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EMG Probability Density Function: A New Way
to Look at EMG Signal Filling From Single Motor

Unit Potential to Full Interference Pattern
Javier Navallas , Adrián Eciolaza , Cristina Mariscal , Armando Malanda ,

and Javier Rodríguez-Falces

Abstract— An analytical derivation of the EMG signal’s
amplitude probability density function (EMG PDF) is
presented and used to study how an EMG signal builds-
up, or fills, as the degree of muscle contraction increases.
The EMG PDF is found to change from a semi-degenerate
distribution to a Laplacian-like distribution and finally to a
Gaussian-like distribution. We present a measure, the EMG
filling factor, to quantify the degree to which an EMG signal
has been built-up. This factor is calculated from the ratio
of two non-central moments of the rectified EMG signal.
The curve of the EMG filling factor as a function of the
mean rectified amplitude shows a progressive and mostly
linear increase during early recruitment, and saturation
is observed when the EMG signal distribution becomes
approximately Gaussian. Having presented the analytical
tools used to derive the EMG PDF, we demonstrate the
usefulness of the EMG filling factor and curve in studies
with both simulated signals and real signals obtained from
the tibialis anterior muscle of 10 subjects. Both simulated
and real EMG filling curves start within the 0.2 to 0.35 range
and rapidly rise towards 0.5 (Laplacian) before stabilizing at
around 0.637 (Gaussian). Filling curves for the real signals
consistently followed this pattern (100% repeatability within
trials in 100% of the subjects). The theory of EMG signal
filling derived in this work provides (a) an analytically
consistent derivation of the EMG PDF as a function of
motor unit potentials and motor unit firing patterns; (b) an
explanation of the change in the EMG PDF according to
degree of muscle contraction; and (c) a way (the EMG filling
factor) to quantify the degree to which an EMG signal has
been built-up.

Index Terms— Electromyography (EMG), EMG PDF,
motor unit, interference pattern, recruitment.

I. INTRODUCTION

DESPITE the importance of the EMG recruitment pattern
in physiological and clinical applications, there has been
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no complete analysis, in terms of the EMG signal’s amplitude
probability density function (EMG PDF), of the way in which
the EMG signal progressively builds-up and the baseline is
filled up with motor unit potentials (MUPs) as muscle activity
increases.

Knowledge of the EMG signal filling process is of great
value in prosthesis control, where analysis of the EMG signal
is extensively applied [1], [2], [3] in order to determine the
intended degree of muscle activation [4], [5]. One of the
main limitations for robust control is related to the stochastic
behaviour of the signals [6], and reliable modelling of the
EMG signal as a random process is found to be be useful in
these applications [7], [8], [9], [10], [11]. Another important
application of EMG recruitment analysis deals with motor
unit (MU) firing pattern extraction [1] and its use in the
investigation of neural drive strategies [5].

Analysis of EMG filling as the level of muscle activation
increases is also widely employed in clinical practice in
interference pattern analysis [12], [13]. However, this is
usually attempted by EMG waveform analysis, by looking
for qualitative or quantitative descriptors of the degree to
which an EMG signal has been filled [14], such as, turns-
amplitude analysis [15], or number of short segments and
activity analysis [16], [17].

Previous studies on EMG amplitude distribution have
demonstrated that EMG PDF consistently shows shape
variation according to contraction level [18], [19], [20], [21].
It has been reported that the EMG PDF lies between a
Laplacian and a Gaussian distribution at low contraction levels
[18], [19], [22] and tends towards a Gaussian distribution
at higher activation levels [8], [20], [21]. On the other
hand, when the EMG interference pattern is completely
formed, it is assumed that the signal is equivalent to
a Gaussian process, in accordance with the central limit
theorem [23], [24].

There are several analyses of the EMG signal in the
time domain that have been used to model the pattern
of EMG recruitment. There are detailed models describing
the convolutional theory for EMG build-up [25], [26],
models describing the MU firing patterns in steady isometric
conditions as a renewal point process [27], and models
describing the recruitment and firing rate of the MUs
as a function of muscle activation [28], [29]. Although
in general this type of modelling assumes randomness,
the modelled EMG signals are usually described as
being quasi-deterministic [24], while more comprehensive
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descriptions should be grounded on filtered point process
theory [30], [31].

As motor unit recruitment increases, individual MUP
contributions can no longer be identified, and the so-called
EMG interference pattern arises [13]. In this scenario, the
EMG signal can be modelled as a Gaussian random process
with a band-limited power spectral density [23]. However,
there is evidence that the EMG signal is not a Gaussian random
process when the level of contraction is low [9], [11], [18],
[19], [20], [21] and few MUs have been recruited [24], that
is, before the interference pattern is completely formed [15].
To our knowledge, there is no published derivation of
the complete EMG PDF from minimum to maximum
contraction or description of why, in terms of EMG signal
generation, the distribution changes its characteristics as force
increases.

In this work, firstly, we provide a complete analytical
derivation of the EMG PDF valid for the whole range
of muscle activation, based on MUP waveforms and the
convolutional model of the EMG. Secondly, we define a new
measure to quantify EMG filling (the EMG filling factor)
which is a ratio of the first two non-central moments of the
rectified EMG signal. Finally, we illustrate, with the help of
experiments with simulated and real signals, the usefulness of
the proposed factor; explain why, as the activation level of a
muscle increases, the EMG distribution changes; and discuss
how the EMG filling factor can be used to track level of muscle
activation.

II. MATERIALS AND METHODS

A. EMG Convolutional Model
A widely accepted approach to modelling the EMG signal

during static isometric contractions is to use a convolutional
model [25]. In this derivation, each active MU contributes to
the EMG signal its own distinct MUP waveform pi (t), at each
of the time instants that the MU is firing, according to its MU
firing pattern fi (t). The MU firing pattern can be expressed
as a train of impulses [23]

fi (t) =

Ki∑
k=1

δ(t − tik) (1)

where Ki is the number of firings of the i th MU within the
time interval under analysis. In static isometric contractions,
inter discharge intervals τik = ti,k+1 − tik can be modelled
by a renewal point process [27], [33] with τik ∼ N(µτi , στi ).
The mean inter discharge interval µτi is the inverse of the MU
firing frequency.

The MUP train of the i th MU can be expressed as [23]

xi (t) = pi (t) ∗ fi (t) =

Ki∑
k=1

pi (t − tik) (2)

where ∗ is the convolution operator. Given the random nature
of the firing instants, (2) can be interpreted as the response to
the impulses of a marked point process [30], and so (2) can
itself be regarded as a filtered point process [31].

The EMG signal can be calculated as the summated
contribution of the MUP trains from the M active MUs as [25]

xE MG(t) =

M∑
i=1

xi (t) =

M∑
i=1

Ki∑
k=1

pi (t − tik). (3)

While this model provides a simple and accurate description
of the EMG signal in the time domain [23], [34], it does not
help us to understand the characteristics of EMG PDF. In some
approximations [23], the EMG signal has been modelled as a
Gaussian noise process subject to the application of the central
limit theorem when the number of active MUs is large enough;
while this approach may reflect reality for high-contraction
recordings, it does not explain the EMG PDF under low and
moderate levels of muscle contraction [7], [9], [11], [22].

B. Derivation of the EMG Probability Density Function
We now present the theory behind our derivation of

the EMG PDF valid both when contraction levels, and
consequently activity in the EMG signal, is low [19], and
when contraction levels are high and the EMG interference
pattern is formed [23]. The objective is to find a new way to
describe, in terms of the signal’s amplitude distribution, the
EMG signal and the way that that signal builds up or fills
out. In this way, the resulting new tool for EMG analysis will
encapsulate the relationship between the shape of the EMG
PDF and the activation level of muscle.

Given a MUP, pi (t), the sampling process to obtain the
MUP can be regarded as an extraction of the amplitude
values of the MUP at random instants. Since the sampling
process is not synchronized with the MUP’s firing instants,
the distribution of the sampling times over the course of the
support corresponding to the duration of the MUP is uniform.
At each particular time instant, the MUP sample amplitude
will be given by pi (t). Hence, the sampling process can be
regarded as a random variable transformation of the uniform
time distribution through the pi (t) function.

As an example, a very simple model for the MUP waveform
can be formed by two triangular functions (Fig. 1(a)) as in

pi (t) = ai3
( t − di/4

di/4

)
− ai3

( t + di/4
di/4

)
(4)

where 3(·) is the triangular function, ai is MUP amplitude
and di is MUP duration. In order to obtain the sampled-MUP
PDF, we have to take into account that sampling of the MUP
occurs with equal probability for every time instant within the
MUP duration. Random variable transformation of a uniform
PDF in the temporal domain (Fig. 1(a)) leads to a uniform
PDF model for the sampled-MUP PDF (Appendix A)

1
di

5
( t

di

) pi (t)
−−→ θi (x) =

1
2ai

5
( x

2ai

)
(5)

where 5(·) is the rectangular function.
Another simple model for the MUP waveform would be one

period of the sine function (Fig. 1(b)) as in

pi (t) = ai sin
(

2π
t
di

)
5

( t
di

)
(6)



1190 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. Calculation of the sampled-MUP distribution, θ(x), assuming a simplified waveform of the MUP, p(t), as a random variable transformation
of a uniform distribution, fT(t), modelling the sampling time probability (Appendix A): (a) triangular MUP model leading to a uniform sampled-MUP
PDF; and (b) sine MUP model leading to a zero-mean arcsine distribution for the sampled-MUP PDF.

Fig. 2. Transformations applied to the (a) MUP, (b) MUP train, and (c) EMG signal to obtain their corresponding PDFs. The points a and b indicate
the minimum and maximum amplitude of the initial MUP; note that the amplitude increases as the EMG signal builds up.

and in this case, the random variable transformation (Fig. 1(b))
leads to an arcsine distribution for the sampled-MUP PDF
(Appendix A)

1
di

5
( t

di

) pi (t)
−−→ θi (x) =

1

π

√
a2

i − x2
5

( x
2ai

)
. (7)

The sine MUP model provides a more accurate description
of the MUP waveform and a better approximation to
the corresponding sampled-MUP PDF of a realistic signal
(Fig. 2(a)). However, the exact MUP PDF would always
require a precise transformation on the exact counterpart MUP
waveform.

In a MUP train segment of duration τi s between two MU
discharges, and neglecting any source of noise, the MUP itself
occupies di seconds while the remaining τi − di seconds of
the segment are empty, i.e., have zero amplitude. Hence the
MUP train will have a mixture PDF formed by the MUP
PDF modelling the amplitude distribution within the MUP
duration and a Dirac delta distribution modelling the zero
signal value during the interval between MUPs (Fig. 2(b)).

Both contributions are mixed in a proportion determined by
the ratio ηi which is the probability of a sample of pertaining
to the MUP, namely

φi (x) = (1 − ηi )δ(x) + ηiθi (x) (8)

where δ(·) is the Dirac delta distribution, φi (x) is the MUP
train PDF of the i th MU, and ηi = di/µτi . The latter can be
obtained by using the elementary renewal theorem [32] that,
in our context, states that the limit number of firings per unit
time is 1/µτi . Hence, ηi can be obtained as the MUP duration
di divided by the expectation of the inter discharge interval τi
of the MU firing pattern driving the MUP train. Note that an
increased firing rate in a single MUP train will simultaneously
lower the Dirac delta coefficient (1−ηi ) and increase the MUP
PDF coefficient (ηi ), modulating its relative contribution to the
MUP train PDF in (8).

When several MUP trains add up to form the EMG,
and neglecting any form of MU synchronization [24], the
corresponding operation in the PDF domain is a convolution:
as we add independent random variables, the resulting PDFs
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are convolved. Given two MUP trains, the resulting PDF is

φE MG(x) = φ1(x) ∗ φ2(x) = (1 − η1)(1 − η2) δ(x)

η1(1 − η2) θ1(x) + (1 − η1)η2 θ2(x)

+η1η2 θ1(x) ∗ θ2(x) (9)

where the mixing coefficients have a direct interpretation as the
probabilities of sampling a superimposition of the two MUPs,
η1η2; sampling only the first MUP, η1(1 − η2); sampling only
the second MUP, (1 − η1)η2; or sampling an empty segment
(1 − η1)(1 − η2).

In general, for a set of M active MUs, the resulting EMG
PDF (Fig. 2(c)) will be formed by the convolution of all the
PDFs of all the active MUP trains, namely

φE MG(x) = φ1(x) ∗ φ2(x) ∗ . . . ∗ φM (x) =

M

K
i=1

φi (x) (10)

where the K operator is used to indicate the iterated
convolution of the φi (x) distributions. In this expression, each
of the contributing MUPs has its own MUP train PDF, φi (x),
obtained for a given ηi from its MUP PDF, θi (x), which,
in turn, depends on its particular MUP shape, pi (x).

This expression can be developed to read

φE MG(x) =

[ M∏
i=1

(1 − ηi )

]
δ(x)

+

M∑
i=1

[
ηi

M∏
j=1
j ̸=i

(1 − η j )

]
θi (x)

+

M−1∑
i=1

M∑
j=i+1

[
ηiη j

M∏
k=1

k ̸={i, j}

(1 − ηk)

]
K

k={i, j}
θk(x)

+

M−2∑
i=1

M−1∑
j=i+1

M∑
k= j+1

[
ηiη jηk

M∏
l=1

l ̸={i, j,k}

(1 − ηl)

]
K

l={i, j,k}

θl(x)

+ · · · +

[ M∏
i=1

ηi

] M

K
i=1

θi (x) (11)

which can be viewed as a mixture distribution where the terms
involving η values are the mixing coefficients of the Dirac
delta, MUP PDFs and convolved MUP PDFs distributions.
It is important to note that changes in the firing rates are
accommodated in the mixing coefficients of the distributions.
When summing several MUP trains to form the EMG signal,
increased firing rates will turn into increased η values, causing
the mixing coefficients of higher order iterated convolutions
to increase. This reflects the fact that the amount of MUP
superpositions increases as firing rates increase.

Another important observation about the iterated convolu-
tion terms in (11) is that, while it is correct to assert that the
support of the PDF after the convolution is the summation of
the supports of the convolved PDFs, the more terms that are
included in the convolution, the more the resulting distribution
tends to get smoothed out and tends to concentrate around its

TABLE I
MOMENTS AND FILLING FACTOR FOR DIFFERENT PDF MODELS

central values (the distribution tends to acquire a Gaussian-
like shape).This effect is commonly known as EMG amplitude
cancellation.

For the sake of simplicity, if we assume an average η̄ = ηi
for all the active MUs, and an average MUP PDF, θ̄ (x), the
resulting EMG PDF can be expressed as

φE MG(x) = (1 − η̄)M δ(x)

+

M∑
k=1

(
M
k

)
η̄k(1 − η̄)M−k

k

K
i=1

θ̄ (x). (12)

In this simplified expression, the mixing coefficients of the
distributions are directly interpretable as the probability of
sampling an empty section of the EMG signal (1 − η̄)M or
a superimposition of k MUPs

(M
k

)
η̄k(1 − η̄)M−k . Note that,

in this simplified scenario, these probabilities follow exactly a
binomial distribution B(M, η̄).

C. EMG Filling Factor
Having derived the EMG PDF, the next objective is to

quantify EMG PDF changes corresponding to changes in
muscle activation level. We will present the calculation of the
filling factor and show the exact derivation for the MUP, MUP
train, and EMG PDFs presented in section II-B.

A simple way to quantify the change in EMG PDF shape
as an EMG signal is being filled with the contributions from
newly recruited MUs is to calculate a ratio of the first two
non-central moments of the rectified signal. We will refer to
this ratio as the EMG filling factor

R =
µ′2

1
µ′

2
=

E[|x |]
2

E[|x |2]
. (13)

This parameter is the inverse of the square of the form factor
as introduced in [35] to interpret MUNIX results and more
recently used in [36] to derive a modification of the MUNIX
procedure.

To begin, in order to calculate R for a single MUP train,
we need to calculate it for the MUP. The folded distribution,
which results from rectifying the MUP waveform, can be
obtained by applying

θi F (x) =
[
θi (x) + θi (−x)

]
u(x) (14)

where u(·) is the Heaviside step function.
Developing on the example, introduced in section II-B, of a

simplified triangular MUP waveform (Fig. 1(a)) that has a
uniform distribution θi (x) = U(−ai , ai ), equation (14) gives
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θi F (x) = U(0, ai ) with µ′

1 = ai/2 and µ′

2 = a2
i /3. Hence, the

EMG filling factor of a triangular MUP is 3/4 (Table I).
In the case of the sine MUP (Fig. 1(b)) with an arcsine

distribution as in (5), the folded distribution is a half-arcsine
distribution (Appendix B) given by

θi F (x) =
2

π

√
a2

i − x2
5

( x − ai/2
ai

)
(15)

and calculation of the non-central moments (Appendix B)
gives µ′

1 = 2ai/π and µ′

2 = a2
i /2. Hence, the EMG filling

factor of a sine MUP is 8/π2 (Table I).
For the MUP train PDF obtained in (8), the folded

distribution corresponding to the rectified signal, φF (x), can
be calculated as

φi F (x) = (1 − η)δ(x) + ηθi F (x) (16)

because the Dirac delta distribution is concentrated at x = 0,
and hence it does not change on folding.

Calculation of the moments of the folded distribution of the
MUP train is straightforward as it can be demonstrated that

µ′
nφi

=

∫
∞

0
xnφi F (x)dx

=

∫
∞

0
xn((1 − ηi )δ(x) + ηiθi F (x))dx

= (1 − ηi )

∫
∞

0
xnδ(x)dx + ηi

∫
∞

0
xnθi F (x)dx

= ηi

∫
∞

0
xnθi F (x)dx = ηi µ′

nθi
(17)

given that the nth central moment of a Dirac delta distribution
is equal to 0. In other words, the non-central moments of
any MUP PDF are scaled by factor η when considering the
counterpart MUP train PDF.

Hence, for the triangular MUP, the MUP train filling factor
becomes 3η/4. With a value of η around 0.2 (MUP duration
of 20 ms and mean inter discharge interval of 100 ms), the
MUP train filling factor is calculated to be 0.15 (1st row in
Fig. 4(a)). Using the same values for the sine MUP model, the
MUP train filling factor of 8η/π2 is calculated to be slightly
over 0.16.

Calculation of the moments of the folded distribution of
the EMG stem from (11), after folding each of the linearly
combined distributions. To be precise,

δ(x) ⇒ [δ(x)]F = δ(x) ⇒ µ′
nδ = 0 ∀n (18)

θi (x) ⇒ θi F (x) ⇒ µ′
nθi

(19)

IL

K
i=I1

θi (x) ⇒

[ IL

K
i=I1

θi (x)

]
F

⇒ µ′
nθI1∗...∗θIL

(20)

where the last equation stems from the general form of a
convolution of L MUP PDFs with indices given in the set
{I1, . . . , IL}. It is important to note that the folding operation
must be applied after solving the MUP superimposition driven
by each iterated convolution operation.

Since each summated term in (11) refers to an independent
contribution to the mixture, the overall moments will follow
the same linear combination of the iterated convolution terms.
Hence, taking into account (18), (19), and (20), the moments
of the folded distribution of the EMG are

µ′
nφE MG

=

M∑
i=1

[
ηi

M∏
j=1
j ̸=i

(1 − η j )

]
µ′

nθi

+

M−1∑
i=1

M∑
j=i+1

[
ηiη j

M∏
k=1

k ̸={i, j}

(1 − ηk)

]
µ′

nθi ∗θ j

+ . . . +

[ M∏
i=1

ηi

]
µ′

nθ1∗...∗θM
. (21)

Due to the intrinsically complex nature of the analytical
derivation of the moments of the folded distributions obtained
after the iterated convolutions, a descriptive approach will be
adopted to interpret the evolution of the EMG filling factor as
M , the number of active MUs in (11) and (21), increases.

At low levels of muscle contraction, a Laplacian-like
distribution of the EMG amplitude arises [18], [19], [22]. This
shape reflects the fact that in low force recordings it is typical
to find large sections of the EMG signal with little or no
contribution from MUPs [13].

If we assume that the EMG PDF follows a zero-mean
Laplacian distribution L(0, b), the folded counterpart would
be an exponential distribution Exp(1/b). The non-central
moments are µ′

1 = b and µ′

2 = 2b2, resulting in a filling
factor of 1/2 (Table I), (4th row in Fig. 4(a)).

When, as a consequence of an increasing number of
recruited MUs, the EMG signal builds up and constitutes a
full interference pattern [13], the form of the EMG PDF tends
towards a Gaussian distribution, as theoretically called for by
the central limit theorem [23].

If we assume that the EMG signal follows a Gaussian
distribution, N(0, σ ), the rectified signal would have a
half-normal distribution, HN(σ ). It is straightforward to
demonstrate that, in this case, µ′

1 = σ
√

2/π and µ′

2 = σ 2,
which results in the calculated filling factor being equal to
2/π (Table I), (6th row in Fig. 4(a)).

D. Simulation Experiments
Simulation experiments were designed with a view to

analysing, as degree of muscle contraction is increased from
low to maximum, how the shape of the EMG PDF evolves
and how the EMG filling factor changes.

A combination of state of the art models was employed
in the simulation experiments. Muscle architecture with MU
territory sizing and placement was modelled as in [37],
ensuring a uniform overlapping of MU territories and MU fiber
density over the muscle cross-section. MU fiber number and
MU territory area were modelled as an exponential function
of the motor unit index [28], [37]. Complete individual muscle
fiber innervation was modelled as in [38] and [37], with MU
fractions [39] modelled as in [40] with a uniform distribution
of the motor end-plate means of each fraction around the
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muscle mid-length and a uniform distribution around the
mean of the motor end-plates within each fraction. Muscle
fiber conduction velocities were modelled with a Gaussian
distribution for each MU with the mean determined as an
exponential function of the MU index [40] and a fixed
0.1 coefficient of variance.

Recruitment and firing characteristics were modelled as
in [29], with the average firing rate for each MU provided as a
function of the muscle activation, measured as a percentage of
the maximum voluntary contraction (MVC) level. MU firing
patterns were modelled as renewal point processes with
a truncated Gaussian distribution for the inter discharge
intervals [33] with the mean obtained as the inverse of the
average firing rate and a fixed 0.15 coefficient of variance.
In order to simulate a bipolar surface EMG recording of each
MUP, recording of the individual muscle fiber’s activity was
modelled as in [41], and MUPs were obtained by summating
the contributions from the fibers belonging to each MU [42].
The final simulated EMG recording was calculated as the
summated convolution of the MUP firing patterns and their
corresponding MUPs [25].

With this simulation model, with randomized MU territory
placement and randomized MU fiber innervation, we obtained
1000 different muscle realizations. For each of the muscle
realizations, 121 EMG signals of 1 s duration sampled at 2 kHz
at different MVC levels were simulated. In order to obtain the
complete recruitment pattern as force increases, the 121 MVC
levels were selected following the exponential distribution of
the recruitment thresholds of the 120 MUs and adding an extra
level at 100% MVC. For each of the 121 simulated signals,
µ′

1 and µ′

2 were estimated as the non-central sample moments
m′

1 and m′

2 respectively. The non-central sample moments
were calculated according to

m′

1 =
1
N

N−1∑
n=0

|x[n]| (22)

m′

2 =
1
N

N−1∑
n=0

|x[n]|
2 (23)

where x[n] is the sampled EMG signal and N = 2000 is the
number of samples in each recording. The EMG filling factor
R was then calculated as

R =
m′2

1
m′

2
. (24)

The 121 5th, 50th, and 95th percentiles of m′

1, m′

2, and the
EMG filling factor R were calculated at each MVC value for
the 1000 simulated muscle realizations available.

E. Real Signal Experiments
Ten voluntary subjects (5 female and 5 male) aged between

20 and 28 years (mean ± SD: 23 ± 2 years) participated in this
study. Informed consent was obtained from all subjects. None
of them reported any current or recent neuromuscular disorder.
The experiments were conducted following the guidelines of
the Declaration of Helsinki and were approved by the Ethics

Committee Board of the Public University of Navarra, Spain
(PI-023/19 approved on 11/11/2019).

Experiments involved gradually increasing the isometric
dorsiflexion force of the tibialis anterior muscle. Each subject
sat on an adjustable chair in a slightly reclined position with
the right foot strapped to a footplate of an ankle ergometer.
The plate was inclined at an angle of 45◦ relative to the floor
and the seat was adjusted so that ankle and knee joint angles
were at 90◦ and 120◦, respectively.

Surface EMG signals were recorded from the tibialis
anterior muscle, using self-adhesive circular surface electrodes
(Ag/AgCl, 10 mm diameter, Kendall Meditrace 100). In each
experiment, two pair of electrodes were placed in differential
(bipolar) configuration (see EMG proximal and distal
electrodes in Fig. 1 in [43]), positioned lengthwise over the
belly of the muscle. The reference electrodes were located over
the tendon of the tibialis anterior, and the ground electrode
was placed over the tibia. Before electrode placement, the
skin was adequately prepared (shaving, light abrasion with
sandpaper, and cleaning with rubbing alcohol). Surface EMG
signals were amplified (bandwidth from 10 Hz to 1 kHz) and
sampled at 5 kHz using an analog-to-digital conversion system
(MP150, BIOPAC, Goleta, CA). The differential EMG signal
recorded was obtained by subtracting the proximal and distal
EMG signals.

In each experimental session, subjects performed three
isometric dorsiflexion ramp contractions of 60 s duration,
with a resting interval of 10 min between contractions.
In order to obtain signals at different activation levels, the
electromyographist gave qualitative indications to the subjects
to modulate their muscle contraction. Special care was taken
to obtain valid recordings at low and very low contraction
levels.

The signal acquired from each ramp contraction, was cut
into segments of 1 s duration. Non-central sample moments
were calculated for each segment as (22) and (23), and the
EMG filling factor was calculated as (24).

III. RESULTS

Figure 3(a) is a scatter plot of the EMG filling factor as
a function of the mean absolute amplitude value of all the
simulated EMG signals, R(m′

1), where each dot corresponds
to a 1 s EMG signal. There is a clear pattern, and this is
confirmed by a plot of the 5th and 95th percentile limits of
the observations shown in Figure 3(b). Starting from EMG
filling values of around 0.1 to 0.2, when the mean rectified
amplitude is low, the R values increase towards 0.5, the
reference value of a Laplacian distribution, and then begin
to saturate with an asymptote at 2/π , the reference value of a
Gaussian distribution. After reaching the saturation region, the
only observable change is a gradual increase in the rectified
mean amplitude of the EMG signals.

Hence, the simulation analysis indicates that the EMG
filling factor, R, follows a characteristic curve when plotted
as a function of m′

1. The overall form of this EMG filling
curve is described by the 50th percentile (Fig. 3(b)). There
is a monotonical increase of the EMG filling factor as the
contraction level increases. The curve has two clear sections:
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Fig. 3. Summary of the EMG filling curves R vs m′

1 obtained from simulation and real-signal experiments: (a) scatter plot of measurements of R for
each of 121 EMG signals for each of 1000 realizations of simulated muscle; (b) corresponding percentile plots for simulated signals; and (c) scatter
plot of real-signal measurements (dots) with three selected cases (circled dots) analyzed in Figure 5. In all of the graphs, the dashed horizontal
lines indicate the EMG filling factors of a pure Laplacian (1/2) and a pure Gaussian (2/π) distribution (Table I).

it is almost linear for the lowest contraction values, and there
is saturation of the filling factor for the upper half of the curve;
between these sections is a transition region.

Results with real signals depicted in Figure 3(c) are in
good agreement with the simulation results. EMG filling factor
values start around 0.3 for the lowest contraction levels and
rise rapidly towards 0.5. As contraction levels increase, the
curve flattens and stabilizes and the filling factor approaches
saturation at around 2/π . This form for the EMG filling curve
was seen in all of the three ramp-contraction trials (100%
repeatability) with all of the ten subjects. Although a big
effort was made to record signals at low contraction levels,
most of the low contraction signals lie in the Laplacian region,
and no recordings were obtained with an EMG filling factor
below 0.29.

In order to analyze how the EMG signal, EMG PDF,
and filling factor change with level of muscle contraction,
we selected one of the simulation realizations and looked
at six activation values corresponding to 1, 7, 15, 30, 60,
and 120 active MUs. The signal, PDF, and filling factor are
represented in Figure 4, in which each row corresponds to an
activation value.

In terms of the EMG signal (Fig. 4(a)), the effect of
increasing the voluntary contraction level is twofold: the signal
progressively fills up with MUPs, and the amplitude of the
signal progressively increases as more MUs are recruited.
At the lowest contraction levels, when few MUs are recruited,
the EMG signal has wide empty regions with low or zero
signal level. As recruitment advances, the EMG signal quickly
becomes filled, forming the so-called interference pattern.
At the highest contraction levels, the interference pattern is
seen to be completely formed, signal complexity increases (the
number of turns increases) and there is an increase in the EMG
amplitude.

Figure 4(b) illustrates how EMG PDF changes as muscle
contraction increases. At the lowest contraction levels, when
there are too few MUPs to fill the EMG signal, the EMG
PDF is a semi-degenerate distribution (1st and 2nd rows).
This part of the PDF is represented primarily by a Dirac delta
distribution. The contribution of the Dirac delta distribution to
the EMG PDF becomes smaller as the number of MUPs in
the signal increases. As recruitment increases, but before the

EMG signal is completely filled (while some segments of low
amplitude activity are still present in the signal), the EMG PDF
becomes more and more Laplacian-like (3rd and 4th rows).
When the EMG becomes filled and the interference pattern is
fully formed, the EMG PDF approximates more and more to a
Gaussian distribution (5th and 6th rows). The convergence to
a Gaussian PDF in this high activity context is in accordance
with the central limit theorem [23], [35].

With regard to the curve for the EMG filling factor
(Fig. 4(c)), as the degree of muscle contraction increases and
the PDF evolves, the value of the EMG filling factor increases.
EMG filling factor values start at around 0.15 and rise, initially
quickly, to values in accordance with a Laplacian distribution
(0.5). This rise in the EMG filling factor continues until
saturating at values approximating to a maximum of 2/π ,
corresponding to a Gaussian distribution.

Three real recordings of one-second duration are presented
in Figure 5 together with corresponding reference distributions
(Laplacian and Gaussian). The three signals were selected
to illustrate different degrees of EMG filling. The first case
(Fig. 5(a)) is an EMG signal with low activity; there is
apparently just one contributing MU, and the EMG PDF is
almost flat on its support but with a sharp peak in its central
part. The EMG filling factor is 0.29, which is in accordance
with the fact that the distribution is sharper than the reference
Laplacian distribution. However, the observed peak is not
as narrow as expected for a Dirac delta distribution. The
broadness of the peak is due to additive electrical noise in the
recording, and such noise may explain why we were unable
to record EMG signals with EMG filling factor values much
below 0.3. The second case (Fig. 5(b)) concerns a recording at
a higher level of muscle contraction. There are few segments
of the EMG signal with low activity. By visual inspection,
the corresponding EMG PDF is very close to the reference
Laplacian distribution; the EMG filling factor is 0.47, which
confirms that the EMG signal lies in the Laplacian region of
the filling curve. The third case (Fig. 5(c)) shows a signal that
looks like a full interference pattern. The EMG PDF closely
resembles the reference Gaussian distribution, as indicated by
the EMG filling factor of 0.63. Finally, the results for real
signals in Figure 5 are in good agreement with the simulation
results in Figure 4.
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Fig. 4. How the EMG signal, EMG PDF and filling factor change with increasing muscle contraction (from one MU at the top of the figure to 120 MUs
at the bottom). (a) Segments of EMG signals showing how the signal progressively fills up and how the peak amplitude increases as the number
of recruited MUs increases. (b) Folded EMG PDFs (PDFs of rectified EMG signals) showing how the PDF changes from a semi-degenerate PDF
in which the Dirac delta contribution is still noticeable to an exponential-like distribution (dashed lines), corresponding to a Laplacian distribution of
EMG signals, and finally to a form akin to a half-normal distribution (dotted lines), corresponding to a Gaussian distribution of EMG signals. Note
the changes of scale on both axes. (c) Position of the EMG filling factor on the EMG filling curve (circles), illustrating the monotonic increase in
EMG filling factor as the level of contraction increases, and showing differentiated sections of the curve: an almost linear section for the low levels
of contraction, a transition section crossing the Laplacian filling factor (dashed lines at 1/2) and a saturation section tending towards the Gaussian
filling factor (dotted lines at 2/π) at high levels of contraction.

IV. DISCUSSION

A. EMG PDF

The analytical model of EMG PDF developed in this work
embraces the deterministic EMG convolutional model [25] and
the description of the EMG as a Gaussian random process [23]
and fills the gap between these two models.

An EMG signal is usually described as quasi-
deterministic [24] when the contraction level is low.
At the other end of the recruitment range, the assumption
that the EMG signal is a band-limited Gaussian-distributed
stochastic process with zero mean [23], [24] is only valid
when the interference pattern is fully formed: when there are
sufficient MUs recruited to justify application of the central
limit theorem [23], [35] to the summation of individual
MUP trains. In the current study, we provide an analytical

description of EMG PDF that covers the complete recruitment
range.

Our results are in agreement with previous descriptions
of transitions within the EMG PDF in low to mid force
conditions [18], [19], [20]. Specifically, our results indicate
that the statistical model encompasses the transitions of
the distribution from semi-degenerate, when few MUs are
recruited, to Laplacian-like, when the level of contraction is
still low but more MUs contribute to the EMG [9], [11],
[18], [19], [22], and then to Gaussian-like, when the EMG
interference pattern has been formed [8], [18], [19], [23].

When the level of muscle contraction is low-to-moderate,
that is, too low for the interference pattern to be fully formed,
stationarity and ergodicity do not apply. However, this does
not imply that EMG PDF models in this activation range
of the distribution are useless to research or clinical practice
[19], [20]. On the contrary, they provide an alternative way to
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Fig. 5. Three real recordings of 1 s duration with EMG filling factor values of (a) 0.29, (b) 0.47, and (c) 0.63. The upper row shows EMG PDFs
(solid lines) together with the reference Laplacian (dashed lines) and Gaussian (dotted lines) distributions with the same standard deviation as the
recording. The lower row depicts the 1 s EMG traces. Note that, in real signals, due to the presence of additive electrical noise, there are no zero
amplitude segments between MU firings.

track force and muscle activation [7], [8], [9], [10], [11], [21].
The reality of such signals is what may validate the use of non-
Gaussian signal processing methods for EMG analysis [18].

Our analytical formulation does not currently take MU
synchronization into account. To further consider MU
synchronization, we refer the reader back to the coefficients
in (9). As described in section II-B, when the two MU
firing patterns are independent, the probability of sampling
a superimposition of the two MUPs is η1η2. However,
if two MUs are synchronized, close firings that cause
superimposition of MUPs will be more likely than under
complete independence [24], and so the probability of
sampling a superimposition will be greater than η1η2. If the
MU firing rates of each MU do not change, the greater
probability of superimposition will also affect the EMG signal
in terms of both the empty signal contribution (1−η1)(1−η2)

and the two individual MUP contributions η1(1 − η2) and
(1−η1)η2, causing them to decay. To take MU synchronization
into account, the generalization of the EMG distribution in (10)
and (11) needs to incorporate, for each set of synchronized
MUs, the above changes in the coefficients. Although we
do not expect accommodation of a moderate degree of
synchronization to have a big impact on the final EMG PDF
when activation level is high, further research would be needed
in order to determine the impact of synchronization on the
EMG PDF in low and moderate activation scenarios.

B. EMG Filling
The EMG filling factor and EMG filling curve presented in

this work provide a new way to look at EMG signals recorded
under low to moderate levels of contraction.

The EMG filling factor can be regarded as the squared
inverse of the EMG-waveform’s form factor. In [35], it was
shown that the form factor of EMG waveforms stabilizes as the

EMG PDF approaches a Gaussian distribution. That is, when
an EMG signal is completely filled and the interference pattern
is fully formed, the form factor ceases to provide further
information on EMG recruitment [35]. However, if the EMG
is not completely filled, the form factor changes in relation to
the degree of filling.

This change in the form factor, although not a subject of
investigation in [35], is key to the work we report here. The
form factor is stable and uninformative in the saturation zone
of the EMG filling curve (Fig. 3), but variable and hence
informative in the curve’s linear region, which corresponds to
EMG signals at low and moderate levels of muscle activation.
In essence, what we report here is the relation between the
degree of EMG filling and the EMG PDF and then a way to
quantify the degree of EMG filling through the EMG filling
factor (Fig. 4).

Researchers have demonstrated that the form factor can be
used in the analysis of surface EMG signals from patients with
the neurogenic condition amyotrophic lateral sclerosis in order
to detect loss of MU activity [36]. We suggest that such a loss
of MU activity can be interpreted as an alteration in the EMG
filling curve, and that such an alteration could be described,
quantified and tracked in terms of a suitable parameterization
of the curve.

C. Limitations and Strengths of the Model
While the analytical EMG PDF is exact under the

assumptions made in its derivation, the complete calculation
for a given set of active MUs would require the exact MUPs
and firing rates. Obtaining, processing and interpreting this
data would be a complex process, which highlights the need
for a simpler way, such as the filling factor, to encapsulate
useful physiological information from the EMG PDF.

The EMG filling factor provides a good indicator of
recruitment in low force conditions. However, it saturates
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relatively quickly as force is increased and may prove less
effective in tracking EMG changes after the interference
pattern is fully formed; this has been stated to be the case for
the form factor [35]. Nevertheless, any pathology that prevents
development of a full interference pattern in EMG should still
affect the EMG filling factor [36].

An important practical aspect to consider is how the
filling curve will be affected by electrode set-up (e.g. surface
or intramuscular EMG, electrode derivation) and filtering
settings. Both electrodes and filtering will only affect the
waveform of constituent MUPs by changing the number of
phases (positive and negative lobes of the MUP) or modifying
their shapes. However, all MUP phases will always have a
sine-like waveform, and hence the sampled-MUP PDFs would
be expected to have platykurtic distributions and an EMG
filling factor that is high (above 0.637). Recall that low EMG
filling factor values are achieved by the emptiness of the
signal; i.e., it is the η coefficient when forming the MUP train
PDF in (8) that lowers the EMG filling factor to the 0.2 to
0.35 range. Additionally, the iterated convolutions in (11)
representing MUP superimpositions will always tend towards
Gaussian distributions, as dictated by the central limit theorem.
All this suggests, then, that different electrode set-ups and filter
settings would not affect the validity of the theoretical results,
although they might affect the exact shape of the EMG filling
curve. Further studies are needed to exactly determine how
the EMG filling curve is affected by the recording method
(e.g. surface or intramuscular EMG, electrode derivation, and
filter settings) and also to validate the tool with different target
muscles.

V. CONCLUSION

The statistical model of EMG filling derived in this
work (a) provides an analytically consistent derivation of
the EMG PDF as a function of MUPs and MU firing
patterns; (b) explains the relationship between level of muscle
contraction and EMG PDF; and (c) provides a way (the EMG
filling factor) to quantify EMG PDF shape in terms of where
it lies on the EMG filling curve and hence a way to estimate
the degree of muscle activity.

APPENDIX A
CALCULATION OF THE SAMPLED-MUP DISTRIBUTION

Given a random variable t ∼ fT (t), which is transformed by
a monotonically increasing or decreasing function, x = p(t),
the probability density function of the transformed random
variable, fX (x), can be calculated as

fX (x) = fT (p−1(x))

∣∣∣dp−1(x)

dx

∣∣∣. (25)

This expression can be generalized if p−1(x) has a finite
number of roots to read

fX (x) =

∑
i

fT (p−1
i (x))

∣∣∣dp−1
i (x)

dx

∣∣∣ (26)

where each pi (t) function is a monotonic piece of p(t).

For the triangular MUP model given in (4), the function
is monotonic within the (−d/4, d/4) support. The random
variable transformation is given by x = p(t) =

4a
d t , hence

t = p−1(x) =
d
4a x and d

dx p−1(x) =
d
4a . Since

fT (t) = U
(
−d
4

,
d
4

)
=

2
d

5
( t

d/2

)
(27)

we can obtain the sampled-MUP PDF by applying (25) as

fX (x) =
2
d

5
( xd/4a

d/2

) d
4a

=
1

2a
5

( x
2a

)
= U(−a, a). (28)

It can be similarly demonstrated for the (−d/2, d/4] and
[d/4, d/2) supports that applying the transformation leads
to U(−a, 0) and U(0, a) distributions. When adding up
the three results using (26) the sampled-MUP PDF is
fX (x) = U(−a, a).

When applying the sine MUP model given in (6) within the
(−d/4, d/4) support, we obtain that

x = p(t) = a sin
(

2π
t
d

)
(29)

t = p−1(x) =
d

2π
arcsin

( x
a

)
(30)

dp−1(x)

dx
=

1
2π

1/a√
1 − (x/a)2

=
1

2π
√

a2 − x2
. (31)

Hence, the sampled-MUP PDF can be calculated as

fX (x) =
2
d

5
( d

2π
arcsin(x/a)

d/2

) 1

2π
√

a2 − x2
(32)

=
1

π
√

a2 − x2
5

(
1
π

arcsin
( x

a

))
(33)

where, in order to interpret the rectangular function, it has to
be taken into account that it is valued as 1 in the (−1/2, 1/2)

support of its argument; hence, the support as a function of x
can be calculated by solving

1
π

arcsin
( x

a

)
= ±

1
2

⇒ x = ±a. (34)

Hence, the sampled-MUP PDF equals

fX (x) =
1

π
√

a2 − x2
5

( x
2a

)
= AS(−a, a). (35)

APPENDIX B
NONCENTRAL MOMENTS OF THE HALF-ARCSINE

DISTRIBUTION

A zero mean arcsine distribution with 2a support,
AS(−a, a), is defined as

fX (x; a) = AS(−a, a) =
1

π
√

a2 − x2
5

( x
2a

)
. (36)

The folded arcsine distribution or half-arcsine distribution
can then be defined as

f|X |(x; a) = HAS(a) =
2

π
√

a2 − x2
5

( x − a/2
a

)
. (37)

The noncentral moments of the half-arcsine distribution can
be calculated as

µ′
n =

2
π

∫ a

0

xn
√

a2 − x2
dx . (38)
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When n = 1 and solving the corresponding integral, we get

µ′

1 = −
2
π

√
a2 − x2

∣∣∣∣a

0
=

2a
π

(39)

and for n = 2 we obtain

µ′

2 =
a2

π

{
arcsin

( x
a

)
−

1
2

sin
(

arcsin
( x

a

))}∣∣∣∣a

0
=

a2

2
. (40)
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