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EEG-Based Sleep Stage Classification via
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Abstract— With the improvement of quality of life, peo-
ple are more and more concerned about the quality of
sleep. The electroencephalogram (EEG)-based sleep stage
classification is a good guide for sleep quality and sleep
disorders. At this stage, most automatic staging neural
networks are designed by human experts, and this process
is time-consuming and laborious. In this paper, we pro-
pose a novel neural architecture search (NAS) framework
based on bilevel optimization approximation for EEG-based
sleep stage classification. The proposed NAS architecture
mainly performs the architectural search through a bilevel
optimization approximation, and the model is optimized by
search space approximation and search space regulariza-
tion with parameters shared among cells. Finally, we eval-
uated the performance of the model searched by NAS on
the Sleep-EDF-20, Sleep-EDF-78 and SHHS datasets with
an average accuracy of 82.7%, 80.0% and 81.9%, respec-
tively. The experimental results show that the proposed
NAS algorithm provides some reference for the subsequent
automatic design of networks for sleep classification.

Index Terms— Electroencephalogram (EEG), sleep stage
classification, neural architecture search (NAS), bilevel
optimization approximation.

I. INTRODUCTION

SLEEP is very important for a person. Sleep takes up
about one third of a person’s life. Sleep disorders can

affect the quality of sleep and lead to a number of other
diseases, such as cardiovascular and metabolic diseases. Sleep
deprivation can also lead to severe impairment of cognitive and
motor skills, making reactions slower and increasing the risk
of accidents [1]. Therefore, the diagnosis of sleep disorders
becomes particularly important.
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Polysomnography (PSG) is the most important test to diag-
nose sleep disorders by continuous monitoring to understand
the patient’s condition. This record usually includes readings
from four channels, namely electroencephalography (EEG),
electrocardiogram (ECG), electrooculogram (EOG) and elec-
tromyogram (EMG) [2]. EEG has attracted the attention of
a wide range of researchers because of its low cost, con-
venience and non-invasive nature [3]. In sleep classification
studies, EEG is used to create different sleep stages (30-second
recording segments), which are then divided into different
sleep stages by experts. The classification process should
follow the guidelines of the American Academy of sleep
medicine (AASM) [4]. In the AASM manual the state of
sleep is split into five sleep stages: wakefulness (W), non-
rapid eye movement (NREM) sleep stage 1 (N1), NREM
sleep stage 2 (N2), NREM sleep stage 3 (N3) and rapid
eye movement (REM) sleep stage. Sleep stage classification
is commonly used to aid in the diagnosis of sleep disorders
[5], but this manual process is very exhaustive, tedious, and
time-consuming and the results are also influenced by the
subjective consciousness of the raters. Reference [6]. As such,
automatic sleep stage classification systems are required to
assist sleep specialists.

The traditional sleep EEG classification method is mainly
divided into two steps: 1) extract features from preprocessed
EEG signals; 2) construct sleep stage classifiers. In tradi-
tional methods, many features are designed based on prior
knowledge of sleep. As shown in Table I and Table II [7],
we see the spectral range of each wave and the type of
waves included in each stage of sleep. Generally speaking,
in the traditional machine learning algorithms, they will first
design and extract various features from the time domain
and frequency domain, and then use the feature selection
algorithm to further eliminate redundancy and select the most
discriminative features. Finally, the selected features are input
into the traditional machine learning model for classifica-
tion, such as fuzzy c-means algorithm (FCM) [8], support
vector machines (SVM) [9], random forest (RF) [7], [10],
Naive Bayes [11].

In recent years, with the rapid development of deep learning
(DL), researchers have a strong interest in this algorithm which
can automatically learn features [12], [13]. DL algorithms can
achieve end-to-end classification and are able to extract the
most representative features from large amounts of data with-
out the need for rich prior knowledge, making them superior
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TABLE I
FREQUENCY BANDS OF EEG RHYTHMS

TABLE II
RELATIONSHIP BETWEEN CHARACTERISTIC WAVES OF EEG AND

DIFFERENT STAGES OF SLEEP

to traditional algorithms to some extent. As one of the deep
learning algorithms, convolutional neural networks (CNNs)
is widely used in computer vision, such as object detec-
tion, image segmentation, image fusion and face recognition
[14], [15], [16], [17]. In the field of biomedical engineering,
CNN is also widely used in medical imaging and classifica-
tion of one-dimensional biological signals, such as EEG and
ECG. In recent years, many sleep EEG classification methods
based on CNN are also developing rapidly [18]. In [19], the
authors used successive convolution and pooling layers with
fully-connected layers and the overall accuracy was 74%. In
[20], the authors designed a deeper CNN network to verify that
network depth could improve network performance. In [21],
the authors transformed the raw EEG into a logarithmic power
spectrum and then performed sleep EEG classification by a
joint classification and prediction framework. In addition, the
researchers found that there were certain transition rules for
sleep stages, and the next possible stage could be determined
by the previous stages [4]. In the field of DL, recurrent
neural networks (RNNs) can extract time-dependent features
of sleep EEG very well. For example, in [22], the authors
implemented CNN and bidirectional-long short term memory
(LSTM) for automatic EEG classification. In [23], the authors
classified single-channel EEG signals by means of 4-class
LSTM RNN and 2-class LSTM RNN cascades. In addition,
other researchers have used attentional mechanisms [24], self-
supervision [25], and other methods to classify sleep EEG.

Although DL approaches have shown outstanding advan-
tages in EEG-based sleep classification, most of the existing
architectures are designed by human experts, which requires
certain prior knowledge and experience, and it is also a
time-consuming and error-prone process [26]. In addition, it is
difficult for experts to design ideal models due to people’s
inherent mindset. Therefore, people hope to search network
architectures automatically by algorithms, which can greatly
liberate the creativity of researchers and reduce the heavy

network design cost. On the same clinical problem, the authors
in [27] and [28] implemented the classification of emo-
tional EEG based on reinforcement learning and transformer,
respectively.

To solve the above problems, we introduce the neural
architecture search (NAS) algorithm and propose a fast and
low-cost method for automatic design of sleep EEG classi-
fication task models. At the same time, in order to simplify
the model, we only design the network through the simple
CNN architecture stack, and give up those common network
structures, such as LSTM and attention mechanism. The exper-
imental results show that the model has good performance.

The main contributions of this paper can be summarized as
follows:

1. Through the NAS framework based on bilevel optimiza-
tion approximation, the automatic classification network
structure based on sleep EEG is automatically designed.
The algorithm aims to find the optimal CNN structure in
the discrete search space, which can extract the features
from the original EEG signals, and realize sleep EEG
classification. NAS not only saves man-made design
time, but also ensures the accuracy of network structure.

2. We implement search model by a bilevel optimiza-
tion approximation. The model is further optimized by
searching deeper networks through search space approx-
imation and search space regularization.

3. We have conducted extensive experiments on public data
sets. The experimental results show that in the method
based on CNN, the network performance we designed
is equivalent to the latest scoring system, which proves
the effectiveness of the algorithm.

The rest of this paper is organized as follows: Section II
presents related work. Section III introduces the proposed
method, and Section IV shows the experiments and results
on three datasets sleep-EDF-20, sleep-EDF-78 and SHHS.
Finally, we discuss and conclude our research in Section V
and Section VI, respectively.

II. RELATED WORK

In this section, we briefly introduce the development of
CNN and the background of NAS.

A. CNN
In recent years, CNN has made great achievements in

image classification, target detection and other fields due to its
powerful performance. CNN has promoted feature extraction
from the manual design stage to the self-learning stage, and the
network model is also constantly updated and iterated from the
original models such as LeNet [29] to the current models such
as AlexNet, VGG, ResNet [30], [31], [32] and other models.
In the field of brain-computer interface, CNN is able to extract
and generalize temporal information better, and is widely used
in the classification of EEG data. For example, EEG-based
emotion recognition and sleep stage classification [19], [27].

Numerous studies have shown that feature representation
and final performance depend heavily on the network struc-
ture. Researchers have designed various complex structures to
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Fig. 1. NAS basic framework. A suitable structure δ is selected in
the search space A by different search strategies, and then a suitable
evaluation index is selected to evaluate the selected structure δ and feed
it back to the front-end network. In this cycle, the structure δ with the best
evaluation index is finally selected.

achieve better data feature representation. As the complexity
of the network increases, the performance of the network
continues to improve, but the parameters also keep increasing,
which in turn increases the difficulty of parameter tuning.
Therefore, people hope that the machine can adjust parameters
and design a reasonable network structure by itself on the
premise of ensuring the network performance.

B. NAS
The NAS has emerged to meet people’s hopes and has

quickly become a new research hotspot. The significance of
NAS is to solve the tuning problem of deep learning models,
which is a new approach to automate the design of network
structures. As described above, with the complexity of the
model, the design of the neural network architecture has
shifted from manual design to automatic machine design [33].
As shown in Fig. 1, NAS mainly includes search space, search
strategy and evaluation strategy. One of the main constraints
on the development of NAS is it needs huge GPU resources.
In recent years, with the continuous optimization and improve-
ment of search strategies, the demand for hardware resources
has been greatly reduced. Common search strategies include
stochastic search, Bayesian optimization, evolutionary algo-
rithms, reinforcement learning, and gradient-based algorithms
[26]. In [34], the authors used reinforcement learning for neu-
ral network architecture search and outperformed previously
hand-designed networks on image classification and language
modeling tasks. In [35], the authors introduced evolutionary
algorithms to NAS. In [36], the authors proposed the differ-
entiable structure search method, which continuous sizes the
search space. Currently, NAS has been widely used in object
detection, semantic segmentation, image classification, etc
[37], [38], [39].

III. METHODOLOGY

In this section, we first introduce the basic framework of
the proposed sleep EEG classification, and then introduce the
structure of the cell used in detail. Finally, the search principle
is briefly described.

A. Basic Framework of NAS
In this experiment we utilize differentiable architecture

searcharts (DARTS) [36] as our baseline framework. The

Fig. 2. Flowchart of the proposed method. The left side is the search
cell, the right side is the training of the model composed of the optimal
cell and the classification of sleep EEG.

DARTS algorithm is much simpler than many existing algo-
rithms, it does not involve any controllers, hypnetworks, and
the architecture uses a differentiable structure search approach,
which greatly reduces memory consumption. Its goal is to
find a cell with optimal performance as the building block of
the final architecture, the details of the cell will be described
later. Then the deeper network is retrained by stacking optimal
cells. Based on this, this paper achieves end-to-end sleep EEG
classification by extracting the most effective and realistic
information from raw EEG through a data-driven approach.
The schematic flow of the overall framework is shown in
Fig. 2. In general, there are two steps: 1) search for the
optimal cell; 2) combine the optimal cell into a model and
retrain the model. As shown in Fig. 2, first, we divide the
raw EEG data into training samples and validation samples.
The training is roughly divided into two steps: 1) fix the
architectural parameters and train the model parameters with
the training samples; 2) fix the model parameters and train the
architectural parameters with the validation samples. The two
steps are crossed and both use gradient descent to minimize
the cross-entropy loss of the model on the data. Finally,
we select the cell with the best performance for overlaying
and retrain from zero. In order to achieve accurate sleep stage
classification, we use 20-fold cross-validation and take the
average classification accuracy of the test samples as the final
classification result. The specific details will be shown in the
following sections.

B. The Construction of Cell
Cell is a directed acyclic graph consisting of an ordered

sequence of N nodes. Taking the four nodes in Fig. 3 as
an example. Each gray matrix in the graph, called node,
represents a feature map, and we need to connect these
nodes by some operations (e.g., convolution, pooling). The
colored connecting lines between each feature map represent
the operations. Assuming that there are only three optional
operations in the figure, to make the search space continuous,
we assign a weight α to all operations between two nodes
and relax the categorical choice of a particular operation to a
softmax over all possible operations to achieve a continuum
of discrete operations. Then the weights α are optimized by
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Fig. 3. (a) The search phase, the connection operation between two
nodes is unknown; (b) the set of all operations; (c) the weight of each
operation after training, the thicker the line means the larger the weight;
(d) the operation with the largest weight is selected to form the final cell.

gradient descent, and finally the operation with the largest
weight α is taken for each node to form the final cell structure
graph. Taking Fig. 3 as an example, the colored connecting
line in the figure is the structure parameter α in the search
experiment, node denotes the feature map x , and o denotes
the operation, then any node in the middle can be expressed
by the following formula:

x ( j)
=

∑
i< j

o(i, j)(x (i)), (1)

ō(i, j)(x) =

∑
o∈O

exp(αo
(i, j))∑

o′∈O exp(αo′
(i, j))

o(x), (2)

where i and j denote the ordinal number of the node, O
denotes the set of candidate operations, and o(·) denotes
some function applied to x (i), and each intermediate node
is computed based on all the nodes before it. The operation
mixing weights for a pair of nodes (i, j) are parameterized
by a vector α(i, j) of dimension |O|. The task of architecture
search then reduces to learning a set of continuous variables
α =

{
a(i, j)}. At the end of search, a discrete architecture can

be obtained by replacing each mixed operation ō(i, j) with the
most likely operation, i.e., o(i, j)

= arg maxo∈Oαo
(i, j).

In this paper, the cell consists of 7 nodes, which are 2 input
nodes, 4 intermediate nodes and 1 output node, and the output
node is deeply connected between all intermediate nodes,
as shown in Fig. 4, k denotes the ordinal number of the cell.
Meanwhile, in 1/3 and 2/3 of the network is the reduction
cell, and the rest is the normal cell, the reduction cell shares
the weight αreduction , and the normal cell shares the weight
αreduction .

C. Designing Convolution Network
As described above, this is a bilevel optimization problem.

Our goal is to search for a suitable cell. Ltrain , Lval are used
to represent the training loss and validation loss, respectively.
The above losses are defined not only by the structure α,
but also by the weight matrix ω in the network. The goal of
network search is to find some structure α∗ that minimizes the
validation loss Lval(ω

∗, α∗), i.e, α∗
= arg min

α
Lval(ω

∗, α).

Fig. 4. The dashed line indicates that all intermediate nodes are
connected to the forward node unknown, and different colors indicate
that different intermediate nodes are connected to all forward nodes.

The weight ω∗ associated with the structure is obtained by
minimizing the training loss: ω∗

= arg min
ω

Ltrain(ω, α∗).
Therefore, it can be summarized as follows:

min
α
Lval(ω

∗(α), α), (3)

s.t. ω∗(α) = arg min
ω

Ltrain(ω, α), (4)

where α is the upper level variable and ω is the lower
level variable. Due to the limitation of hardware facilities
and training time, it seems difficult to accurately evaluate the
architectural gradient by bilevel optimization, so we borrow
the approximate gradient estimation from DARTS, called
bilevel optimization approximation, as follows:

∇αLval(ω
∗(α), α) ≈ ∇αLval(ω − ε∇ωLtrain(ω, α), α),

(5)

where ω represents the current weight used by the algorithm
and ε represents the learning rate of the internal optimization.
We approximate ω∗(α) with ω − ε∇ωLtrain(ω, α) and use
single training step only once for ω throughout the process,
achieving a bilevel optimization approximation solution.

At the same time, in the experiment, we found that the cell
of DARTS search, skip-connect will dominate. Since skip-
connect is parameterless, the network does not learn features
well when there are too many skip-connects. In addition,
DARTS is validated by searching the optimal cell through a
network of 8-layer cell structure and then stacked 20-layer
optimal cells to form a deeper network structure to verify
performance. We found that the optimal cells searched in
the shallow network structure were not well classified when
stacked into a deeper network structure. In [40], the authors
likewise identified this problem and referred to this phe-
nomenon as depth gap. Based on this, the author of [40]
proposed a progressive differentiable architecture search
(P-DARTS), which was solved by search space approximation
and search space regularization. The basic flow of its algorithm
is shown in Fig. 5.

For simplicity, only an intermediate stage and normal cell
are shown in the figure, and the reduction cell is similar to
this. The search process is divided into three main stages:
initial stage, intermediate stage, and final stage. There can be
multiple intermediate stages depending on the actual need. For
each stage K , the search network includes NK cells and the
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Fig. 5. The overall pipeline of P-DARTS.

operation space is OK. In the initial stage K , NK is the smallest
and OK is the largest. After training the network, we rank
the candidate operations for each connection according to
the learned parameter αK, and then discard the operations
with smaller αK. Meanwhile, we gradually deepen the search
network by stacking the cells. At the intermediate stage K +1,
the number of cells in the new network is NK+1, i.e., NK+1 >

NK, and the new operation space is OK+1, i.e., OK+1 < OK.
And so on, the operation with the largest weight is selected in
the final stage. The cell in the Fig. 5 increases from 5 in the
initial stage to 11 and 17 in the middle and final stages, while
the number of candidate operations decreases accordingly
from 5 to 3 and 2. By the above method, we achieve the
matching of layers instead of searching in the shallow network
and then verifying in the deep network. However, at the same
time, as the number of layers increases, the requirement for
GPU memory gradually increases, so we gradually reduce the
candidate operation by judging the number size of αK, i.e., the
search space approximation.

Search space regularization consists of two main parts.
The first part is to insert operation-level dropout after each
skip-connect operation in order to partially cut off the skip-
connect . But we cannot cut off skip-connect endlessly, which
would cause skip-connect to disappear and be detrimental
to the search of the network, so we set a dropout rate for
each stage in order to better search the network. We gradually
decay the dropout rate during the training process in each
search stage, so that the skip-connect path is cut off at
the beginning and treats equally afterward when parameters
of other operations are well learned. The second part is
the architectural optimization, i.e., controlling the number of
skip-connect in the final search stage to M . If the number
of skip-connect is not M , the cell is searched for the M
skip-connects with the largest weight in the cell, and the
other weights are set to 0, and the cell is reconstructed by

TABLE III
DATA INTRODUCTION

iteration. Through search space regularization, the problem of
the number of skip-connect is well solved.

The bilevel optimization approximation, search space
approximation and search space regularization allow us to
search for networks with better performance under hardware
device constraints. The long training time of bilevel optimiza-
tion and depth gap problems are largely solved.

IV. EXPERIMENT AND ANALYSIS

In this section, we first introduce the public data sets used
in our experiment. Then we describe the experimental setup
in detail. Finally, we present the experimental results and
compare the results of our method with other methods on
Sleep-EDF-20, Sleep-EDF-78 [41], [42] and SHHS [43], [44]
databases.

A. Data Materials
In our experiments, we use three publicly available datasets,

namely, Sleep-EDF-20, Sleep-EDF-78, and SHHS as shown in
Table III.

1) Sleep-EDF-20: It contains 39 PSG records for 20 sub-
jects (one night for subject 13 and two full nights for
the rest). It contains two different studies on healthy
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TABLE IV
DATA FORMAT

subjects: Sleep Cassette (SC), which studies the effect
of age on sleep, and Sleep Telemetry (ST), which
studies the effect of temazepam on sleep. Each PSG
record contains two EEG channels (Fpz-Cz and Pz-Oz),
one EOG channel, one chin EMG channel, and event
markers. Both EEG and EOG use 100 Hz sampling.
Sleep scoring was performed by the sleep specialist
in 30-second epochs according to the Rechtschaffen &
Kales manual [45], and the corresponding sleep maps
were scored manually. Each epoch was labeled into one
stage of W, N1, N2, N3, N4, REM, Movement (M) and
UNKNOWN.

2) Sleep-EDF-78: It is an extended dataset of Sleep-EDF-
20 containing 153 PSG records for 78 subjects (two full
nights of PSG records for all subjects except for the first
night for subjects 36 and 52, and the second night for
subject 13). The rest of the records were identical to
Sleep-EDF-20.

3) SHHS: It is a multi-center cohort study of the car-
diovascular and other consequences of sleep-disordered
breathing. The subjects suffer from various diseases
including lung diseases, cardiovascular diseases and
coronary diseases. To minimize the impact of these
diseases, we followed the study in [46] to select subjects,
who are considered to have a regular sleep (e.g., Apnea
Hypopnea Index or AHI less than 5). Eventually, 329 out
of 6,441 subjects were selected for our experiments.
Notably, we selected the C4-A1 channel with a sampling
rate of 125 Hz.

The format of the data set is shown in the Table IV. For Sleep-
EDF, n indicates the total number of sleep EEG markers for
each subject by the expert, 1 indicates that the selected channel
is a single channel named Fpz-Cz, and 3000 indicates the
sampling point of the data, using a time of 30 seconds and
a sampling frequency of 100 Hz. For SHHS, n indicates the
total number of sleep EEG markers for each subject by the
expert, 1 indicates that the selected channel is a single channel
named C4-A1, and 3750 indicates the sampling point of the
data, using a time of 30 seconds and a sampling frequency
of 125 Hz.

B. Implementation Details

We built our model using PyTorch 1.4 and trained it on a
NVIDIA GTX3060 GPU. In order to explain the details of the
experiment more clearly, we introduce it from the following
aspects:

1) Evaluation Index: We adopt the accuracy (ACC) rate on
the test set as an indicator to verify the performance of our
method, in a 20-fold cross-validation way. We get the final
accuracy by the final confusion matrix after 20-fold cross-
validation. In addition to this, we use three other metrics
to evaluate the performance of the model, namely macro-
averaged F1-score (M F1), Cohen Kappa (k), and the macro-
averaged G-mean (MGm) [24]. Both M F1 and MGm are
commonly used to evaluate the performance of the models
on imbalanced datasets. Given the true positives(T P), false
positives (F P), true negatives (T N ), false negatives (F N ),
precision (P R), recall (RE) and specificity (S P). They are
calculated as in binary classification by considering one class
as the positive class and the other four classes as the negative
class. The overall accuracy ACC , M F1, k and MGm are
defined as follows.

ACC =

N∑
i=1

T Pi

S
, (6)

M F1 =
1
N

N∑
i=1

2 × P Ri × REi

P Ri + REi
, (7)

k =
po − pe

1 − pe
, (8)

MGm =
1
N

N∑
i=1

√
S Pi × REi , (9)

where i stands for stage, S is the total number of samples
and N is the number of sleep stages. Each parameter in the
formula is defined as follows.

P Ri =
T Pi

T Pi + F Pi
, (10)

REi =
T Pi

T Pi + F Ni
, (11)

po = ACC, (12)

pe =

N∑
i=1

(T Pi + F Pi ) × (T Pi + F Ni )

S2 , (13)

S Pi =
T Ni

T Ni + F Pi
. (14)

2) Search Space: We include the following operations in
O: 1×3 and 1×5 separable convolutions, 1×3 and 1×5 dilated
separable convolutions, 1 × 3 max pooling, 1 × 3 average
pooling, identity, and zero. All operations are of stride one
(if applicable) and the convolved feature maps are padded
to preserve their spatial resolution. We use the ReLU-Conv-
BN order for convolutional operations, and each separable
convolution is always applied twice.

3) Settings of NAS: In the search phase, we perform random
initialization and the learning rate follows the cosine scheme.
The SGD optimizer with lr = 0.001, weight decay 0.001 is
used for the network parameters ω. The Adam optimizer with
learning rate lr = 0.0006, weight decay 0.001, and momentum
= (0.5, 0.999) is used for the structural parameters α. For each
stage, we run 25 epochs, where the first 10 epochs only tune
the network parameters, while learning the network parameters
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TABLE V
THE DIVISION DETAILS OF 20-FOLD CROSS-VALIDATION

Fig. 6. Data segmentation and management.

and architectural parameters in the remaining 15 epochs. When
training the final model, we use a similar setup as above, using
the SGD optimizer, and run a total of 50 epochs. Finally,
through experimental validation, we finally find the cell retain-
ing 2 skip − connect operations. It is worth mentioning that
our network uses a progressive search of 5, 8, 11, and the
dropout rate is set to 0.0, 0.4, 0.7.

4) Data Processing: In this experiment, we used three major
publicly available datasets. In order to use the AASM criteria,
we combine stages N3 and N4 into a single stage N3 and
exclude Movement and UNKNOWN classes. To increase the
number of sleep stages studied, we include only 30 minutes of
waking time before and after sleep [24]. The data division also
differs in the network search phase and the network training
phase. As shown in the Fig. 2, in the step 1, we divide the
data into training set and validation set, where the training
set and validation set each account for 50%. In the step 2,
we divide the dataset into training set, validation set and test
set, and the division details are shown in the Table V, and
the training model is validated by 20-fold cross-validation.
We use the raw EEG signal as the input to the network.
Depending on their different sampling rates for each data
set and the number of subjects, the specific administration
is shown in Table V. As shown in the Table V, we used
a 20-fold cross-validation approach to evaluate the model,
avoiding some problems caused by poorly divided data sets.

We selected different subjects in each fold as the test set as
well as randomly selected certain subjects as the validation set.
We can see from the division of the table that each subject
made a test set. We selected the final confusion matrix to
evaluate our model. In addition, 64 in the table indicates the
number of categories per input, whose different values can be
selected depending on the hardware conditions. We give an
example in Fig. 6. Fig. 6 represents the entire PSG record of
a particular object. We divide it into different epochs with a
time interval of 30 seconds. According to the sampling rate,
the data of sleep-EDF is 3000 and the data of SHHS is 3750.
we input our model with 64 epochs as a set of data samples
and the last set if less than 64 is the final remaining data as
input. Finally, as shown in Table V, we performed 20 cross-
validations to obtain the final confusion matrix.

5) Experimental Details: In this experiment, due to hard-
ware conditions and time constraints, we adopt a bilevel
optimization approximation for network search as shown in
Equation 5. In addition, through experiments and comparisons,
we finally choose M = 2, i.e., containing two skip−connects.
In addition, it is worth mentioning that we use the P-DARTS
search framework, and the specific parameter settings are
shown in Settings of NAS. The specific process is as follows:
first we randomly divide the smaller dataset Sleep-EDF-20 into
a training set and a validation set, each with 50%. We perform
four searches, and then select the cell with the highest accuracy
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Fig. 7. Normal cell.

Fig. 8. Reduction cell.

in the validation set as the final cell. Finally, we build the final
cell into the final network and train it on Sleep-EDF and SHHS
for validation.

6) Cell Details: In our model, there are two types of cells:
Normal and Reduction. Normal cell is used when the res-
olution of input features and output features are the same,
and Reduction cell is used when the resolution of output
features is half of input features. The design of the Reduction
cell is basically the same as that of the Normal cell, except
that a convolution operation with stride=2 is added to the
input features to reduce the resolution. In the overall network
architecture, Normal cell and Reduction cell are designed
based on the principle of inserting one Reduction cell in
every N Normal cells. For reduction cell, we can extract more
information of the bottom layer by down sampling. At the
same time, we increase the number of channels, in order to
prevent the loss of feature information.

C. Result and Analysis
The proposed NAS discovers the optimal convolution cell

and reduction cell are shown in Fig. 7 and Fig. 8, respectively,
then we connected these cells in a certain order to form the
final network architecture shown in Fig. 9. It is worth mention-
ing that after extensive experimental validation, we find that it
is more ideal to stack 11 cells under the two major premises
of ensuring network performance and training time, so the
overall framework of the model is shown in Fig. 9. There are
11 layers, of which layer 4 and layer 8 are reduction cell
and the rest are convolution cell. We use the original signal
as the initial input to the network, and the input of layer N

Fig. 9. The final network.

TABLE VI
CONFUSION MATRIX FOR THE FPZ-CZ CHANNEL OF SLEEP-EDF-20

is the output of layer N − 1 and layer N − 2. Each layer
contains four intermediate nodes, and the output of each layer
is the connection of the four intermediate nodes, as detailed
in Fig. 4. The operation between each convolution cell and
reduction cell is detailed in Fig. 7 and Fig. 8. At the same
time, we expanded the channels when we input the first cell.
Besides, for the purpose of reducing the number of parameters
in the dense connection passed to the softmax layer, we add a
global average pool layer to average all the activations of each
channel after the last cell layer while avoiding overfitting and
making parameters ω updated stably.

Table VI, Table VII, and Table VIII show the confusion
matrices of the proposed model on three datasets with a single
channel and a single epoch (i.e., 30-second EEG signal) as
input. The confusion matrices are obtained by summing the
confusion matrices for each fold after 20-fold cross-validation.
Each row represents the number of samples classified by
experts, while each column represents the number of epochs
predicted by our model. The tables also show the per-class
precision, recall, F1 score and G-mean value for each class.

From the Table VI, Table VII and Table VIII, it can be
concluded that the various metrics of stage N1 are lower,
and the remaining four stages W, N2, N3 and REM stages
outperform stage N1. This may be due to the fact that the
number of N1 stage in the dataset is lower than that of the
other stages. For each stage, the W stage is mostly mistaken
for the N1, N2 and REM stages, the N1 stage is mistaken
for the W, N2 and REM stages, and the REM stage is mostly
mistaken for the N1, N2 stages. Another fact derived from the
tables is that stage N3 is largely confused with stage N2 only.

D. Comparison With Other Methods
In order to better validate the reliability of the proposed

method, we conduct extensive experiments on Sleep-EDF-20,
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TABLE VII
CONFUSION MATRIX FOR THE FPZ-CZ CHANNEL OF SLEEP-EDF-78

TABLE VIII
CONFUSION MATRIX FOR THE C4-A1 CHANNEL OF SHHS

Sleep-EDF-78 and SHHS dataset. In addition, we compared
our method with other methods: Cont-CNN [19], Joint-
PreCNN [21], Multi-DeepCNN [20], DeepSleepNet [22],
SleepEEGNet [47], ResnetLSTM [48]. Brief descriptions for
each model are as follows.

• Cont-CNN [19] used convolutional neural networks
(CNN) for automatic single-channel EEG-based sleep
scoring.

• Joint-PreCNN [21] introduced a joint classification and
prediction formulation. Based on the dependency of sleep
periods, the input periods were jointly classified and their
adjacent labels were predicted in the contextual output.

• Multi-DeepCNN [20] designed a deep CNN and verified
that the network performance gain depended mainly on
the network depth rather than using multiple channel
information.

• DeepSleepNet [22] implemented a two-step training
algorithm to classify sleep stages through CNN and
LSTM structures.

• SleepEEGNet [47] used the same CNN architecture as
DeepSleepNet and incorporates an encoder-decoder with
an attention mechanism.

• ResnetLSTM [48] extracted features by ResNet and then
used LSTM for sleep EEG classification.

Table IX, and Table X show the comparison between the
six models and our model. We can notice that our model
achieves a better classification performance than the other
six models. The six models can be divided into two cate-
gories, the first three are CNN models and the last three are
CNNs combined with other model structures, such as LSTM,
attention mechanisms. All the models in Table IX are CNN
architectures and have not other structures such as LSTM. The
difference is that Joint-PreCNN converts the single-channel
raw signal into a logarithmic power spectrum, and Multi-
DeepCNN uses 3 channels and 5 epochs as inputs. We can
observe that our model achieves a significant improvement
in all three metrics, ACC , M F1 and k. Of which, ACC is

TABLE IX
COMPARISON WITH THE FIRST THREE MODELS

TABLE X
COMPARISON WITH THE LAST THREE MODELS

82.7%, M F1 is 75.9 and k is 0.76. All three performance
metrics are higher than other models. In Table X, we compare
with models of other structures. DeepSleepNet utilized CNN
to extract time-invariant features, and bidirectional-LSTM to
learn transition rules among sleep stages automatically from
EEG epochs. Similarly, ResnetLSTM used the structure of
the LSTM. SleepEEGNet used the same CNN architecture
as DeepSleepNet to extract features and incorporated an
encoder-decoder with an attention mechanism to classify.
By comparing, we can observe that the performance of our
model is basically the same as that of the other three models,
and even has a slight improvement in accuracy. In summary,
NAS can automatically extract features and design better CNN
architectures than those designed manually. At the same time,
by comparing with other network structures, we have reasons
to believe that NAS can also extract some features that are
neglected by manually designed CNN architectures as well as
its ability to extract features on unbalanced datasets.

V. DISCUSSIONS

In recent years, there has been a growing interest in
sleep quality. Traditional classification-based methods and
deep learning-based classification methods have shown an
explosive growth. Each method has its advantages and dis-
advantages. The traditional classification method can extract
some important neurophysiological features in sleep EEG
from the original signal by frequency domain analysis, time
domain analysis [49], [50], which is not available in artificial
intelligence methods. Then we select the most representative
features for classification. In [51], the authors have proposed a
new method of time-frequency representation (TFR) which is
based on the Fourier-Bessel decomposition method (FBDM).
Since recorded EEG signals are non-stationary which lead to
time-varying amplitude and spectrum. Hence, they proposed
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FBDM method is well suited for the classification of these
sleep EEG signals. They convert EEG signals to TFR images,
which are then classified by CNN networks. In [52], a new
technique for automated classification of sleep stages based
on iterative filtering of EEG signals is presented. In order to
perform sleep stages classification, the EEG signals are decom-
posed using iterative filtering method. The discrete energy sep-
aration algorithm (DESA) is applied to the modes to determine
amplitude envelope and instantaneous frequency functions.
The extracted amplitude envelope and instantaneous frequency
functions have been used to compute Poincarè plot descriptors
and statistical measures, which are applied as input features
for different classifiers in order to classify sleep stages. The
classifiers namely, naïve Bayes, k-nearest neighbor, multilayer
perceptron, C4.5 decision tree, and random forest are applied
in order to classify the EEG epochs corresponding to various
sleep stages. However, these methods require a large amount
of a priori knowledge, while the advantage of AI methods
is that the raw signal is used as input to achieve end-to-end
classification. We learn the features through neural networks
and no longer need a large amount of prior knowledge. Many
researchers have demonstrated that end-to-end automatic clas-
sification of raw signals using individual EEG channels and
convolutional neural networks is possible without any a priori
knowledge. However, most of the networks at this stage are
based on manual design, which makes it challenging to explore
more suitable architectures. This study aims to automatically
search convolutional neural network architectures for EEG-
based end-to-end sleep stage recognition. In this paper, we pro-
pose an automatic search method NAS for classification tasks.
Unlike traditional application of reinforcement learning or
genetic evolution algorithms on discrete and non-minimizable
search spaces, our approach is based on relaxation of the archi-
tectural representation, allowing the use of gradient descent
efficient search architecture, which greatly saves search time
and hardware memory footprint and enables training models
on a single GPU.

NAS is mainly used in the field of image classification,
and there are still very few applications in the field of EEG.
In this paper, we demonstrate through extensive experiments
that the one-dimensional EEG signal based on NAS still has
good performance. As shown in Table IX and Table X, the
proposed NAS is competitive compared with CNN and other
methods based on CNN, indicating that the model obtained by
automatic search can replace manual design to a certain extent,
freeing up a lot of manpower and reducing the cost of design-
ing networks. Separate convolution, dilated separable convolu-
tion, max pooling, average pooling and skip-connect are used
in our model. We use the neural architecture search (NAS)
method to combine the above operations and finally form an
optimal cell. Compared with other structures, we are searching
for an optimal cell by NAS algorithm instead of designing
by hand, which saves a lot of labor and time in designing
the network. Besides, the combination of our structures is
more flexible. We implement different combinations by our
algorithm and then select an optimal cell, while the manually
designed convolutional networks are often fixed. Of course,
in addition to the above advantages, we also use separate

convolution to speed up the computation, dilated convolution
to improve the perceptual field and extract more features,
and use skip − connect to speed up the convergence. These
methods are rarely used in convolutional neural networks
that deal with the same problem. We also used the structure
of Relu-Convolution-Batch Normalization for convolutional
operations to improve the generalization ability of the model.

Although we have achieved good performance with our
network, the network we found is not necessarily optimal.
During the network search, the network optimization is very
sensitive to the initialization value. Under the same conditions
each time, we have performed more than four searches with
random initialization, each time deciding the final architecture
based on the optimal results obtained on the validation set. Due
to time cost constraints, we were unable to perform multiple
searches on the network to obtain all model architectures.

VI. CONCLUSION

In this paper, we propose an end-to-end deep learning
method named NAS for sleep EEG recognition. The main
contribution of this method is the implementation of automatic
design of neural networks, which provides a new way of
thinking for the subsequent study of sleep EEG classification.
The experimental results on three public datasets demonstrated
that the performance of our model reaches certain criteria
under various evaluation matrices, proving the effectiveness of
the method. In the future, we will further improve our method
to overcome the problem of low accuracy in the N1 stage.
In addition, based on the huge search space, it is worthwhile to
investigate how to design a more concise and efficient model.
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