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Schizo-Net: A novel Schizophrenia Diagnosis
Framework Using Late Fusion Multimodal Deep

Learning on Electroencephalogram-Based
Brain Connectivity Indices
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Abstract— Schizophrenia (SCZ) is a serious mental con-
dition that causes hallucinations, delusions, and disor-
dered thinking. Traditionally, SCZ diagnosis involves the
subject’s interview by a skilled psychiatrist. The process
needs time and is bound to human errors and bias.
Recently, brain connectivity indices have been used in a
few pattern recognition methods to discriminate neuro-
psychiatric patients from healthy subjects. The study
presents Schizo-Net, a novel, highly accurate, and reliable
SCZ diagnosis model based on a late multimodal fusion
of estimated brain connectivity indices from EEG activity.
First, the raw EEG activity is pre-processed exhaustively to
remove unwanted artifacts. Next, six brain connectivity
indices are estimated from the windowed EEG activity,
and six different deep learning architectures (with varying
neurons and hidden layers) are trained. The present study
is the first which considers a large number of brain connec-
tivity indices, especially for SCZ. A detailed study was also
performed that identifies SCZ-related changes occurring in
brain connectivity, and the vital significance of BCI is drawn
in this regard to identify the biomarkers of the disease.
Schizo-Net surpasses current models and achieves 99.84%
accuracy. An optimum deep learning architecture selection
is also performed for improved classification. The study
also establishes that Late fusion technique outperforms
single architecture-based prediction in diagnosing SCZ.

Index Terms— Schizophrenia, deep learning, brain con-
nectivity features, feature fusion, classification.
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I. INTRODUCTION

SCHIZOPHRENIA (SCZ) is a serious mental disorder
that impacts an individual’s ability to think, feel and

behave clearly. Moreover, continuous recurrent episodes of
psychosis are a common disorder condition [1]. Hallucinations
(seeing things or hearing voices that aren’t there), delusions
(fixed, incorrect beliefs), paranoia, and disorganized thinking
are other frequently complained occurrences [2]. In recent
years, SCZ has been considered a disorder of “dysconnec-
tivity”. Dysconnectivity of the pre-frontal cortex is caused by
developing hippocampal injuries, according to animal mod-
els [3]. Soon the concept of SCZ was derived considering that
both heredity and organic brain ailment were implicated [4].
However, until Johnstone et al. published research employing
computed tomography in 1976, the organic aspects of the
disease were overlooked. The condition usually appears in
early adulthood, but it is reported that men have a peak
incidence about a decade earlier than women [5]. The reason
behind this is still unclear. An equally puzzling but consistent
finding is the slight excess of births of people with SCZ in
the cold winter [6]. Thus environmental factors too seem to
be associated with winter birth that causes neural damage
in the fetus/neonate. The cause could be a viral infection,
seasonal difference, or other complications during pregnancy
or delivery [7], [8]. Nevertheless, a well-defined methodology
to treat SCZ is lacking.

A. Background
SCZ related abnormalities are very small and subtle, and

thus this makes the detection of the disorder to be com-
plicated without advanced technology. MRI imaging has
shown the presence of structural brain abnormalities in SCZ
patients. There is also evidence that the abnormalities are
neuro-developmental in origin but unfold later in develop-
ment [9]. However, these abnormalities usually become evi-
dent only when the patient develops symptoms. Moreover,
as many different brain regions are involved in the neu-
ropathology of SCZ, disturbance in the functioning of a
particular brain region cannot fully explain the range of various
impairments. Therefore, new models need to be developed
and tested to explain neural circuitry abnormalities affecting
brain regions, “not necessarily structurally proximal” to each
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other but functionally interrelated [10]. According to WHO,
SCZ can be treated [11]; however, its treatment involves
long-term medication and requires early detection of the
disease. Determining nervous system damage is tricky since
most symptoms overlap in combinations among the different
disorders. Similar disorders do not have definitive sources,
unique markers, or tests, making diagnosing a neurological
disease laborious. Usually, complete medical history and phys-
ical exam are used to diagnose such disorders. Moreover,
highly trained and experienced experts are needed for cor-
rect diagnosis. Other tests might be used, including com-
puted tomography (CT), Magnetic Resonance Imaging (MRI),
Ultrasound, and Electroencephalogram. Electroencephalogram
(EEG) is a non-invasive technique that records the brain’s
electrical activity through scalp-connected electrodes. It has
been found to help detect a range of neural disorders, viz.,
brain tumors, inflammations, sleep disorders, and stroke. Due
to its portability, non-invasiveness, and excellent temporal
resolution, EEG has gained a reputation as a preferred brain
imaging tool for diagnosing neurological diseases with high
accuracy [12], [13], [14].

B. Motivation
In recent years, deep learning methods have been devel-

oped to detect various neurological disorders that utilize
EEG signals [15], [75] and solve various classification
tasks [76], [77], [78]. Although these methods work well
in finding hidden features and patterns from the non-
linear data, they struggle to attain higher-classification accu-
racy on EEG due to the data being highly complex and
the frequent non-cerebral contamination that accompanies
it [61], [62]. Cortically generated EEG is often contaminated
by non-cerebral artifact origins such as eye blinks, ocular
movements, Electrocardiogram (ECG), and Electromyogram
(EMG) artifacts. Therefore, it becomes imperative to clean
recorded EEG activity before extracting information and train-
ing deep learning models [16], [17]. Various methods for the
SCZ detection using EEG have been explored. Siuly et al. [18]
suggested a method using Empirical Mode Decomposition
to handle non-stationary, nonlinear EEG signals, decomposed
them into intrinsic mode functions and calculated 21 statisti-
cal features. Among the considered classifiers, the ensemble
bagged tree classifier produced the best classification accu-
racy of 93.21%. In another work, Khare et al. [19] used a
combination of time-frequency graphs and CNNs to classify
SCZ patients and reported an accuracy of 93.36% using
the smoothed pseudo-Wigner–Ville distribution-based time-
frequency representation. Oh et al. [20] collected EEG data
from 14 healthy subjects and 14 SCZ patients and proposed
an 11-layered CNN architecture for the classification. The
proposed model generated a classification accuracy of 98.07%
and 81.26% for non-subject-based and subject-based testing,
respectively. In another work, Jahmunah et al. [21] proposed an
automated diagnostic tool to detect SCZ, extracting 157 fea-
tures from both classes. An optimal feature set of 14 was
selected using a t-test [22] and an accuracy of 92.91% was
achieved for SVM. Dvey-Aharon et al. [23] designed a SCZ
detection and classification methodology by advanced analysis

of EEG recordings using a single electrode, reporting an
accuracy of 88.7%. Recently, brain connectivity measures (as
features) have been deemed suitable for classifying EEG activ-
ity. The brain is a large network of neurons, and synchronous
neural activities at different regions can provide useful infor-
mation, referred to as brain connectivity. Connectivity between
brain regions can be anatomical (structural), functional (by
functional integration of separated regions) and casual relation-
ship (effective) [24]. The relationship between brain regions
can be described as a brain network whose vertices and edges
correspond to brain regions and their connections. If the edges
are weighted, they represent the strength of connections with
continuous values. Then, an adjacency matrix can be defined,
whose elements are the strength of connections between two
electrodes [25]. Moon et al. [26] proposed a CNN-based
system to learn the representation of neural activities based
on brain connectivity to classify emotions in a video by
using three different connectivity measures, including Pearson
Correlation Coefficient (PCC), Phase Locking Value (PLV),
and Transfer Entropy (TE). The highest accuracy of 87.36%
is obtained using the PLV measure with a kernel size of 5.
Phang et al. [27] proposed a DNN with deep belief network for
automated SCZ classification. This study suggested the usage
of vector auto-regression-based Directed Connectivity (DC),
graph-theoretical Complex Network (CN), and its combination
as input features. It is reported that the Combined DC-CN
features provide better classification performance with the
highest classification accuracy of 95%.

C. Contributions
The present work aims to present Schizo-Net, a framework

for reliable and high accuracy SCZ detection using late fusion
multimodal deep learning on EEG-based brain connectivity
measures. Here, we extract information about the disrupted
brain connectivity in an SCZ brain, various phenomena such
as synchronization between different brain regions, the direc-
tionality of the information, and the correlation of signals
have been analyzed. Six connectivity measures have been esti-
mated [28], [29], [30], [31], [32], [33]. The estimated measure
helps quantify synchronization and provides information on
directionality and causality. The output of these methods was
analyzed and exported in matrices. These feature matrices are
then used as input to the neural networks. In the present
work, we tested several neural network architectures with
varying numbers of neurons and hidden layers. It is observed
from the experimentation that neural networks were able to
learn latent details of the EEG connectivity patterns. Further,
late fusion method is implemented and examined to combine
the results of different neural networks trained on different
connectivity methods. The contributions of the present study
include-

1) The present study is the first to provide a comparative
study taking into consideration a large number of brain
connectivity indices for SCZ using EEG.

2) We perform late multimodal feature fusion to evaluate
the efficacy of combined feature vectors for SCZ diag-
nosis. For classification, five different DNN architectures
are implemented and evaluated. (Section II, III)
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Fig. 1. Raw EEG signal associated with an (a) SCZ patient and an
(b) Healthy patient. EEG signal after undergoing Makoto’s pre-
processing for the (c) SCZ patient and (d) Healthy patient.

3) Compared to the previous studies, Schizo-Net achieves
state-of-the-art results for the fused feature vectors.

4) We also demonstrate experimentally that late fusion out-
performs single architecture-based prediction. (Table II)

5) Compared to previous studies, a detailed study has also
been performed that identifies SCZ-related changes that
occur in brain connectivity, and the vital significance
of brain connectivity indices is drawn in this regard to
identify the biomarkers of the disease. (Section III)

II. MATERIALS AND METHODS

A. Participants and EEG Recording
The EEG data from 14 patients (7 males: 27.9 ± 3.3 years,

7 females: 28.7 ± 4.1 years) was recorded by the Institute
of Psychiatry and Neurology in Warsaw, Poland [34]. The
data for fourteen healthy subjects (7 males: 26.8 ± 2.9 years,
7 females: 28.7 ± 3.4 years) were also recorded by the
same institute. Fifteen minutes of data was acquired at 250Hz
sampling frequency in a composed state with eyes closed on
standard 19 channel (which includes Fp1, Fp2, F7, F3, Fz, F4,
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2) based
10-20 EEG montage. Fig. 1 depicts the sample EEG signals
where healthy individuals show enhanced amplitude values in
most channels compared to those of SCZ patients.

B. Pre-Processing
During recording, ongoing EEG activity is frequently con-

taminated by non-cerebral artifacts originating from ocular
movements, Electrocardiogram (ECG), and Electromyogram
(EMG) artifacts. Moreover, other sources, including back-
ground electrical disturbances, noise due to instrumentation,
and external electromagnetic activity, also affect the recording.
This strong presence of artifacts diminishes the EEG signal
quality and may cause erroneous classification. Therefore,
it is essential to eliminate artifacts and noise before fea-
ture estimation [35]. Preprocessing aims to remove artifacts,
improve stationarity, and increase the SNR of the recorded
EEG activity. To clean contaminated EEG activity, Makoto’s
preprocessing pipeline is implemented using the EEGLAB
toolbox [36] in MATLAB software. Initially, offset correction
is performed on the recorded EEG activity. Next, the channel
location data is added, which is essential to understand which
channel montage is being followed. Since the continuous
EEG data needs to be filtered before epoching or artifact

Fig. 2. Layer-wise overview of NNET architectures 1-5.

removal, a basic Finite Impulse Response filter is used. Fil-
tering before epoching minimizes the introduction of filtering
artifacts at epoch boundaries. The main focus is on the alpha
band frequency signal, so the lower and higher edges of the
frequency pass band are set accordingly [37]. The EEGLAB
algorithm automatically estimates the filter order for the FIR
filter.

After filtering, the artifacts are automatically rejected, start-
ing from detecting any bad channels in the data. That is, the
channels that are either noisy all the time or are completely
flat are removed from the dataset. Next, the rejection of bad
portions of data is done using Artifact Subspace Reconstruc-
tion (ASR) algorithm [38]. ASR first finds the clean portion
of the data, which is referred to as the “calibration data.”
If a particular data region exceeds 20 times the standard
deviation of this calibration data, ASR rejects it. Indepen-
dent Component Analysis (ICA) is the final pre-processing
step [39]. It subtracts embedded artifacts from muscle and
eye movements and identifies brain sources from which a
particular signal originates. We use Information maximization
(Infomax) ICA in this study. Compared to FastICA, Infomax
ICA rapidly converges and separates the estimated sources
more efficiently. It has better results, but it is more mathe-
matically complex than FastICA, thus requiring more com-
putational resources [40]. For identifying decomposed ICs as
artifactual/ non-artifactual, the “ADJUST” processing pipeline
is followed [72]. The identified artifactual ICs were subtracted,
and inverse ICA was performed to regenerate artifact-free EEG
activity.

C. Feature Extraction
In this study, multiple connectivity features are used to

capture the neural synchronous activity in different brain
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Fig. 3. Illustration of Schizo-Net and its flow for EEG pre-processing,
feature extraction and late fusion classification.

regions. This is mainly done to get an overall picture of
brain connectivity. There are 3 connectivities- structural,
functional and effective. Structural connectivity refers to the
connectivity between brain regions which are anatomically
connected, while functional connectivity is based on the
functional integration of different brain regions. In contrast,
effective connectivity is based on a causal relationship [24].
In graph theory, the brain is modeled as a network consisting
of nodes representing the brain’s different areas or the EEG
channels, with edges between them representing the connectiv-
ity between those respective nodes [34]. In the present study,
six brain connectivity measures are used to compute these
matrices, namely Phase-Locking Value (PLV), Partial Directed
Coherence (PDC), Phase-Lag Index (PLI), Synchronization
Likelihood (SL), Directed Transfer Function (DTF), Pearson’s
Correlation Coefficient (COR). Here, PLV and PLI provide
information about phase synchronization, whereas DTF and
PDC allow quantifying the causal interactions between brain
regions and provide directions of information flow. SL esti-
mates the generalized synchronization, whereas COR provides
information on linear correlations within data. Each prepro-
cessed EEG data segment has a length of 6.5 minutes. Further,
the HERMES toolbox [41] is used to perform windowing on
the cleaned EEG activity segment with the window length of
1 minute, overlapping 80% between windowed segments. Win-
dowing helps in obtaining a temporal resolution to calculated
indices with more trials. The segmentation led to 25 EEG trials
corresponding to each subject. From the HERMES toolbox,
the extracted data for each index was in the shape of (1,
28). Each element was a 4D matrix (Channels × Channels ×

Frequency Band × Windows). It is important to express a
set of connection features as a 2D matrix to use them as an
input to neural networks. This data was then transformed into
the shape of (784, 2), where the first element of each row
contains a (19 × 19) matrix and the second element is the
label in one hot encoded format ([1,0] for H; [0,1] for Sz).
Thus, we transformed all connectivity features into a 19 ×

19 connectivity matrix, whose (i th, j th) elements represent
connectivity between the i th and j th electrodes.

D. Brain Connectivity Measures
1) Phase Locking Value (PLV): Phase locking value (PLV) is

a functional connectivity metric that relies on the instantaneous
time-series phase [28]. It assumes that when two brain regions
are functionally connected, the difference between their imme-
diate phases of signals should be constant. PLV uses relative
phase difference only and is defined as:

P LV = |ei1φrel (t)| =

∣∣∣∣ 1
N

N∑
n=1

ei1φrel (t)
∣∣∣∣

=

√
cos 1φrel(t)2 + sin 1φrel(t)2 (1)

where 1φrel(t) represents the relative phase difference at
an arbitrary time t . The phase difference can vary between
0 and 1, representing completely independent or perfectly
synchronized signals. PLV estimates the relative phase dis-
tribution over the unit circle. When X and Y are strongly
phase synchronized, the relative phase occupies a portion of
the circle, and the PLV is close to 1. If the signals are not
synchronized, the relative phase spreads across the unit circle,
and the PLV remains low. When dealing with continuous
data rather than evoked responses, PLV is also referred to as
“Mean Phase Coherence” [42]. Nevertheless, PLV has certain
limitations. It is prone to volume conduction effects. The
volume conduction effect is the transmission of electric current
through the human tissue towards the sensors, and therefore a
single source may be seen by multiple electrodes, which can
result in spurious PLV values [43].

2) Phase Lag Index (PLI): Phase Lag Index (PLI) addresses
PLV’s limitations, explicitly eliminating the volume conduc-
tion effect [43]. It measures the asymmetry of phase difference
distributions between two signals [29]. PLI is defined as,

P L I = |sign(1φrel(t))| =

∣∣∣∣ 1
N

N∑
n=1

sign(1φrel(tn))

∣∣∣∣ (2)

where 1φrel(t) represents the relative phase difference at an
arbitrary time t. However, PLI discards a significant compo-
nent of genuine interactions in doing so. It discards phase
distributions centered around 0 and π to be robust against
the presence of common sources. Thus, mitigating the volume
conduction effect [41]. However, discontinuity in this measure
limits its sensitivity to noise and volume conduction since tiny
perturbations change phase lags into leads and vice versa. For
small-magnitude synchronization effects, this problem might
become problematic.

3) Directed Transfer Function (DTF): Directed Transfer
Function (DTF) measures the information flow between mul-
tivariate spectral components [31]. The DTF is defined in
the frequency domain being based on Granger Causality
and models the time series by Multivariate Auto-regressive
(MVAR) processes. In the MVAR model, only lagged effects
are modeled among the time series, while instantaneous effects
are forsaken [44]. An MVAR process of order p and dimension
M , i.e., x1(t), . . . , xM (t) is given by: x1(t)

...

xM (t)

 =

p∑
r=1

Ar

 x1(t − r)
...

xM (t − r)

 +

 ϵ1(t)
...

ϵM (t)

 (3)
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where Ar is a M × M coefficients matrix, and ϵ1(t), ϵ2(t), . . . ,
ϵM (t) are independent Gaussian white noises with covariance

matrix
∑

. Let X (t) =

 x1(t)
...

xM (t)

 and E(t) =

 ϵ1(t)
...

ϵM (t)

.

On transforming to frequency domain,

E( f ) = A( f ).X ( f ) (4)

X ( f ) = A−1( f ).E( f ) = H( f ).E( f ) (5)

where H( f ) is the system transfer matrix representing the
relationships between signals and their spectral characteristics.
Here, DTF is defined by:

DT F2( f ) =
|Hi j ( f )|2∑k

n=1 |Hin( f )|2
(6)

where Hi j ( f ) is an element of a transfer matrix H( f ) of the
MVAR model. DTF represents the causal influence of channel
j th on channel i th at frequency f . This connectivity measure
determines the directional impacts between any given pair of
channels in a multivariate data set.

4) Partial Directed Coherence (PDC): Partial Directed
Coherence (or PDC) provides a frequency-domain measure
based on Granger causality [32]. DC tells us whether and how
two structures under consideration are functionally connected.
DC emphasizes their relative structural links by breaking their
interactions into “feed-forward” and “feedback” components,
whereas ordinary coherence focuses on the structures them-
selves and the reciprocal synchronicity of their activity. PDC
was developed as a result, and it leads to structural informa-
tion while simultaneously modeling several time series. It is
based on modeling time series by multivariate autoregressive
(MVAR) and is used to reveal the direction of information
flow between different brain areas. Mathematically:

Puv( f ) =
Auv( f )√

a∗
v ( f )av( f )

(7)

where Auv( f ) is an element of A( f ), which is a Fourier
transform of the MVAR model coefficients A(t), av( f ) is
the vth column of A( f ), and the asterisk mark represents
the transpose and complex conjugate operations. PDC takes
values between [0, 1] because of the normalization criterion.
It displays direct channel flows, and unlike the DTF, it is
normalized to provide a ratio of outflows from channel vth

to channel uth to total outflows from the source channel vth ,
emphasizing sinks rather than sources. The observed flow
intensities are influenced by PDC normalization [45].

5) Synchronization Likelihood (SL): Synchronization like-
lihood (SL) [30] is a widely used metric for estimating
generalized synchronization in neurophysiological data, and
it is strongly connected to the idea of generalized mutual
information [46]. It focuses on identifying concurrent patterns
to provide a normalized approximation of the dynamical
inter-dependencies between multiple time series. As a result,
SL is a true multivariate system. Consider M time series
x1(t), . . . , xM (t). Embedded vectors X p,t1 are reconstructed
from each time series and represented in Eq. (8).

X p,t1 = (x p,t1 , x p,t1+l , x p,t1+2l , . . . , x p,t1+(d−1)l) (8)

Here, p varies from 1 to M (channel number), t1 varies
from 1 to N (discrete-time), l is the lag and d is the embed-
ding dimension. Eq. 9 presents a variable that represents the
probability of two embedded vectors being closer to each other
than a distance of ϵ.

Pϵ
p,t1 =

1
2(w2 − w1

)

N∑
t2=1

θ(ϵ − |X p,t1 − X p,t2 |)

here,w1 < |t1 − t2| < w2 (9)

Here, θ presents the heavy-side step function, which equals 1
for every positive input, else zero, w1 is a window used to
correct auto-correlation effects and should be the order of the
auto-correlation time or more, w2 is a window to sharpen the
time resolution of the synchronization measure. Now, for each
value of p and t1, ϵp,t1 the critical distance is determined for
which Pϵ

p,t1 = pre f ≪ 1. The number of channels Ht1,t2 for
each discrete time pair (t1, t2) within our considered window
(w1 < |t1 − t2| < w2) and where the embedded vectors X p,t1
and X p,t2 will be close together than this critical distance ϵp,t1
can be determined.

Ht1,t2 =

M∑
p=1

θ(ϵp,t1 − |X p,t1 − X p,t2 |) (10)

This value, which ranges from 0 to M , indicates how many of
the embedded signals “resemble” one another. Eq. 11 defines
a synchronization likelihood Sp,t1,t2 for each channel p and
each discrete time pair (t1, t2).

i f |X p,t1 − X p,t2 | < ϵp,t1 : Sp,t1,t2 =
Ht1,t2 − 1

M − 1
(11)

i f |X p,t1 − X p,t2 | ≥ ϵp,t1 : Sp,t1,t2 = 0 (12)

Synchronization likelihood Sp,t1 is the average of all t2,

Sp,t1 =
1

2(w2 − w1
)

N∑
t2=1

Sp,t1,t2,

where, w1 < |t1 − t2| < w2 (13)

Sp,t1 indicates how closely channel p is synchronised to
all other M − 1 channels at time t1. It takes on values
between pre f and 1, where pre f denotes that all M time
series are uncorrelated and 1 denotes that all M time series
are maximally synchronised.

6) Pearson’s Correlation Coefficient (COR): Pearson’s corre-
lation coefficient (COR) is used to detect linear dependencies.
It calculates the time-domain linear correlation between two
signals x(t) and y(t) at zero latency [33]. It is defined as:

ρx,y =
cov(x, y)

σxσy
(14)

where ρx,y is the correlation coefficient between signals x
and y, σ x, σ y are standard deviation of x and y respectively
and cov(x, y) is the co-variance. Also, −1 ≤ ρx,y ≤ 1, where
−1 represents complete linear inverse correlation, 0 represents
no linear dependence and 1 represents complete linear depen-
dence between the two signals.
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Fig. 4. Group differences as graphs for different connectivity measures
including PLV, PLI, DTF, PDC, SL and COR. Here rows represent
(a) Healthy patient and (b) SCZ Patient. Directions of information flow
are indicated using arrows.

E. Proposed Neural Network Architectures
In the present work, five different architectures of neural

networks are tested and analyzed (see Table I). A bunch of
parameters are involved in designing a neural network like
activation functions, loss functions, optimizers, and several
neurons. All these parameters are discussed in this section.

For the hidden layers, Rectified linear unit (ReLU) is applied
as the activation function. ReLU is amongst the simplest and
conventionally used of all activation functions. ReLU does
not saturate for large input values, unlike other conventional
activation functions, and returns zero as output if the input to it
is a negative or zero, but for all positive input values, it returns
the number itself [47]. This helps the model train quickly,
achieve high accuracy and overcome the vanishing gradient
problem, allowing the model to learn faster [48]. It can be
simply defined as, y = max(0, x), where, x and y are input and
output, respectively. For the output layer, we use Softmax as
the activation function due to its ability to convert a vector of
numbers to a vector of probabilities. It is configured to output
n values, where n is the number of classes, and also helps
normalize these values. Each value in the output is interpreted
as a probability; thus, the sum of all output values equals 1
[47], [49]. It can be defined as, σ(zi ) =

ez⃗i∑n
j=1 ez⃗i

, Here, z⃗ is the

input vector, and n is the number of classes in our classifier.
We use Binary cross-entropy as the loss function in our neural
network architectures. It can be mathematically defined as,
loss =

1
N

∑N
i=1 −((yi )·log(pi )+(1−yi )·log(1−pi )), where yi

is the actual output value and pi is the probability of output 1.
Adam is used as the optimizer due to its ability to achieve
results faster than other optimizers [50]. The final results are
obtained after averaging over 50 iterations of Monte Carlo
cross-validation along with stratification [51]. Architecture-1
contains 2 layers. The single hidden layer contains 2 neurons
with ReLU activation function, and the output layer has a
Softmax activation function. Similarly, Architecture-2, 3, and 4
contain a single hidden layer with 4, 16, and 32 neurons,
respectively. Architecture 5 consists of 2 hidden layers with
16 and 32 neurons, respectively.

F. Multimodal Late Fusion Technique
The brain is a complex organ, and to analyze brain networks

effectively, there is a need to look at it from various view-
points. The above-discussed connectivity measures can help
to do that, but it can be taken a step further, i.e., making use
of latent features derived from the fusion of all six connectivity
measures in a particular manner [27], [52]. In the present
work, a multimodal fusion technique known as “Late Fusion”

Fig. 5. Difference in average adjacency matrices of (a) PLV, (b) PLI,
(c) DTF, (d) PDC, (e) SL, (f) COR connectivity methods, shown in the
form of an adjacency matrix.

is performed. The structure of this fusion technique is shown
in Fig. 3. Here, independent neural networks are trained for
individual connectivity feature domains, and the prediction
probabilities from the softmax layer of all the domain-specific
neural networks are then combined to give a single final
prediction. The layer-wise overview of neural network model
architectures 1-5 is shown in Fig. 2. The main reason for
using the fusion technique was to effectively combine the
Phase Synchronization, Causality, and Correlation measures
and input the same as a multimodal input feature.

G. Evaluation Metrics
Confusion-matrix based evaluation was used to access the

performance of the proposed method [53]. In addition to the
confusion matrix-based evaluation metric, ROC curves were
also used to evaluate model performance [54]. The same has
been discussed in detail in the supplementary materials.

III. RESULTS AND DISCUSSION

Performance of the various neural network architectures in
classifying SCZ and non-SCZ samples using brain connectiv-
ity measures is evaluated. We used the SCZ EEG dataset [34],
open-sourced by the Institute of Psychiatry and Neurology in
Warsaw, Poland. The dataset consists of EEG signals from
14 healthy and 14 SCZ subjects. The resting-state EEG signals
were recorded with a sampling frequency of 250Hz from
19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4,
T4, T5, P3, Pz, P4, T6, O1, and O2). The adjacency matrices
and the connectivity graphs are calculated using HERMES
Toolbox [41] based on MATLAB. This toolbox specifically
studies the functionality and effectiveness of brain connectivity
and provides visualizations to analyze the group difference
between different classes. Neural network architectures were
trained using conventional sequential training. This includes
training epochs = 50, learning rate = 0.001 and Adam as
the optimizer. In place of dropout, early stopping was used
to avoid overfitting (with min_delta = 0 and patience = 10,
monitoring “val_accuracy”). Experiments were performed on
an Intel Core i5 (5th Gen) system with a 1.6 GHz processor
and 8GB DDR4 RAM running Linux (Ubuntu 20.04).

The EEG signals within the frequencies of the alpha band
(8-12.5 Hz) [37] are analyzed. A comparison is made among
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TABLE I
CLASSIFICATION PERFORMANCE COMPARISON OF DIFFERENT NEURAL

NETWORK ARCHITECTURES ON THE SIX CONNECTIVITY MEASURES

the six connectivity measures and the five neural network
architectures. The results are obtained after performing Monte
Carlo cross-validation along with stratification. stratification
was performed to ensure that in those random splits, the ratio
of healthy to SCZ remained consistent. Thus, all the metric
values are obtained by averaging over all 50 Monte Carlo
iterations. For each of the 50 iterations, the samples were
split randomly in a ratio of 70% training set, 15% validation
set, and 15% test set. During implementation, a constant
random seed generator was fixed in the study in the Jupyter
Notebook and all results were reported after 50-fold cross-
validation. Table I shows a comparison of the classification
performance of all five neural network architectures on the
six connectivity methods. It is possible to observe that in the
case of PLV, the average training accuracy for Architecture 1 is
at 80.32%, and it keeps increasing proportionally with a more
significant number of neurons and hidden layers used by the
other architectures. One crucial thing to observe here is that the
training accuracy increases significantly until Architecture 3
and then stagnates. A similar trend is observed for the other
evaluation metrics. It is a familiar fact that increasing the
number of neurons or the hidden layers in a neural network
can help extract more features from the input data, but it
happens only to a certain extent. There is always a limit
that is dependent on the size of our input features. Increasing
the number of neurons/layers above that limit can result in
over-fitting and thus reduce the classification accuracies. The
stagnation in accuracy above Architecture 3 indicates that we

TABLE II
CLASSIFICATION PERFORMANCE OF LATE FUSION

are very close to that limit corresponding to our dataset. The
results associated with the late fusion methodology are shown
in Table II. It is interesting to note that Architecture 5 gives
a slightly lower accuracy than Architecture 4. Here, it is very
likely that the same reasoning will follow.

The ROC curve diagram for Architectures 1-5 for all six
connectivity methods is shown in the supplementary material.
Each graph contains ROC curves for all 50 Monte Carlo
iterations. Here, the area under the curve (AUC) measures a
classifier’s ability to differentiate classes. A model with the
highest AUC best differentiates between positive and negative
classes. It is observed that the model improves over subsequent
iterations, and also, the high number of diagonal curves for
architecture 1, as compared to architectures 3 and 5, are
very apparent. That is, the AUC is lower for architecture
one than for architecture 3 and 5, which validates the trend
observed.

Group differences for each connectivity measure are shown
as graphs (see Fig. 4). Here, only the strongest connections
are illustrated. For PLV, the calculations were performed at
a threshold of 70, implying that only 30% of the strongest
connections were considered. Similarly, 84%, 60%, 70%,
80%, and 40% of the strongest linkages were considered for
PLI, DTF, PDC, SL, and COR, respectively. Increasing the
threshold by ten signifies that 10% of the weakest connections
were removed. Since the network is strongly linked, removing
even 90% of the weakest links does not fully alter the typical
connectivity pattern. Statistically significant differences were
observed between various groups. Among the different con-
nectivity methods, it is possible to observe that the best results
are associated with the models trained with the adjacency
matrices of DTF and PDC models. According to this, evidence
suggests that the causality connectivity methods can deliver
richer information that can be used to build classification
models compared to the phase synchronization connectivity
methods. In contrast to PLV and PLI, directionality measures
like DTF allowed for identifying the key drivers and directions
of information flow. There were more flows from the posterior
to the frontal brain areas in SCZ patients, which can also be
seen in Fig. 4. The increased number of flows corresponds
to a stronger PLV in frontal brain regions, also seen in the
obtained connectivity graphs. The EEG data collected under
resting-state settings with eyes open and closed has previously
revealed connections between PLV and DTF [55]. The strength
and area of synchronization also depend on the method used
to measure it. From Fig. 4, it is observed that in patients diag-
nosed with SCZ, frontal brain regions are more synchronized
as depicted by PLV and PLI shows us a weaker synchro-
nization in the posterior areas. Synchronization, quantified by
PLV, was observed to be high in SCZ patients in contrast to
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TABLE III
PERFORMANCE COMPARISON OF SCHIZO-NET WITH STATE-OF-THE-ART MODELS WHICH WERE TRAINED ON THE SAME DATASET

TABLE IV
PERFORMANCE COMPARISON OF SCHIZO-NET WITH OTHER STATE-OF-THE-ART TECHNIQUES IN SCZ LITERATURE

non-SCZ counterparts. Moreover, reduced information flows
in the frontal part of the brain but increased flows from the
occipital lobe to the frontal brain lobe were observed. The
differences in average adjacency matrices for subjects diag-
nosed with SCZ and the control set of non-SCZ individuals
are shown in Fig. 5. This provides insights into the degree to
which each connectivity method helps us distinguish between
the two classes. The differences in PLI and SL adjacency
matrices are very scarce, complying with their low classifi-
cation accuracy. These adjacency matrices are calculated for
the six connectivity measures. Tables III and IV shows the
performance comparison of Schizo-Net with state-of-the-art
techniques in the current SCZ literature.

IV. CONCLUSION AND FUTURE WORK

The study presents Schizo-Net, a novel method of utilizing
brain connectivity methods to diagnose schizophrenia from
Electroencephalogram (EEG) signals. The significance of this
approach for SCZ detection is demonstrated experimentally by
comparing six connectivity measures reflecting different brain
connectivity aspects, namely PLV, PDC, PLI, COR, DTF, and
SL. Each metric conveys information about the interactions

within and between brain areas in a distinct way. These
measurements reveal crucial characteristics such as correla-
tion, phase synchronization, and directional information flow
between different brain areas. They support the examination of
the neural mechanisms underlying disconnectivity disorders.
Here, shallow neural networks are showing decent accuracy.
The present study provides an efficient and reliable method
for diagnosing SCZ using the concept of brain connectivity.
We achieved state-of-the-art accuracy (of 99.84%) for dif-
ferent measures using deep neural networks. Monte Carlo
cross-validation along with stratification was performed to
validate the obtained results. The contribution of the present
study is that the classification based on connectivity features is
successful primarily due to the effective deep learning-based
processing of brain connectivity indices associated with SCZ.
The study has a few limitations. First, only alpha bands
have been considered while designing the diagnosis model.
Even though it has been established that alpha bands are
advantageous compared to other bands in differentiating SCZ
patients from control, it would be interesting to see how deep
learning models perform on other bands in future studies.
Second, all neural network models have been given equal
weightage in late fusion. What would be ideal is to give
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more weightage to the connectivity feature that performs
better classification. Future studies can focus on designing the
weighted distribution of late fusion prediction. Future studies
can also focus on expanding Schizo-Net with the notions
of explainability, deep-precognitive diagnosis [63], and other
disorders like myocardial infarction [73], [74].
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