). Interestingly, only the ADHD group exhibited a
decreased NOGO-D α ERSP. Because NOGO trials were used
to study the response inhibition, the finding of decreased
α ERSP in NOGO-D trials in the ADHD group reflects
that response inhibition was affected by distractions only in
children with ADHD, but not in healthy children or young
adults [33]. This is further supported by the findings of
between-group differences. We found that the presence of dis-
tractions additionally enhanced the between-group differences



CHEN et al.: NEURONAL CORRELATES OF TASK IRRELEVANT DISTRACTIONS ENHANCE THE DETECTION OF ADHD 1309

in NOGO α and γ power at AF3 (Fig. 3 C), which were absent
in ND trials. It was reported that γ decreases were associated
with the inhibition of competing neural networks [23]. There-
fore, the higher γ ERSPs in NOGO-D trials in the ADHD
group indicated insufficient inhibition in different neural net-
works for response inhibition and distraction suppression.

D. Classification on Distraction and ADHD
In addition to univariate statistic testing, we employed

machine learning methods for multiple variate analysis.
Regarding the impacts of distractions, we found that all types
of EEG features, including ERPs, ERSP and their combination,
provides useful information for the separation of trials with
and without distractions, irrelevant to groups, with accuracy
greater than 80%. This result verified that the distractions
in this study were sufficient to alter the neuronal activities
in children. Notably, the accuracy of separating trials with
and without distractions in children was lower than in young
adults [33]. This lower accuracy in children may be due to
immature inhibition of distractions. Furthermore, the accuracy
of separating ADHD data from normal children increased with
the presence of features extracted from distraction trials when
compared with the ND features. This reflects the fact that
distractions enhanced the neuronal differences between ADHD
and normal children.

VI. CONCLUSION

In this study, we used an intelligent VR system integrated
with EEG and machine learning methods to help diagnose chil-
dren with ADHD. We first examined the differences in ERP
and ERSP with and without distractions and found that the
presence of distractions leads to 1) decreased P300 peak in the
ADHD group, 2) reduced α and β ERSPs, and 3) prolonged
N2 and P3 latencies. Furthermore, the distractions additionally
enhanced the between-group differences in NOGO α and γ

ERSPs. By using machine learning methods, we validated
that the presence of distractions can efficiently alter neuronal
activities in children and improve detection of ADHD. The
findings of neuronal correlates of distractions and neuronal
abnormalities in ADHD children increases understanding of
the underlying mechanism and can be used to design thera-
peutic strategies for attention-related diseases.
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