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Classification of Motor-Imagery Tasks Using a
Large EEG Dataset by Fusing Classifiers
Learning on Wavelet-Scattering Features

Tuan D. Pham , Senior Member, IEEE

Abstract— Brain-computer or brain-machine interface
technology allows humans to control machines using their
thoughts via brain signals. In particular, these interfaces
can assist people with neurological diseases for speech
understanding or physical disabilities for operating devices
such as wheelchairs. Motor-imagery tasks play a basic
role in brain-computer interfaces. This study introduces
an approach for classifying motor-imagery tasks in a
brain-computer interface environment, which remains a
challenge for rehabilitation technology using electroen-
cephalogram sensors. Methods used and developed for
addressing the classification include wavelet time and
image scattering networks, fuzzy recurrence plots, sup-
port vector machines, and classifier fusion. The rationale
for combining outputs from two classifiers learning on
wavelet-time and wavelet-image scattering features of brain
signals, respectively, is that they are complementary and
can be effectively fused using a novel fuzzy rule-based
system. A large-scale challenging electroencephalogram
dataset of motor imagery-based brain-computer interface
was used to test the efficacy of the proposed approach.
Experimental results obtained from within-session classi-
fication show the potential application of the new model
that achieves an improvement of 7% in classification accu-
racy over the best existing classifier using state-of-the-
art artificial intelligence (76% versus 69%, respectively).
For the cross-session experiment, which imposes a more
challenging and practical classification task, the proposed
fusion model improves the accuracy by 11% (54% versus
65%). The technical novelty presented herein and its fur-
ther exploration are promising for developing a reliable
sensor-based intervention for assisting people with neu-
rodisability to improve their quality of life.

Index Terms— Brain-computer interface, motor imagery,
electroencephalogram, rehabilitation, wavelet scattering,
fuzzy recurrence plots, support vector machines, weak
classifier fusion.
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I. INTRODUCTION

MOTOR imagery (MI) is a cognitive process during
which a human participant is asked to imagine per-

forming a movement without actually doing it and exercising
muscular tension [1]. In other words, MI requires the neural
activation of the brain involving in the preparation and execu-
tion of an action accompanied with a voluntary restraining
of the actual task [2]. MI-based brain-computer interface
(MI-BCI) is a signal-based coordination that enables the
control or recognition of brain activity over computer-based
devices [3], [4]. In comparison with other BCI methods,
MI-BCI allows direct interaction between a user and external
devices without limb movement or stimulation [5].

MI-BCI technology has been realized as a new intervention
for control and communication with disabled patients who
have severe motor disorders [6], [7], difficulty in speech
expression [8], and rehabilitation of people with neurological
disease [9] or post-stroke patients [10], [11], [12]. Although
the technology shows promising results and has been increas-
ingly investigated, the delivery of a reliable MI-BCI system for
real-world applications is still far from reality, and still remains
a technical challenge for research and development [13], [14].

Machine-learning algorithms have been developed for
studying BCI. A decision-tree approach was introduced for
choosing a BCI device for patients who are not cognitively
impaired but have movement or communication disability [15].
Signal processing for feature extraction of MI from elec-
troencephalographic (EEG) data in BCI and different types of
pattern classifiers have been investigated for predicting mental
intentions [16]. Some most recently developed methods for
classifying MI-BCI tasks recorded with EEG signals include
convolutional neural networks (CNNs) [17], [18], [19] and
pretrained deep-learning models [20], which are considered
state-of-the-art artificial intelligence (AI) models for pattern
classification, methods of truncation thresholds and empirical
mode decomposition for feature extraction of EEG signals
with statistical learning methods [21], and the use of fewer
EEG channels with the Dempster-Shafer theory of evidence
for decision making under uncertainty [22].

In the field of complex signal analysis, wavelet scattering
transforms or networks [23], [24], [25] offer the extraction
of low-variance coefficients from time series (being robust to
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translation) and images (being robust to both translation and
rotation), which can be useful for machine learning and classi-
fication. Particularly for the analysis of EEG signals, wavelet
scattering networks have recently been used for extracting
differential features of the data for classifying alcohol-affected
and healthy subjects [26], recognizing emotional states [27],
and detecting different types of heartbeats [28].

Being motivated by the usefulness of wavelet scattering
transforms for discovering discriminative features in 1-D and
2-D data, this study attempts to utilize the wavelet scattering
in two folds. First, wavelet time scattering is adopted for
extracting features directly from MI-BCI EEG signals. Second,
the EEG signals are transformed into texture images whose
features are then extracted using wavelet image scattering,
which was reported to be capable of capturing compact
information about the spatial arrangement and pixel intensities
of texture [29]. The transformation of 1-D signals into 2-D
images of texture is carried out by the method of fuzzy
recurrence plots (FRPs) [30] developed for nonlinear data
analysis of recurrence in chaos. Texture at both small and
large scales can be visualized in an FRP to gain insight into
the temporal behavior of the reconstructed phase space of a
dynamical system. Next, wavelet time and image scattering
coefficients are used separately to train two classifiers for
differentiating MI-BCI tasks, which are expected to produce
complementary results based on their learning on different
features of the EEG signals. Finally, a rule-based decision is
developed for combining the outputs obtained from the two
classifiers to result in the final classification.

The rest of this paper is organized as follows. Section II
describes a big challenging EEG database of MI-BCI used
in this study. Section III presents technical methods uti-
lized for feature extraction of EEG signals included in the
database and decision rules for combining outputs from com-
plimentary weak classifiers. Section IV shows experiments
of within-session and cross-session classifications, including
results in terms of several statistical measures, and provides
comparisons between the proposed approach and different
models as well as discussion. Finally, Section V includes
remarks of the finding, limitation of the study, and suggestions
of remaining issues for future research.

II. MI-BCI EEG DATA

The publicly available big MI-BCI EEG database [5] used
in this study consists of EEG recordings from 25 participants
(males = 13, females = 12, and years of age = 20-24). Each
participant performed 5 independent sessions over 2 or 3 days,
where each session included 100 trials of left-hand (class 1)
and right-hand (class 2) grasping MI, and each trial lasted
about 7.5 sec. The study on this human data acquisition
was approved by the Shanghai Second Rehabilitation Hospital
Ethics Committee (approval number: ECSHSRH 2018-0101)
and was conducted in accordance with the Helsinki Declara-
tion.

The participants were tasked to imagine the movements of
the left-hand and right-hand actions of grasping according to
the video and audio cues. The kinetic MI tasks were recorded
with a distribution of 32 EEG cap electrodes, where, during

the data collection, the electrode impedance < 20 k�, and the
sampling frequency = 250 Hz.

To be readily used for classification by machine learning,
baseline fluctuations were removed from all the data, and the
signals were 0.5–40 Hz band-pass filtered with a finite impulse
response. Because of the deletion of some degraded segments,
the EEG data in some trials carried out by some participants
were missing. In general, the whole EEG database are pre-
sented in a tensor form as: 25 (subjects) × 5 (sessions) ×

100 (trials) × 32 (channels) × 1,000 (samples), constituting
approximately 400,000 EEG signals of l,000 samples in length.
This EEG database can be freely downloaded at figshare [31].

Figure 1 shows the EEG signals recorded from two subjects
performing MI trials by imagining the left-hand (class 1) or
right-hand (class 2) grasping.

III. METHODS

A. Transformation of EEG Signals Into Texture Images
Let u = (u1, u2, . . . , un) be an ECG signal. The

phase-space reconstruction of the signal, denoted as Y, can
be obtained using a delay embedding theorem in chaos and
nonlinear dynamics as [32]

Y = (y1, y2, . . . , yN ), (1)

with

yk = [uk, uk+τ , . . . , uk+(m−1)τ ], k = 1, . . . , N , (2)

where m and τ are values for embedding dimension and time
delay, respectively, and N = n − (m − 1)τ , where n is the
length of an EEG signal u previously expressed.

Let {v1, v2, . . . , vc} be a set of c cluster centers of Y, and
µ(a, b) ∈ [0, 1] be a fuzzy membership grade expressing the
degree of similarity between elements a and b (a higher degree
indicates stronger similarity between the two elements). Using
the reconstructed phase space of u, an N × N texture image
of the EEG signal can be generated in terms of an FRP with
the following steps [30].

1) Impose the reflexive property for an FRP as

µ(yk, yk) = 1, k = 1, . . . , N . (3)

2) An FRP has the symmetric property as

µ(yk, vl) = µ(vl , yk), k = 1, . . . , N , l = 1, . . . , c.

(4)

3) Deduce the transitive property for an FRP by

µ(yk, y j ) = max
[
min{µ(yk, vl), µ(vl , y j )}

]
,

l = 1, . . . , c; k ̸= j. (5)

4) Estimate µ(y, v) for computing the inference expressed
in Equation (5).

5) Finally, an N × N texture image I, which is an FRP,
of the EEG signal u can be constructed as

I = [µ(yk, y j )], k, j = 1, . . . , N . (6)

The estimate of µ(y, v) can be obtained using the fuzzy
c-means (FCM) algorithm [33] as follows. Given a number of



PHAM: CLASSIFICATION OF MOTOR-IMAGERY TASKS USING A LARGE EEG DATASET 1099

Fig. 1. EEG signals of two subjects performing motor imagery trials, recorded at channel 12, where classes 1 and 2 indicate the grasping of left
and right hands, respectively.

clusters c > 2 ∈ Z, and a fuzzy exponent β > 1 ∈ R, the
FCM attempts to optimally divide Y into c partitions that are
represented with c cluster centers by minimizing the following
objective function:

Fβ =

N∑
k=1

c∑
l=1

(µkl)
β
∥yk − vl∥

2, (7)

where µkl is a short notation for µ(yk, vl), and the above
objective function is subject to

c∑
l=1

µkl = 1, k = 1, . . . , N . (8)

A numerical solution for minimizing Fβ is by an iterative
procedure that uses an initialization of the fuzzy membership
to calculate the initial set of cluster centers. Mathematically,
using the initialized fuzzy membership grades, the cluster
centers are estimated as [33]

vl =

∑N
k=1(µkl)

β yk∑N
k=1(µkl)β

, ∀l. (9)

The previous fuzzy membership grades are updated by

µkl =
1∑c

d=1

(
∥yk−vl∥
∥yk−vd∥

)2/(β−1) , ∀k∀l. (10)

The process repeatedly performs the updating using Equa-
tions (9) and (10) until convergence or a defined maximum
number of iterations are reached.

B. Wavelet Scattering Decompositions
The wavelet scattering decomposes the original data through

a number of stages or layers of a tree structure, in which
the output from one layer becomes the input for the next
layer. Each layer involves three basic operations of transform:
convolution (wavelet), nonlinearity (modulus), and average
pooling (scaling function or low-pass filtering). The decom-
position process for computing wavelet scattering coefficients
is described as follows.

Let ψ(t) be a band-pass filter with a center fre-
quency normalized to 1 (mother wavelet), and ψλ j (t) be
a wavelet filter bank constructed by dilating the mother
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Fig. 2. Pipeline procedure for fusion of complimentary weak classifiers (SVMs) using wavelet time and image scattering features of MI-BCI EEG
data.

wavelet as

ψλ j (t) = λ jψ(λ j t), (11)

where λ j = 2( j/Q), j ∈ Z, 1 ≤ j ≤ J , J is the maximum
level of layers, and Q is the number of wavelets per octave.

Given an input signal u, the wavelet scattering coefficients
at layer zero (zeroth-order scattering coefficients), denoted as
S0, are computed by the averaging of the signal as

S0 = u ∗ φ(t), (12)

where φ is a scaling function or low-pass filter, and ∗ denotes
the convolution operator.

The wavelet scattering at layer 1 or the 1st-order wavelet
scattering coefficients are computed by averaging the modulus
of the wavelet coefficients using φ as

S1 = |u ∗ ψλ1(t)| ∗ φ(t). (13)

The 2nd-order wavelet scattering coefficients are calculated
in a repeated manner in the sequential terms of convolution,
modulus, and average pooling as

S2 = ||u ∗ ψλ1(t)| ∗ ψλ2(t)| ∗ φ(t). (14)

In general, the wavelet scattering coefficients at layer j are
determined as

S j = |. . . ||u ∗ ψλ1(t)| ∗ ψλ2(t)| · · · ∗ ψλ j (t)| ∗ φ(t). (15)

In this study, the Morlet wavelet, which is the re-expression
of the Gabor wavelet and widely used for determining wavelet
scattering coefficients, is adopted as the mother wavelet ψ . The
Morlet wavelet is defined as [34] and [35]

ψ(t) = c
[

e−
t2

2σ2

]
e2π i f t , (16)

where, in this study, c is a constant taken as 1, σ is the wavelet
duration taken as 1, i is the imaginary unit, f is the center
frequency, and 2π f = 5.

For computing wavelet scattering coefficients of image data,
a 2-D directional wavelet can be obtained by rotating a
band-pass filter ψ by a number of rotations K having angles
2kπ/K and dilating it by 2 j , such as [25]

ψ2− j r (t) = 2−2 j ψ(2− j r−1 t), (17)

where r ∈ {2qπ/K }, 0 < q < K .

C. Fusion of Complimentary Weak Classifiers
Suppose for a two-class prediction problem that two classi-

fiers, which are support vector machines (SVMs) in this study,
denoted as F1 and F2, yield low classification accuracies from
validation data. F1 well correctly predicts a certain class,
denoted as C1, while highly misclassifies the other class,
denoted as C2. F2 predicts the other way around, which is
high for C2 and low for C1. Such different predictions are
complementary and can be used for weak classifier fusion.
Based on the scores or probabilities computed for each class
by the classifiers, denoted as s, a fusion strategy is designed
using decision rules for classifying an input z as follows:

Rule 1: If F1(z) 7→ C1 and F2(z) 7→ C1: Assign z to C1.
Rule 2: If F1(z) 7→ C2 and F2(z) 7→ C2: Assign z to C2.
Rule 3: If F1(z) 7→ C1 and F2(z) 7→ C2: Assign z to C1 if

s[F1(z) 7→ C1] ≥ s[F2(z) 7→ C2]; otherwise assign z to C2.
Rule 4: If F1(z) 7→ C2 and F2(z) 7→ C1: Assign z to C2 if

s[F1(z) 7→ C2] ≥ s[F2(z) 7→ C1]; otherwise assign z to C1.
While the decisions in Rules 1 and 2 are based on con-

sensus on the outputs of two classifiers, the decisions in
Rules 3 and 4 aim to reduce biases of the two complimentary
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weak classifiers toward two classes, respectively. In other
words, Rule 3 attempts to reduce the misclassification of
C2 samples predicted as C1 by F1; whereas Rule 4 tries to
rectify the amount of C1 samples misclassified as C2 by F2.

Figure 2 shows the graphical procedure for the classification
of MI actions in BCI by the rule-based fusion of two comple-
mentary weak SVMs that are trained with wavelet time and
image scattering features of the EEG signals.

IV. EXPERIMENTS

A. Parameter Settings
The EEG signals of 1000 samples in length for variable

number of trials around 100, where each was recorded with
32 channels, of 5 sessions obtained from 25 subjects were
used to extract the decomposition coefficients of wavelet time
scattering by constructing a scattering network with two filter
banks. The first filter bank has a quality factor Q = 8 wavelets
per octave, and the second filter bank has a quality factor
Q = 1 wavelet per octave. Other properties for creating the
network of wavelet time scattering are: signal length: = 1000,
scattering transform invariance scale = 2 seconds, signal
extension method = periodic, and sampling frequency =

250 Hz. Figure 3 shows the first and second filter bank wavelet
filters for the wavelet time scattering constructed using the
above specified properties.

To compute FRPs for the EEG data, the signal of only
the first 202 samples of only 1 channel recorded by sensor
number 12 located at the center of the scalp was used for
constructed the FRP for the 5 sessions performed by the
25 subjects. Using an embedding dimension m = 3, time delay
τ = 1, the number of clusters c = 3, and fuzzy exponent
β = 2, the transformation resulted in grayscale images of
200 × 200 pixels. Currently there are no analytical methods
for finding optimal criteria for constructing an FRP in terms
of m, τ , c, and β. The selected values were aimed to differ-
entiate EEG signals of the two classes at a higher dimension
(m = 3) with the smallest time separation (τ = 1) between the
occurrence of two events. The false nearest neighbor (FNN)
and average mutual information (AMI) were developed for
estimating parameters m and τ , respectively [36]. However,
the estimations of these two parameters using FNN and AMI
for the phase-space reconstruction of each EEG signal are
deemed not effective for feature extraction because the signals
may result in features with different dimensions. This issue
still remains open for research in recurrence analysis [37],
and it has been reported that optimal selections of values for
m are problem-dependent [38]. Having discussed in [39], the
FCM, which is adopted for constructing an FRP, is governed
by two input parameters c and β. The questions of choosing
appropriate values for c with problems underlying by an
undefined number of clusters and β are still an on-going
research area of fuzzy cluster analysis, where β was suggested
to take real values between 1.5 and 2.5 and β = 2 has been
the most widely adopted value in various applications of the
FCM [40]. It was illustrated that different values of c appear
to be insensitive in computing FRPs [30]. Previous works
using the same values for m and β specified in this study for

Fig. 3. Wavelet time scattering filters and the invariance scale.

determining the FRPs of physiological signals were found to
be appropriate for the task of pattern classification [41], [42].
Figure 4 shows examples of EEG segments and corresponding
texture images of the FRPs of two subjects.

To extract the wavelet scattering coefficients from the FRP
images, the following parameters were used: image size =

200 × 200, scattering transform invariance scale = 150 sec-
onds, number of rotations per wavelet for two filter banks = 6,
scattering filter bank quality factors (number of wavelet filters
per octave) = 1, and a scattering path is carried out only if
the bandwidth of the parent node overlaps significantly with
that of the child node. Figure 5 shows the wavelet image
scattering function from the first filter bank, and invariance
scale constructed using the above specified parameters.

Parameters for the SVM-based classifier using the wavelet
time scattering coefficients computed directly from the EEG
signals are: kernel function = quadratic polynomial, using
standardized data, and coding design = one versus one. For
the SVM-based classifier using the wavelet image scattering
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Fig. 4. Segments of first 202 samples of MI-BCI EEG signals and corresponding 200 × 200 texture images of FRPs.

TABLE I
MEASURES OF CLASSIFICATION PERFORMANCE

coefficients computed from the FRPs: kernel function = linear,
using unstandardized data, and coding design = one versus
one.

To compare the proposed approach with a deep-learning
model other than those reported in [5], both long short-term
memory (LSTM) and bidirectional long short-term memory
(Bi-LSTM) networks [43], [44] were used to learn on and
classify the same training and test data, respectively. LSTM
networks are a popular recurrent deep-learning approach for
classifying sequential data or time series because these net-
works can learn long-term dependencies between time steps
of the data. A Bi-LSTM is a recurrent neural network that
learns order dependence in sequential data in both direc-
tions (backward and forward). LSTM has been used in BCI
for decoding gait phases from EEG signals during locomo-
tion [45]. Parameter specifications for LSTM and Bi-LSTM
were: network layer with an output size = 100, fully connected
layer = 2 (two classes), followed by a softmax layer and a
classification layer. For training options, optimizer = ‘Adam’
(adaptive moment estimation), including L2 regularization fac-
tor, maximum number of epochs = 40, minimum batch size =

150, initial learning rate = 0.01, and gradient threshold = 1.

B. Majority Vote
For the classification using the wavelet time scattering

features, because for each EEG signal in this study, there

are 8 separate time windows (number of samples obtained
after downsampling) and 32 channels for classification, the
majority vote was applied for the two cases to obtain a
single class prediction for each scattering representation and
the set of channels, where there were equal numbers of
votes for classifying the signal, a tie was recorded. For
the classification using the wavelet image scattering features,
because of using only a single channel, the majority vote
was applied to obtain the classification for each scattering
representation.

C. Measures of Performance
To obtain measures of classification results, accuracy

(ACC), specificity (SPE), sensitivity (SEN), precision (PRE),
and F1 score are used in this study. Mathematical expressions
for these statistical measures are given in Table I, which are
computed in terms of condition positive (P), condition negative
(N), true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). In this study, P and N indicate the
total numbers of class-2 (right-hand grasping) and class-1 (left-
hand grasping) samples, respectively, in the data. TP and TN
are the numbers of class-2 and class-1 samples, respectively,
correctly predicted by a classifier. FP and FN are the numbers
of class-2 and class-1 samples misclassified as class 1 and
class 2, respectively, by a classifier. Thus, SPE and SEN are
interpreted as true rates of class-1 and class-2 samples being
correctly predicted by a classifier, ACC is the rate of both
class-1 and class-2 samples being correctly classified. PRE is
the proportion of class-2 samples that are truly predicted, and
F1 score is the harmonic mean of PRE and SEN.

D. Within-Session Classification Results
For the within-session classification, EEG signals obtained

from all trials performed by the 25 participants were used for
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Fig. 5. Wavelet image scattering function from the first filter bank (a), and image invariance scale (b).

TABLE II
TEN-FOLD CROSS-VALIDATION RESULTS OF WITHIN-SESSION CLASSIFICATION OBTAINED FROM DIFFERENT

CLASSIFIERS, WHERE NP = NOT PROVIDED, N = NO, AND Y = YES

carrying out a 10-fold cross-validation (CV), which randomly
split the data into 10 equal parts, used 9 of those parts for
extracting wavelet-time scattering features and wavelet-image
scattering features for training the WTS-SVM and WIS-SVM,
respectively, and the remaining part for testing. The validation
was repeated 10 times, where a different tenth part was
selected for testing each time. The results were the average
of the 10 runs of the 10-fold cross-validation.

Table II shows the results computed using a 10-fold
CV obtained from different conventional and advanced AI
classification models using various types of features: com-
mon spatial patterns (CSP) [46], filter bank common spa-
tial pattern (FBCSP) [47], filter-bank convolutional network
(FBCNet) [48], EEGNet [49], deep convolutional network
(deep ConvNets) [50], LSTM, Bi-LSTM, wavelet image
scattering-based support vector machine (WIS-SVM), wavelet
time scattering-based support vector machine (WTS-SVM),
and fusion of wavelet time and image scattering-based support
vector machines (WTIS-SVM). Figure 6 shows the training
progresses of the LSTM and Bi-LSTM, in which conver-
gences were reached at early stages. The 10-fold CV results
produced from CSP, FBCSP, FBCNet, EEGNet, and deep
ConvNets as shown in Table II were originally reported in
reference [5].

TABLE III
95% CONFIDENCE INTERVALS (CIS) FOR THE MEAN ACCURACIES

COMPUTED FROM THE t-TEST OF WITHIN-SESSION CLASSIFICATION

RESULTS GIVEN BY SVM-BASED CLASSIFIERS USING WAVELET

SCATTERING FEATURES OF TIME AND IMAGE

DATA, AND FUSION OF CLASSIFIERS

Table III shows the 95% confidence intervals of the mean
accuracies computed from the t-test of 10-fold CV obtained
from the SVM-based classifiers using wavelet scattering fea-
tures of the EGG signals, FRPs of the EGG signals, and fusion
of two SVM-based classifiers.

Both WIS-SVM and WTS-SVM are weak classifiers, whose
average accuracies are 61% and 66%, respectively. Correct
predictions of class 1 (SPE) and class 2 (SEN) provided
by both models are opposite. SPE obtained from the WIS-
SVM (74%) is much higher than the WTS-SVM, but SEN
obtained from the WTS-SVM (77%) is much higher than
the WIS-SVM. Such prediction outcomes are complementary
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Fig. 6. Training progresses of LSTM and Bi-LSTM networks for within-session 10-fold cross-validation, where upper and lower y-axes are accuracy
and loss, respectively, and x-axes are the number of iterations.

for classifier fusion. The Bi-LSTM (ACC = 62%) performed
slightly better than the LSTM (ACC = 60%). As a result, the
combined model WTIS-SVM yielded the highest classification
accuracy (76%) over the other 7 classifiers as shown in
Table II. SPE, SEN, PRE, and F1 values provided by the
WITS-SVM are balanced, which are 74% and 77%, 77%,
and 0.75, respectively. The 10-fold CV accuracies obtained
from other methods (CSP, FBCSP, FBCNet, EEGNet, and
deep ConvNets) reported in a previous study [5] as shown
in Table II do not support the 1% statistical significance level
(p ≮ 0.01), whereas those obtained from WIS-SVM, WTS-
SVM, and WTIS-SVM do.

E. Cross-Session Classification Results
For the cross-session classification, all sessions of each

participant were selected as the test data or target domain, and
all sessions of the other 24 participants were used for training
or treated as the source domain. This type of classification
aims to adapt trained models to recognize MI-based tasks of
new subjects, which are more useful for BCI applications.

Table IV shows the classification results obtained from the
EEGNet [5], deep ConvNets [5], and FBCNet [5], LSTM,
Bi-LSTM, WIS-SVM, WTS-SVM, and WTIS-SVM. Table III
shows the 95% confidence intervals of the mean accuracies
computed using the t-test for the WIS-SVM, WTS-SVM, and
WTIS-SVM models. Figure 7 shows the training progresses of
the LSTM and Bi-LSTM, in which convergences were reached
at early stages. Both Figure 6 and Figure 7 show a strong
similarity in the learning the EEG signals.

For individual classifiers, the WTS-SVM achieved the best
accuracy (ACC = 59%). The Bi-LSTM model yielded the
second-best performance (ACC = 53.91%), which is slightly
better than the EEGNet (53.65%). EEGNet, deep ConvNet,
and Bi-LSTM are competitive in terms of accuracy. Overall,
classification accuracies obtained all four individual classi-
fiers (EEGNet, deep ConvNets, FBCNet, LSTM, Bi-LSTM,
WIS-SVM, and WTS-SVM) were below 60%, reflecting the
cross-session classification is a more challenging task than
the within-session classification. Being similar to the case
of within-session classification, the SPE obtained from the

WIS-SVM was higher than the WTS-SVM, and the SEN
obtained from the WIS-SVM was lower than the WTS-SVM,
showing a potential complement for classifier fusion. As a
result, the proposed fusion model WTIS-SVM provided the
highest ACC (65%) among the LSTM, Bi-LSTM, WIS-SVM,
and WTS-SVM models. SPE and SEN values obtained from
the WTIS-SVM are balanced (65% and 64%, respectively).
The fusion model provided the best PRE (65%) and second
highest F1 (0.65) that is lower than F1 value obtained from
WTS-SVM (0.69).

Table V shows the 95% confidence intervals of the mean
accuracies computed from the t-test for the cross-session
classification obtained from the WTS-SVM, WIS-SVM, and
WTIS-SVM classifiers.

F. Discussion
The classification based on the wavelet scattering decom-

position of the FRPs was much faster than that of the EEG
signals, because the former extracted the wavelet decomposi-
tion features from a much shorter signal (202 vs 1000 samples)
from only 1 out of 32 channels. In this case, time-based and
image-based wavelet scattering features of the EEG signals
provided biased information about a particular class for the
prediction task performed by the SVMs. By utilizing com-
plimentary results output from the two SVM-based models,
the prediction of motor imagery from EEG signals could be
improved using a simple fusion strategy. In fact, research into
combining strengths of multiple weak classifiers for achieving
more accurate results than those obtained from individual
biased classifier has been explored and applied to many
fields [51], [52], [53], [54], [55].

Sensitivity analysis among signal lengths and classification
accuracy was also investigated for computing the wavelet scat-
tering coefficients. Because the applied sampling frequency
of 250 Hz and recorded EEG signal length of 1000 samples
were fixed, there was no sensitivity analysis for computing
the wavelet-time scattering coefficients. For the wavelet-image
scattering coefficients determined by means of the FRPs of the
original brain data, the length of the EEG signals was varied
between 182 and 222 in the increment of 10 samples, yielding
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TABLE IV
CROSS-SESSION CLASSIFICATION OBTAINED FROM DIFFERENT CLASSIFIERS, WITH p < 0.01

Fig. 7. Training progresses of LSTM and Bi-LSTM networks for cross-session classification, where upper and lower y-axes are accuracy and loss,
respectively, and x-axes are the number of iterations.

TABLE V
95% CONFIDENCE INTERVALS (CIS) FOR THE MEAN ACCURACIES

COMPUTED FROM THE t-TEST OF CROSS-SESSION CLASSIFICATION

RESULTS GIVEN BY SVM-BASED CLASSIFIERS USING WAVELET

SCATTERING FEATURES OF TIME AND IMAGE DATA,
AND FUSION OF CLASSIFIERS

FRPs of 180 × 180, 190 × 190, 200 × 200, 210 × 210, and
220 × 200 grayscale images. The average accuracies obtained
from WIS-SVM and WTIS-SVM for the within-session clas-
sification were 51.79% and 75.77%, respectively, which are
only slightly higher than those listed in Table II (50.66% and
75.68%, respectively). The average accuracies obtained from
WIS-SVM and WTIS-SVM for the cross-session classification
were 48.92% and 64.69%, respectively, which are very slightly
lower than those listed in Table IV (49.27% and 64.84%,
respectively). No clear linear relationships between signal
lengths and accuracies were found in both within-session and
cross-session tests.

Advantages of the method introduced in this study are
that (1) the fusion strategy is general, which is not limited
to the use of SVMs but can be applied to any types of
classifiers whose predictive outputs are complementary by
checking the confusion matrices of training data; (2) the use
of short segments of the physiological signals for transforming

1-D into 2-D texture data for extracting features from wavelet
image scattering decomposition allows efficient computation
in both speed and memory storage, which is very useful
for processing big data; and (3) the transformation of shorts
segments of the EEG signals recorded from only one out of
32 sensors into FRPs that produced complementary results
appears to offer an economic solution in terms of device
setup and convenience to participants undertaking rehabilita-
tion training.

Disadvantages of the proposed approach include the
increase in computational complexity conditioned by the trans-
formation of EGG signals into grayscale images of FRPs,
and the need for optimal parameter setting for constructing
the FRPs, which has not been analytically found in the
present study. Furthermore, the fuzzy rule-based system can be
effective only if the sensitivity and specificity obtained from
the WIS-SVM and WTS-SVM are complementary.

Being similar to the basic concept of the power spectrum,
which is the mathematical expression of the quantity of the
signal at a certain frequency, the idea of wavelet analysis is
to compute how much a wavelet is contained in a signal for
a certain scale and location. Particularly for texture analysis,
wavelet image scattering constructs low-variance representa-
tions of the FRPs of the EEG signals, which are insensitive
to translations. The process of cascading the textural FRPs
through a series of transforms, nonlinearities, and averaging
in the wavelet scattering was found to provide biased features
toward class 1 of the MI-based EEG signals. On another
aspect, wavelet time scattering resulted in the transformation
of the EEG signals being insensitive to shifts in the physiologic



1106 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

signals, which was observed to favor the prediction of class
2 of the visual BCI experiments. Results obtained from the
two SVM-based classifiers trained with two different types
of wavelet scattering features suggest different characteristic
patterns of the signals can be captured in time and space
domains. These characteristics can be used to enhance the
task of classification by means of a strategy for selecting the
outputs from the classifiers. The CV measures of performance
produced by combining the two weak SVM-based classifiers
are higher than those provided by other classic MI-BCI
algorithms and deep-learning models, which are among state-
of-the-art AI methods.

The fusion of two SVM-based classifiers, where one learned
on wavelet time scattering and the other on wavelet image
scattering of the EEC signals, have been shown to perform
better than several deep-learning models. A main reason for
the higher performance of the fusion model is that the two
SVM-based classifiers are complementary to each other by
learning on temporal and spatial features of the wavelet trans-
form, and the use of the fuzzy rules was able to rectify a num-
ber of misclassified signals by targeting on different strengths
of the two classifiers. To elaborate further on the wavelet
scattering, the wavelet time scattering created a network for
wavelet time scattering decomposition of the EEG data using
the analytic Morlet wavelet. The network then used wavelets
and a low-pass filtering function to generate low-variance
representations of the physiological signals, yielding extracted
features robust to time translations in the input signals. On the
other hand, wavelet image scattering constructed low-variance
representations of the fuzzy recurrence plots of the EEG
signals, which are insensitive to spatial translations. Thus,
machine learning on these two types of wavelet-scattering
features of the EEG signals are expected to be complementary.
There are reports showing that SVMs performed competitively
or better than deep learning in several cases of pattern recog-
nition [56], [57], [58], [59].

V. CONCLUSION

The proposed complimentary weak classifier fusion for
classifying MI tasks in BCI using a big challenging database of
EEG signals has been presented and discussed in the foregoing
sections. The novel aspects of the proposed approach include:
1) the exploration of wavelet scattering networks of signals and
images for extracting complementary features of EEG data in
BCI to be learned with the SVM has been presented herein
for the first time; 2) the FRP construction allows the EEG
signals to be transformed into grayscale images, discovering
a new dimension of features of the original brain signals;
3) the development of a fuzzy rule-based system has been
illustrated effective for combining outputs from two com-
plementary SVM-based classifiers; and 4) the experimental
results obtained from the proposed fusion are shown to be
better than several existing state-of-the-art classification meth-
ods. Furthermore, not only the within-session classification but
also the inclusion of the cross-session classification of the MI
activities, has been addressed in this study, showing a potential
contribution to the practical aspects of MI-BCI using EEG
data [5], [60].

In this study, the transformation of the EEG signals into
texture images by means of the FRP algorithm appears to
be capable of capturing differential information from short
segments of the two different brainwave activities from a
single electrode, and therefore worth further investigating in
conjunction with other texture feature extraction methods for
pattern classification. The selection of the channel location
in this study was based on its central position on the head.
Sensitivity analysis of different individuals and alternative
combinations of the channels would be of interest for improv-
ing the classification. Training of deep-learning methods such
as pretrained CNN models with the rich texture of FRPs,
and LSTM networks with multiple wavelet time and image
scattering features of the segmented or whole EEG signals
would also be particular areas of interest. The combination
of AI, signal processing, and data science is promising for
advancing computerized control and communication technol-
ogy for aiding the rehabilitation of patients with stroke or
neurological disabilities.
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