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Detection of Brain Abnormalities in Parkinson’s
Rats by Combining Deep Learning
and Motion Tracking

Houchi Li*, Quan He, and Lei Wu

Abstract— Parkinson’s disease (PD) is a chronic neu-
rodegenerative disease that affects the central nervous
system. PD mainly affects the motor nervous system and
may cause cognitive and behavioral problems. One of the
best tools to investigate the pathogenesis of PD is animal
models, among which the 6-OHDA-treated rat is a widely
employed rodent model. In this research, three-dimensional
motion capture technology was employed to obtain real-
time three-dimensional coordinate information about sick
and healthy rats freely moving in an open field. This
research also proposes an end-to-end deep learning model
of CNN-BGRU to extract spatiotemporal information from
3D coordinate information and perform classification. The
experimental results show that the model proposed in this
research can effectively distinguish sick rats from healthy
rats with a classification accuracy of 98.73%, providing
a new and effective method for the clinical detection of
Parkinson’s syndrome.

Index Terms— Parkinson’s disease, 6-OHDA, CNN-BGRU,

3D coordinate.

ARKINSON’S syndrome is a relatively common clinical
Pneurodegenerative disease, that mostly occurs in middle-
aged and elderly people, and causes a range of symptoms,
including motor, sensory and speech impairments. These
symptoms have a series of negative effects on patients with
Parkinson’s disease (PD), and greatly affect their quality of
life. According to the National Institutes of Health (NIH),
there are approximately 4 to 6 million Parkinson’s patients
worldwide, and 40% to 60% of Parkinson’s patients suffer
from mental syndromes such as depression, autism, dementia,
delusions, and mania [1], [2]. There are many early symptoms
of Parkinson’s disease, such as handshaking, walking, and
other motor abnormalities or sensory abnormalities e.g.
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olfactory loss [3]. However, it is difficult for patients to
identify the early symptoms of PD, thus they often cannot
obtain timely treatment [4]. Since early treatment is more
effective and can slow down disease progression, it is
important to develop highly accurate and reliable health
information systems that are required to detect PD [5]. The
clinical diagnosis of Parkinson’s syndrome is mainly based
on magnetic resonance imaging (MRI) and olfactory tests
combined with dopamine transporter scans (DaTscans) [6].

Ideally, animal models can accurately simulate pathological,
histological, and biochemical changes and their resulting
functional disorders, providing important auxiliary tools for
analysing the pathogenesis and treatment principles of human
diseases [7]. The most commonly employed Parkinson’s
disease model is the rat model of 6-hydroxydopamine (6-
OHDA) injury. The rat model of medial forebrain tract (MFB)
injury was established by unilateral injection of 6-OHDA.
Then apomorphine was injected, and successfully modelled
rats were selected as experimental subjects by rotation test [8].
The introduction of 6-OHDA caused damage to dopaminergic
neurons of the nigrostriatal pathway in the rat brain and
reduced dopamine secretion, resulting in motor and nonmotor
deficits. Researchers have developed a variety of methods for
the behavioural assessment of Parkinson’s disease rats, such
as the cylinder test, gait adjustment test, olfactory asymmetry
test, and forced swim test [9], [10], [11].

In traditional animal experiments, animal behaviour data
are mainly collected by visual observation and manual
recording, which have a great influence on subjectivity, heavy
workload, and tediousness, and are prone to errors during
the observation process [12]. Later, with the development of
modern electronic technology and computer science, collection
of behavioural data of animals gradually joined the ranks of
automation or semiautomation. In particular, machine vision
technology research on animal behaviour acquisition has
rapidly developed in recent years [13], [14]. However, with or
without the use of automated collection of animal behaviour
data, these methods pay minimal attention to atypical
behaviour. Since animals exhibit behaviours with complex
spatiotemporal patterns, researchers usually need to increase
the sampling size to ensure robust results. However this step
is not achievable when making diagnostics. In this research,
’an optical motion tracking system was used to collect rat
behaviours in an open field. Several retroreflective markers

For more information, see https://creativecommons.org/licenses/by/4.0/
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were mounted on the head and bodies of rats so that the
high-resolution infrared cameras could obtain stable signals
and accurately resolve their spatial coordinates [15], [16].
Compared with traditional 2D image analysis [17], 3D
coordinates can effectively reduce the unavoidable information
loss in the process of projecting a 3D real-world scene into
a 2D image. Moreover, the motion tracking system provides
coordinates of markers with a submillimeter spatial resolution
at a frame rate of 240 per second. We expect this fine
coordinate variation to reveal objective status by characterizing
the quality of behaviours [18].

However, the high-resolution kinetics data of markers
require effective data mining algorithms or techniques.
Machine learning techniques have long demonstrated strong
analytical capabilities for behavioural data processing. For
example, a support vector machine (SVM) is usually
employed for animal behaviour classification, and a behaviour
classification model is constructed by extracting various
features during animal movement [19]. The hidden Markov
chain model (HMM) can predict and judge the transition
between animal behaviour modules and behaviour modules,
and construct a reasonable behaviour sequence [20]. As an
important branch of machine learning, deep learning greatly
simplifies the overall algorithm analysis and learning process
of traditional machine learning, and can automatically extract
hidden features in datasets. Deep learning has been widely
employed in animal behavior recognition. Stern et al. [21]
utilized a convolutional neural network to detect whether
Drosophila is in contact with the egg-laying substrate frame
by frame, and the error rate of the result was only 0.072%.
Arac et al. [22] used a CNN model composed of GoogLeNet
followed by a long-short-term memory neural network to
monitor the grasping of food particles by mouse paws.
In addition to video images, deep learning can also be applied
to other types of data, such as the introduction of three-
dimensional marker coordinates [23], which can automatically
learn the hidden laws of coordinate points and identify and
classify them.

In this work, we propose a deep learning framework
of CNN-BGRU to extract and classify the obtained 3D
coordinate information spatiotemporal features. On this
dataset, the classification accuracy of our proposed deep
learning framework for Parkinson’s disease is 98.73%,
demonstrating the sufficiency of information required for
diagnosing from high-resolution motion data. This method can
be used to develop an effective diagnostic method without
rotation tests on Parkinson’s models and provides a new
effective strategy for the transition from animal experimental
research of Parkinson’s disease to human clinical trials and
treatments.

Il. MATERIALS AND METHODS

A. Parkinson’s Rat Model Construction and Data
Collection

6-OHDA is a chemical agent similar to norepinephrine,
which has strong neurotoxicity. Local injection into the rat
brain can damage the dopaminergic neurons in the substantia

TABLE |
ROTARY TEST RESULTS
NO.| 5min| 10mid 15min 20minH 25min 30min avg r/min
R1 43 84 128 176 229 277 9.2
R2 40 85 135 185 234 284 9.5
R3 44 91 139 194 232 285 9.5
R4 58 111 161 212 265 316 10.5
RS 50 113 180 242 308 365 12.2
R6 39 112 178 248 306 370 12.3

nigra striatum pathway in the rat brain and reduce the
secretion of dopamine, resulting in motor and nonmotor
defects. Therefore, in clinical research on Parkinson’s disease,
the animal model of Parkinson’s disease that contributes the
most is undoubtedly the unilateral MFB-injected 6-OHDA-
injured rat [9]. Therefore, in this research, 12 adult male
Sprague-Dawley rats (starting body weight of 250-300g) were
divided into two groups: 6 rats with medial forebrain bundle
(MFB) injury were selected as the experimental group and
6 normal rats were used as the control group. 6-OHDA
was injected under the medial forebrain bundle (MFB)
of rats in the experimental group to simulate Parkinson’s
disease.

After the injection of 6-OHDA into the lateral brain of
rats, the dopamine secretion of both sides of the brain is
inconsistent, and the stimulation of apomorphine, a dopamine
receptor agonist, will cause hypersensitivity of the right
brain receptor, resulting in asymmetric behaviour. All rats
underwent a rotation test performed 25 days after surgery.
After injection of 1.25 mg/kg apomorphine, each rat was
placed in a freely movable behavioural chamber. At least
40 minutes after injection, the contralateral rotation was
counted for 10 minutes. When the rotation speed exceeded
7 t/min, the modelling was considered successful. The
results for the rotation of the selected rats are shown
in Table IV.

The daily behaviour of these six rats was not significantly
different from that of normal rats, but all of them rotated to
the damaged side after injection of apomorphine. In particular,
the rats numbered R6 showed the phenomenon of standing
instability and dumping during rotation, and the actual number
of rotations may be greater than the observed times. In this
experiment, the rats in the control group were selected as a
reference, and no rotation was observed in this group after
injection of apomorphine.

The behavioural data were collected using the OptiTrack
optical capture device, which consists of 13 cameras. We set
up reflective markers on the head and torso to provide
sufficient information for identifying asymmetric movements.
The sampling frequency of streaming data collection was
120HZ, to ensure the stability and accuracy of the data, there
were enough samples, and each rat was recorded for at least
one hour. In addition, the brain-injured rat group was recorded
at different stages. To ensure that the rats were not disturbed as
much as possible, all experiments were conducted in a constant
temperature, quiet and dark environment [23]. Each state of the
rat corresponds to 6 reflective markers, each light marker has
three-dimensional spatial coordinates, and the dataset contains
a total of 1.46 million coordinate points. Figure 1(a) and
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Figl.a. Movement trajectories of succes

Fig. 1. Figure 1.a and Figure 1.b show the movement trajectories of PD
rats and the movement trajectories of normal rats.

Figure 1(b) show the movement trajectories of PD rats and
normal rats, respectively.

All animals were kept in a pathogen-free environment
and fed ad libitum, the diameter of the site is 2m. The
procedures for the care and use of animals were approved by
the Ethics Committee of the Hunan Drug Safety Evaluation
and Research Center and all applicable institutional and
governmental regulations concerning the ethical use of animals
were followed.

B. Data Preprocessing

Considering that there are broken frames in the original
data record, to ensure continuity within the sample as much as
possible, this research will exclude sample data with excessive
discontinuity, which generally does not exceed 1.5 times the
total length of the sample. Before training our CNN-BGRU
model, we needed to refine the input data as the neural
network is sensitive to different data. Therefore, in this work,
we remove outliers from the input data and then standardize
this data. Standardization can ensure that the data of each
dimension conforms to the normal distribution, that is, the
standard deviation is 1 and the mean is 0. The standardization
equation is expressed as follows:

X=X -wo ()

where p is the mean value of all sample data, and o is the
standard deviation of all sample data.

C. Deep Learning Network Structure

This research developed a two-step diagnostic framework
for Parkinson’s disease. The first step is to preprocess the input
data to remove outliers and normalize the input dataset with
standard deviation to fit a standard normal distribution and then

kernel

n ]

Input

Convolutional Laver

Fig. 2. Typical convolution operation on time series data.

feed the processed input data into the training phase. Inspired
by the network structure of CNN-LSTM [24],this research
developed a hybrid model combining the CNN-BGRU model
and achieved better results.

1) Convolutional Neural Networks: A time series has a
strong one-dimensional structure: variables that are close
to each other are highly correlated in space or time. The
advantage of local correlation is that feature extraction
and local combination are performed before identifying
spatial and temporal objects. Therefore, it is particularly
important to extract local features from the constructed local
regions [25]. As one of the most famous deep learning
models, the convolutional neural network extracts rich local
features by using various filters in convolutional layers,
pooling layers, normalization layers, and fully-connected
layers, thereby improving various performances of the task.
A one-dimensional convolutional neural network extracts
effective and representative features from time series data by
using multiple filters to perform one-dimensional convolution
operations. The details of a typical convolution operation on
time series data are shown in Figure 2. The convolution layer
convolves with the input signal through a convolution kernel
to generate the feature map of the next layer. where n and
v represent the length of the time series and the number of
features, respectively.

2) BGRU: However, the features extracted by a CNN are
short-term and local. Although a CNN can sufficiently extract
spatial features, it does not consider the temporal correlation
between data, and the experimental data that we analyse are
long-term time series data. Therefore, to accurately identify the
symptoms of Parkinson’s disease, it is necessary to consider
the time background of the data. A recurrent neural network
(RNN) [26] is a traditional deep learning method specialized
in processing time series data. However, RNNs can handle
certain short-term dependencies, but cannot handle long-term
dependencies. Therefore, when the time series is long, the
gradient at the back of the sequence has difficult propagating
back to the previous sequence, which leads to the problem of
gradient disappearance. To solve the problem of RNN gradient
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Fig. 8. Figure 3 (a) and (b) show the network structures of GRU and

BGRU respectively.

disappearance, Hochreiter and Schmidhuber [27] proposed a
long short-term memory (LSTM) recurrent neural network,
which combines short-term memory and long-term memory
by gating, overcoming the shortcomings of traditional RNNs.
Cho, Kyunghyun, et al. [28] proposed a variant GRU that
works well based on LSTM networks. The internal unit
of GRU is similar to the internal unit of LSTM, with the
exception that a GRU combines the input gate and forget gate
in LSTM into a single update gate. The structure of a GRU
is shown in Figure 3.a.
The detailed calculation formula is as follows:

2 =0 (W.lh@ — 1), x;]) (2)
re =0 (We.lh@ — 1), x:]) (3)
hi =tanh(W.[r; x hit — 1), x;]) @
hiy =0 =z )xht —1)+2z % hy 5)

where X, h, z, and r are the input vector, output vector,
update gate state, and reset gate state, respectively. The update
gate is responsible for controlling the influence of the state
information h;_; of the previous moment on the state of
the current moment, and the reset gate is responsible for
controlling the degree of disregarding the state information
h;—1 of previous moment. Wz, Wg, and W represent the
weight matrix corresponding to the target state, h; is the
hidden layer, the output of the hidden unit includes the update
part and previous part, tanh represents the tangent hyperbolic
function, and o represents the sigmoid activation function.

GRU can not only overcome the vanishing gradient problem
existing in a traditional RNN, but also has a relatively simple
structure, lower complexity, and faster convergence speed
compared with the LSTM network. The model structure of the
bidirectional GRU [29] is similar to that of the GRU model.
A recurrent neural network composed of two independent
GRU networks, the model utilizes both past information and
future information. In this paper, we use the bidirectional GRU
model. The structural principle is shown in Figure 3.b, and
its network consists of two subnetworks: forwards state and
backwards state, which represent forwards transmission and
backwards transmission, respectively.

D. CNN+BGRU

The CNN-BGRU-based hybrid model proposed in this paper
includes the CNN and BGRU. The CNN is employed for
feature extraction, and the BGRU is utilized to process data
with a time series. This paper divides the hybrid model
into five parts: input layer, convolutional layer, pooling layer,
BGRU layer, fully connected layer, and sigmoid output layer.
To prevent overfitting, we add a dropout layer between each
fully connected layer to improve the generalization ability of
the model. The flow chart of the model procedure proposed in
this study is shown in Figure 4. First, the data normalized by
the standard deviation are input into the first convolution layer
to propose abstract features. The designed 1DCNN consists
of three convolution layers, and the number of convolution
kernels is 64, 48 and 32. The kernel_size of each convolution
kernel is 3, and the stride of the convolution kernel is 1. The
activation function is a rectified linear unit (ReLU), which adds
nonlinear factors to the network, strengthens the representation
ability of the network, and solves problems that cannot be
solved by linear models. The convolution layer operation of
the ith filter is defined as follows:

K
=00 W x4 b (6)
i=0

where xi. represents the characteristic vector corresponding to
the jth convolution kernel of the Ith layer, Wl.l’ j is the weight
of the ﬁlter,bl. is the bias of the filter, k; is the receptive field
of the current neuron, and @ is the ReLU activation function.

The convolved and activated output is dimensionally
reduced by a maximum pooling layer with a pooling window
size of 2. The pooling layer models the obtained feature
map and converts it to a more abstract feature form. Then
two convolution layers are used to further extract higher-level
features. Next, the features extracted by the convolutional
neural network are mapped to a fully connected layer with
256 neurons, and the dropout layer can be set to prevent
overfitting. The fully connected layer maps the extracted
distributed feature representation to the sample label space
as the input of the BGRU network. Two BGRU layers are
employed to model temporal features, and the number of
neurons is 64 and 32. After the features are extracted by
the BGRU network, the output signal is sent to two fully
connected layers, the number of units is 256 and 64, and the
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Fig. 4. Flow chart of the experimental procedure.

dropout layer is added after the first fully connected layer.
Next, the signal is classified by the sigmoid activation function.
The gradient descent algorithm uses Adam, the learning rate
is 0.01, the batch_size is 200, and each training is 50 epochs.

E. Experimental Environment

This experiment uses an Intel i5-9400 6-core 6-thread
processor, 16 GB memory, winlO operating system, ana-
conda3 as the experimental platform, and Python language
programming. The deep learning framework used Keras in
TensorFlow 2.0 and completed four hours of training using
an NVIDIA 1080 GPU.

Ill. EXPERIMENTS AND RESULTS

A. Model Evaluation Metrics

The performance measures applied in this paper are the
Fl-score, recall, precision, accuracy, and confusion matrix.
Accuracy is the ratio of correctly classified samples to the total
number of samples. When activities are correctly classified,
they can be classified as true positives (TPs) and true negatives
(TNs), and when they are misclassified, they can be classified
as false negatives (FNs) and false positives (FPs). Performance
measures can be defined in terms of TP, TN, FP, and FN.

TP+TN
TP+FP+TN+FN
Precision is the ratio of correctly predicted positives to the
total number of samples classified as positives.
TP
TP+ FP
Recall is the ratio of correctly predicted positive samples to
the actual number of positive samples.
TP

TP+ FN
The Fl-score is the harmonic mean of recall and precision,
which is generally used when the dataset is unbalanced.

)

Accuracy =

®)

Precision =

Recall = &)

2(Precision x Recall)
(Precision + Recall)

F1 —score = (10)

The root mean square error (RMSE) measures the deviation
between the observed value and the true value.

RMSE(X,h) = |1/m > (h(xj)—y)> (1)

i=1

B. Analysis of Experimental Results

Experiments were conducted using a locally obtained
3D coordinate dataset, and throughout the experiments,
we selected 60% of the data as the training set, 20% of
the data as the validation set and 20% of the data as the
test set with a constant random seed for reproducing the
results. We use the Adam optimizer to alleviate the gradient
oscillation problem. We select the hyperparameters of the
model on the validation set, and evaluate the effect of our
model through the test set. Training and validation accuracy
and loss curves for our model method, considering an increase
in epochs, are demonstrated in Figure 5. The figure shows
that the accuracy and loss curves quickly converge, and the
training accuracy and validation accuracy achieve a good fit,
which proves that the model proposed in this paper has good
robustness in this dataset. To verify the advantages of our
proposed model, we compare the proposed model with the
deep learning models in [27], [28], [29], [30], [31], [32],
and [33] according to the model evaluation metrics, and both
use our dataset for training. The comparison results are shown
in Table IV. It can be seen that the accuracy, precision, recall,
and F1 scores of our proposed model are 98.73%, 98.45%,
98.33%, and 98.40%, respectively. The performance of the
model proposed in this paper is similar to that of CNN-Bi-
LSTM and significantly outperforms other models. GRU and
LSTM have similar accuracies. GRU simplifies the model
structure while maintaining the computational effect of LSTM,
thereby reducing the amount of computation. Thus GRU has
a shorter running time and higher efficiency. A comparision
of the experimental results based on the GRU model and
BGRU model, reveal that the accuracy rate of the BGRU is
higher than that of the GRU, mainly as the BGRU obtains the
state information before and after the input sequence, which
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TABLE I
PERFORMANCE OF DEEP LEARNING MODELS IN
BINARY CLASSIFICATION TASKS
Methods Accuracy | Precision | Recall F1-score
LSTM [27] 93.51% 93.01% 90.23% 82.91%
GRU [28] 94.78% 94.18% 92.39% 88.25%
BGRU [29] 95.85% 95.37% 94.17% 94.74%
BP [30] 94.52% 93.68% 92.24% 89.32%
CNN [31] 95.77% 95.15% 94.00% 94.42%
CNN+BLSTM [32] 98.93% 98.72% 98.55% 98.65%
CNN+GRU [33] 96.61% 95.45% 95.43% 95.14%
Our model 98.73% 98.45% 98.33% 98.40%
TABLE IlI

PERFORMANCE COMPARISON BETWEEN THE MACHINE LEARNING
MODEL AND THE MODEL IN THIS STUDY FOR
BINARY CLASSIFICATION TASKS

Methods Accuracy RMSE
Catboost [34] 61.23% 0.622
GaussianNB [35] 96.70% 0.181
Xgboost [36] 89.64% 0.322
RF [37] 73.02% 0.519
KNN [38] 95.18% 0.211
AdaBoostClassifier [39] 74.84% 0.500
Our model 98.73% 0.109
TABLE IV

10-FoLD CROSS-VALIDATION RESULT

NO. | Accuracy Loss

1 98.70% 0.0336
2 98.58% 0.0363
3 98.60% 0.0358
4 98.81% 0.0310
5 98.55% 0.0371
6 98.46% 0.0394
7 98.66% 0.0340
8 98.89% 0.0285
9 98.65% 0.0346
10 98.74% 0.0323
AVG | 98.66% 0.0343

can more accurately extract coordinate information. Thus the
calculation results of the bidirectional neural unit model have
higher accuracy.

To obtain the optimal model, we also tested the
machine learning model in [34], [35], [36], [37], [38],
and [39] on this dataset. The classification accuracies
of Catboost, GaussianNB, Xgboost, random forest(RF),

K-nearest neighbour(KNN), and AdaBoostClassifier were
96.70%, 61.23%, 89.64%, 73.02%, 95.18% and 75.84%,
respectively. We also compared the root mean square error
(RMSE). The comparison results are shown in Table IV.
Compared with the traditional machine learning method, the
model proposed in this paper has higher accuracy, smaller
deviation and has higher robustness on this dataset. Moreover,
deep learning technology can automatically perform feature
extraction on the original dataset, so it does not rely on
artificial design features, which improves efficiency while
saving manpower.

To prevent the model from overfitting, we adopt 10-fold
cross-validation. The cross-validation results are shown in
Table IV. We randomly divide the dataset into 10 mutually
exclusive subsets of the same size, and each time, we randomly
select 9 copies as the training set and the remaining copies as
the test set. All data will participate in training and prediction
to effectively avoid overfitting. Our model has high accuracy
for each subset, which fully proves the stability of our model.

[V. CONCLUSION AND OUTLOOK

This paper proposes a deep learning framework that inte-
grates CNN and BGRU networks for the automatic extraction
and classification of behavioural coordinate information for
Parkinson’s disease. We exploit the robustness of the CNN
for feature extraction and the strength of the BGRU for the
classification of time series data. The network model of the
CNN combined with the BGRU has a deep depth in both time
and space, and the model can automatically perform feature
extraction on the original dataset, so it does not rely on manual
design features and saves manpower. The main contribution of
this research is to use high-precision quantitative methods to
characterize the rat model, via accurate data mining behaviour
of the underlying information, bypassing the interference of
macro behaviour, combined with deep learning technology to
identify rat abnormalities. At the same time, in order to prevent
overfitting phenomena, we also added 10-fold cross-validation.
Different from traditional video capture of animal behaviour,
our experiment captures the three-dimensional coordinate
information of rats based on optical marker capture devices,
avoiding the loss of information in the process of converting
video to 2D images, and the coordinate information captured
by optical markers is more precise. Our research provides
a new and effective method for the transition from animal
experimental research on Parkinson’s disease to human clinical
trials and treatments. Our future goal is to apply this method
to clinical trials and provide a new paradigm for the clinical
diagnosis of Parkinson’s disease.
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