
954 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Non-Intrusive Real Time Eye Tracking Using
Facial Alignment for Assistive Technologies

C. Leblond-Menard and S. Achiche

Abstract— Most affordable eye tracking systems use
either intrusive setup such as head-mounted cameras or
use fixed cameras with infrared corneal reflections via
illuminators. In the case of assistive technologies, using
intrusive eye tracking systems can be a burden to wear
for extended periods of time and infrared based solutions
generally do not work in all environments, especially out-
side or inside if the sunlight reaches the space. Therefore,
we propose an eye-tracking solution using state-of-the-
art convolutional neural network face alignment algorithms
that is both accurate and lightweight for assistive tasks
such as selecting an object for use with assistive robotics
arms. This solution uses a simple webcam for gaze and
face position and pose estimation. We achieve a much
faster computation time than the current state-of-the-art
while maintaining comparable accuracy. This paves the
way for accurate appearance-based gaze estimation even
on mobile devices, giving an average error of around 4.5◦

on the MPIIGaze dataset (Zhang et al., 2019) and state-of-
the-art average errors of 3.9◦ and 3.3◦ on the UTMultiview
(Sugano et al., 2014) and GazeCapture (Krafka et al., 2016;
Park et al., 2019) datasets respectively, while achieving a
decrease in computation time of up to 91%.

Index Terms— Gaze estimation, human computer inter-
action, assistive technology, neural networks.

I. INTRODUCTION

ASSISTIVE robotic arms (ARA) are known to be greatly
beneficial to people with upper-limb disabilities [5],

[6], [7], [8], and [9]. Therefore, great efforts are put
into the human-computer interfaces (HCI) to control these
robots. Indeed, most commercially available ARAs come with
joystick-based control devices, but those require significant
amount of time to learn how to be used and to accomplish
simple tasks, even for typically developed users [10]. Even
though control filters have been implemented to help reduce
movements caused by involuntary jerks from the user [5],
the joystick based HCIs are generally much more frustrating
to use than more automated HCI, depending on the user’s
impairment [6]. In some cases, potential users might have
specific disabilities which make the use of a joystick via their
hands impossible. As pointed by [11], the limits of the control

Manuscript received 1 June 2022; revised 17 October
2022 and 15 November 2022; accepted 2 January 2023. Date of
publication 17 January 2023; date of current version 3 February 2023.
(Corresponding author: C. Leblond-Menard.)

The authors are with the Department of Mechanical Engineering,
Polytechnique Montreal, Montreal, QC H3T 1J4, Canada (e-mail:
cedric.leblond-menard@polymtl.ca; sofiane.achiche@polymtl.ca).

Digital Object Identifier 10.1109/TNSRE.2023.3236886

interfaces currently available for commercial ARAs creates a
situation where the people that should benefit the most of the
ARAs are unable to control them due to their severe motor
disability. Thus, the research work presented in [6] reports
that a vision-based interface with autonomous path planning
would lead to a significant improvement in user workload in
grasping and pick-and-place tasks. Indeed, the user gaze in
grasping tasks has been proven to be a large part of predicting
intent and point of contact [12].

As such, current trends include using a camera, either
grayscale/color or combined with a depth sensor, to detect
objects on the scene presented in front of the user and a
HCI to make decisions on what and how to manipulate these
objects [13], [14], [15], [16], [17], [18]. Recent work has
promoted the use of eye tracking as a HCI as demonstrated
by [12], [14], [19], [20], [21], [22], [23], [24], [25], [26],
and [27], albeit with significant limitations that will be further
discussed in the next section.

A. Eye Tracking for Assistive Robotic Arms Control
Several extensive literature reviews are available that

describe some of the current and previous state-of-the-art
methods of eye tracking and gaze estimation, with a recent
example being [28]. An even newer literature review has
recently been published with comparative results in terms of
angular gaze accuracy for deep learning based methods [29].
An overview of all the available methods is out of the scope
of this paper.

One of the most popular and commercially available eye
tracking techniques relies on using infrared (IR) corneal
reflection aptly named Pupil Center Corneal Reflection
method (PCCR). This method relies on an IR illuminator
producing a distinctive reflection on the user eye’s cornea
for which the position can be compared with the more easily
identifiable iris center (because it usually appears as a deep
black circle). While this method produces accurate results [28],
its reliance on IR reflection makes it particularly prone to error
when exposed to sunlight, as [14] experienced. Otherwise,
other accurate methods rely on the user wearing a head-
mounted eye tracker or other intrusive systems when used in
controlling ARAs.

Other methods have been recently proposed that make use
of a single monocular camera to estimate the gaze direction
[4], [30], [31], [32], [33], but those are, in our experience,
either imprecise or ill-suited for embedded systems due to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1570-0977
https://orcid.org/0000-0002-7730-0701

LEBLOND-MENARD AND ACHICHE: NON-INTRUSIVE REAL TIME EYE TRACKING USING FACIAL ALIGNMENT 955

their computing performance requirements, especially in the
case where no person-specific calibration frames are used.

Therefore, in this paper a novel non-intrusive real-time gaze
estimation technique for use with ARAs that work reliably
both indoors and outdoors while requiring as low a power
as necessary when running on embedded systems without
requiring person-specific calibration. The performance of the
developed method is then compared to openly available state-
of-the-art algorithms.

B. Objectives
Given the context of using ARAs, we therefore have the

following research objective:
Develop an open-source real-time gaze estimation
model which can run on mobile and embedded
devices in both indoor and outdoor environment
using a single camera and without person-specific
calibration.

Indeed, if this objective is completed, the resulting model
could be used in systems such as [13] and [14] to provide a
more versatile solution at a low cost.

C. Contributions
The contributions of this paper are as follows:
• We demonstrate that using state-of-the-art real-time face

detection and iris alignment convolutional neural network
(CNN) based algorithms, a gaze estimation system can
provide an increased accuracy in estimating the gaze
angles comparable to the current state-of-the-art while
requiring no person-specific calibration and having a low
performance requirement such as running in real-time on
mobile devices.

• We bring forth a new framework of eye tracking tailored
for robotics controlled that works reliably both indoors
and outdoors while providing real-time performance, over
20 frames per second even on a single CPU core, and
without being intrusive to the user. This model also
outputs facial landmarks useful for assistive tasks as well.

II. RELATED WORK

As introduced earlier, several methods that make use of a
single camera aimed at the user’s face have been recently
described in the literature. As a comparison basis, we take
particular interest in gaze estimation datasets that include full
images of the user’s face, as this allows for a more realistic
scenario in the context of assistive devices as the face position
must be located with respect to the camera to give an accurate
estimation of the gaze angles.

One of the most widely used datasets for gaze estimation
proposing full facial images is MPIIFaceGaze [34]. MPI-
IFaceGaze is a modified subset of the widely used MPIIGaze
dataset [35] that includes complete faces instead of the eye
region only found in the original dataset. It consists of
37,667 images and their corresponding gaze data taken across
15 participants. A recent paper described a new dataset called
RT-GENE [31], but this dataset corresponds to scenarios where
the user is not the main object of the picture and thus the faces
are generally far from the camera. As this does not represent

a typical scenario for gaze estimation control of ARAs, this
dataset was not used in the context of this paper.

On the MPIIGaze dataset, the currently most accurate
method available in the literature is called FAZE [4] and
uses a combination of deep learning models to estimate
the gaze direction and head pose of the user. This method
implements a metalearned model to generate the weights of a
gaze estimation network from only a few calibration frames
(32 and less). As reported by the authors [4], the accuracy
when using no calibration frames is 5.23◦. The authors note
that a real-time demo is available while providing no further
description of computational performance.

Furthermore, the authors of the RT-GENE dataset proposed
a gaze estimation model based on first extracting the
facial landmarks using Multi-Task Cascaded Convolutional
Networks [36] then correcting for the face image for the
pose perspective against averaged face pose landmarks. The
corrected eye patches are then extracted from the image and
fed to VGG-16 networks, in an ensemble or not [37], one for
each eye patch, to estimate the gaze direction. The reported
gaze estimation error is 4.3◦ on MPIIGaze using an ensemble
of 4 models.

Most other recent deep learning-based methods have
achieved an angular accuracy ranging from 4.1◦ to 7.3◦,
as described in [29].

In 2019, a gaze estimation dataset named GazeCapture
generated from phone and tablet gaze estimation trials was
used [3] for angular gaze estimation [4]. While the main use
of the dataset is to train gaze estimation models for estimating
a gaze point on a mobile device’s screen, thus the accuracy
values generally given are in pixels, it is possible to use the
dataset for gaze angles estimation by converting the pixel
points to 3D points and then gaze angles, as is done in [4].

Moreover, another dataset that is widely used for gaze
estimation tasks is the UTMultiview dataset [2]. This dataset
offers a larger variety of head poses and gaze directions by
using synthesized images from reconstructed faces using an
array of cameras.

III. METHODOLOGY

A. Workflow and Implementation Details
The overall workflow proposed here can be separated in four

distinct sections, which will be described here. These sections
are:

1) Face detection
2) Head pose correction
3) Eye patch extraction
4) Iris detection and gaze estimation
As such, the input of the workflow is an image containing

the face of the user. This image should be a color image and
contains enough details to distinguish the iris from the sclera
and eye contour. The output is composed of the gaze angles,
pitch for the up-down eye motion and yaw for the left-right
motion, and the gaze origin is the center point between the
eyes. To ensure the accessbility of this gaze estimation method,
we ensure that no step requires person-specific calibration,
rather relying on existing large dataset on which to train on
once prior to using this model.

956 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 1. Our workflow is mostly sequential, with the head pose being
used to normalize the eye patch images and correct the estimated gaze.

Initially, a face detection algorithm is run on the image to
detect the most prominent face in it. From that detection,
we then must extract the location of the eyes, which is
generally done through facial landmark extraction (generally
named facial alignment). Given the position of the eyes,
we can then extract a pair of image patches of each eye. These
image patches are then used as the input of the gaze estimation
algorithm, which outputs the gaze angles (direction). Since the
position of the user’s head should be known to infer the gaze
point of gaze from the gaze direction, the facial landmarks can
be used to compute the origin of the gaze vector.

Moreover, to reduce the influence of the head pose on
the variability of the input images, we removed the roll
component of the head pose and used the roll-removed head
pose yaw and pitch angles as input to our model. Indeed,
the world coordinates gaze direction −→g is a function of the
head pose matrix H and the eye gaze direction with respect to
the face −→ge :

−→g = H −→ge

Note that the vectors and matrices given here are in
homogeneous coordinates. Since −→g and −→ge are directions, the
last component of the homogeneous vectors is 0. The method
of obtaining the head pose H and applying the perspective
transform will be discussed in Section III-A.2.

1) Face Detection: In general, the approximate face location
must be known beforehand to crop the image around the
face center and perform the facial feature alignment and iris
detection. Once a general location of the face is known, it is
possible to skip the face detection step and use the general
region of the previously detected face to perform the facial

alignment step, especially if a confidence score is available
from the alignment step which is true in our case. This
thus saves time in processing a frame in a continuous video
stream. A simple static threshold can be used such that if the
confidence score falls below a fixed value, the face detection
step is run again. For every face alignment step, we compute
the center position of the face and check how far it moved
from the last frame, and then re-centering the face-cropped
image by moving the center by how far the face alignment
center moved.

It should be noted that in the comparative results of this
paper, this strategy is not used, since the datasets used for
comparision are not videos, but rather distinct images and as
such this strategy cannot work.

One of the first successful real-time face tracking algorithm
was described by Viola and Jones using Haar-like cas-
cades [38] and is still used. More precise and stable real-time
algorithms have been proposed afterward, including histogram
of oriented gradients (HOG) with support vector machines
(SVM) and linear binary pattern (LBP) cascades, with HOG
being generally the most accurate of these methods [39].
Recently, breakthroughs in small optimized CNNs led to
very accurate face detection yet real-time performance on
embedded computers and portable devices. One such state-
of-the-art model, named BlazeFace, was developed and
trained by Google Research with very high precision and
fast inference time on mobile devices [40]. Based on
MobileNetV1/V2 [41], [42], the architecture implements
further optimization including increasing the receptive field
size by using 5 × 5 kernels over 3 × 3 which are cheaper than
adding layers with more computationally expensive pointwise
convolutions.

Whereas our initial work was based on a modified HOG
algorithm [43] parallelized and ported to CUDA, the recently
release BlazeFace algorithm performs about as fast in our
experience while providing increased accuracy comparable to
state-of-the-art real-time models according to [40]. This is
thus the chosen algorithm for our workflow. Furthermore, this
algorithm outputs the location of 6 facial landmarks (the two
eye centers, the two ear centers, the nose center, and the mouth
center) which we can use to compute and correct for the head
roll by assuming the left and right landmarks should be on a
horizontal line.

2) Head Pose Correction: As stated previously, we can
correct for the head pose by using the detected facial
landmarks and applying a perspective transform to the eye
image patches as a form of normalization, as was suggested
in [1]. This allows the network to train on estimating the gaze
direction without having to directly account for the head pose
variation in the image. The pose normalization technique we
used is based on the one described in [31].

As such, this requires several facial landmark points to
be known on which to find the optimal series of rotation to
align the actual head pose with a reference (sometimes called
“canonical”) head pose.

An effective real-time method of facial alignment recently
published is called FaceMesh [44] and is part of the same
augmented reality framework as BlazeFace developed by
Google. It uses a straightforward residual neural network that

LEBLOND-MENARD AND ACHICHE: NON-INTRUSIVE REAL TIME EYE TRACKING USING FACIAL ALIGNMENT 957

outputs a set of heatmaps for each facial feature (in this
case 468 points) on which subpixel maximum estimation is
done to find the input image location of the landmarks. This
aligner is trained to not only output the 2D pixel location of
each landmark, but also a depth value associated with each
landmark that corresponds to the difference with the average
depth of the face, while keeping the same scale (or aspect
ratio) as the horizontal coordinates.

The face alignment model is learned from deforming a
reference model with dimensions given in centimeters but
projected to the image according to the camera model i.e., the
camera matrix and distortion coefficients. Therefore, we can
iteratively find the projected 3D transformations that best fit
the transformation from the reference model and the computed
landmarks points through a Procrustes analysis, also known as
an orthogonal Procrustes problem, as used by the team at [45]
and described in [46].

Using this method, we thus compute the head pose with
respect to the camera, the previously described H . We can
then find the gaze vector origin which is assumed to be the
eye landmarks center point by using the canonical model’s eye
center −→ec and head pose matrix H :

−→e = H−→ec

Here, −→e is the eye center position with respect to the
camera. Since the vectors here are positions, their last
component is 1.

Given the direction to −→e and head pose H , we can find
the perspective transformation matrix W that derotates the
image as to make the head appear upright and that aligns the
camera view axis with the eye position e while reprojecting
the image as if the eye was at a new distance ∥e∥∗ and a new
camera focal length l∗. This methods was first proposed by [2]
and then revisited by [47], the latter being the normalization
technique used in this paper. By choosing the ratio between
the new eye distance ∥e∥∗, the new camera focal length l∗ and
the width and height of the normalized image, the resulting
normalized image will have the de-rolled eye centered in the
image with a specific and constant scale. In our case, the
values used for ∥e∥∗ and l∗ are 600 millimeters are 650 pixels
respectively. The distance ∥e∥∗ of 600 millimeters is generally
suggested by the literature [2] whereas the focal length l∗ is
generally found by trial and error until a value is found that has
the right scaling ratio as to make the eye appear the choosen
size for the model and input image resolution.

This removes parts of the perspective variance due to the
head pose roll and camera parameters from the image and thus
reduces the complexity of the problem to be learned by the
gaze estimation model [1], [4], [31].

3) Eye Patch Extraction: From the facial landmarks, eye
image patches must be extracted for the iris detection and
gaze estimation part of our workflow as seen on Fig. 2.
To do so, we use the average position in 3D of the eye
from the previous step perform the perspective transformation
normalization described in [31]. This method corrects for the
head pose by warping the image as to align the eye patch
normal vector to the vector between the camera’s position and
the eye position in 3D and re-projecting the image at a constant
distance. This constant distance is set as to allow for a 25%

Fig. 2. A simplified overview of our model. Blocks with a darker fill
represent parts of the model reused from the trained iris landmarks
model from Mediapipe.

margin on each side of the eye patch image, as is required
by the iris detection and gaze estimation model that will be
discussed in the following section.

4) Iris Detection and Gaze Estimation: It is intuitive to think
that the eye region landmarks and the iris center contain
enough information about the user’s gaze to estimate its
direction. Indeed, the literature seems to point to a clear
consensus on the subject [30], [31], [33], [48].

As such, we start from a model made to obtain the position
of the iris given a cropped image of the eye on the right side
from the user’s perspective. For this model, we used as basis
the very lightweight (few learned parameters) method recently
described in [49] to align the eye region and find the iris center
and contour landmarks.

While our initial work was based on an explicit relation
in position between the eye region features (namely the lower
sclera contour) and the iris center, where the vector component
in the difference in position was used as the input of a
basic polynomial regression or SVR regression to keep the
computational burden to a minimum. This unfortunately in
our experience lead to poor accuracy when compared to the
state of the art, even when corrected for the head pose.

Considering the architecture of the aforementioned CNN
model, we can infer that there is a lot of information encoding
the position of the eye region landmarks and iris in the
latent space between the backbone and the landmark heads
(see Fig. 2).

958 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 3. The Irisblock is a variation on the BlazeFace blocks. They are
a form of Residual blocks, but using a depthwise convolution to reduce
the number of operations. The batch normalization layers used during
training are in darker shade.

Therefore, we ended up modifying the iris detection model
by getting rid of the iris and eye landmarks splits of the
original model and adding a new split to estimate the gaze
direction. By using the initial model’s weight and biases of
the backbone, we can ensure that the model has a headstart
in learning eye-specific encodings. We then concatenate the
computed features of the head with the eye poses (face pose
at each eye) as an input to a final, fully connected set of layers.
The final output if this set of layers, a multi-layer perceptron
(MLP), is thus the estimated gaze angle.

The backbone and split are made of Irisblocks [49]
which are themselves based on Blazeblocks [40] which are
themselves a modification of Residual blocks [50] where a
convolution and activate layer is followed by a depthwise
convolution followed by a normal convolution while the
residual feed forward is an identity function or a max pool
layer when the stride of the convolution layers lead to a
reduction in the width and height dimensions. The sum of
the convolutions and the residual are then passed through an
activation function, PReLU in this case. In the specific case
where the number of channels of the output of the block
is higher than the number of input channels, the residual is
padded to ensure the same number of channels when it is
added to the output of the convolutions. See Figure 3.

Furthermore, we can double the model to make use of
images from both eyes using a horizontally flipped image of
the left eye and concatenate the feature vectors of each model
split as the input for the gaze estimation head to improve the
accuracy at the cost of increased computational complexity,
as seen in Fig. 2 and 4.

Fig. 4. Our gaze estimation and iris landmarks recognition model. The
tensor dimensions are given between each operation. For the sake of
simplicity, some operations implementations are not duplicated but are
shown as white boxes.

By reusing the same backbone weights but horizontally
flipping the left eye image, we found that our model often
achieves better generalization, i.e. lower evaluation error.

Also, as suggested in [31], the head pose angles obtained
from the Procrustes analysis and used for image normalization
can be added as input to the model to account for some change
in appearance of the eye due to the pose differences between
frames. As such, we directly concatenate the head pose angles
to the other features before the final fully connected layers.

5) Other Implementation Details: All the used deep learning
models were implemented in PyTorch [51] and PyTorch
Lightning [52], allowing them to run on both the CPU and
GPU interchangeably. As such, our method is written in
Python and PyTorch and makes the use of OpenCV [53] just
for some basic image processing functions.

Although we train our modified version of the iris landmarks
localization model proposed in [49], our workflow uses both
the BlazeFace [40] model and the FaceMesh [44] model
as trained by and available in Mediapipe [45], albeit with
the models converted to PyTorch while keeping the same
parameter values. The original model was implemented for
TensorFlow-Lite [54] inference.

B. Training and Validation
Given our gaze estimation method is based on the iris

landmarks localization model from [49], we start by re-using
the model’s parameters that correspond to the unmodified
model backbone as the backbone of our model. This allows
us to re-use the learned feature extraction for the eye and iris
landmarks to help convergence of the optimization.

Training is done on the MPIIGaze [1] dataset by following
the splits given in [4] and [31]. As such, for the MPIIGaze
dataset, we use a leave-one-out approach for the test set.

We trained our model using the Ranger21 [55] optimizer,
which implements recent progress on Rectified Adam [56] and

LEBLOND-MENARD AND ACHICHE: NON-INTRUSIVE REAL TIME EYE TRACKING USING FACIAL ALIGNMENT 959

other methods that rely less on fine-tuning hyperparameters.
The batch size is 32, the learning rate is set to the default
0.001 and the β1 and β2 parameters are set to 0.8 and
0.7 respectively to slow down the training speed. We also use
a weight decay penalty of 0.001. The loss function is the mean
square errors between the output gaze angles and the ground
truth gaze angles as given by the direction between the eye
center points (between the eyes) and the gaze targets of the
dataset.

C. Performance Comparison Methodology
In order to allow for a common-ground comparison between

the different algorithms tested, the PyTorch version of the
tested methods was preferred if other implementations were
available. Furthermore, we did not make use of optimized
runtimes such as TensorRT that would provide an increase
in inference speed for the same reason. All algorithms are
run from Python and the inference time is taken from the
start of the computation, just after the image frame is loaded
in memory, to the end of the gaze estimation after the gaze
angles are obtained, without any user interface processing or
drawing functions being run.

The error metric e used is the arc cosine of the cosine
similarity measure, given by computing the angle between the
real gaze direction −→g given by the annotations of the dataset
and the estimated gaze direction −→g e given by the gaze angles,
defined as:

e = cos−1 |g⃗ · g⃗e|

∥g⃗∥∥g⃗e∥

This metric has interesting properties for comparison, as it
is always positive and thus the average corresponds to the
angular error between the directions, as opposed to the mean
angular error in the pitch and yaw angles separately.

IV. RESULTS

The results are presented in three distinct tables. Table I
presents the results as either given by the original authors or
in our case using the dataset supplied head pose information
for the MPIIGaze [1] dataset.

Table II presents the results for the GazeCapture dataset [3]
using the annotations and evaluation split defined by [4].

Table III on the other hand contains the results for the
UTMultiview dataset [2] using the 3-fold evaluation split as
used in [2] and [57]. In our case, since our model uses both
eyes images as input, we rendered the same head poses for
each sample (−36 to 36 ◦), but rendering both eyes instead of
one at a time. This needs to be done as the left eye and right
eye images of the pre-rendered images given with the dataset
are not matched to one another.

Table IV contains the results we obtained running the
implementation of the compared algorithms as distributed by
the original authors but modified to remove all drawing and
interface-related parts of the original code to allow for a
better comparison in performance. All implementations are
available on the authors Github repositories [57], [58]. The
trained weights used are those made available by the original
authors and we use a 7500 images subset of the MPIIFaceGaze
dataset [34] to evaluate on.

TABLE I
ACCURACY FOR THE MPIIGAZE DATASET

TABLE II
ACCURACY FOR THE GAZECAPTURE DATASET

TABLE III
ACCURACY FOR THE UTMULTIVIEW DATASET

TABLE IV
PERFORMANCE TIMINGS (FULL DETECTION AND GAZE ESTIMATION)

We decided not to include accuracy figures of this evaluation
since it is not clear on what dataset the provided weights were
trained on for the FAZE model. [4]

In Table IV The time performance metric (inference time) is
given as an average in three scenarios: using GPU acceleration,
without GPU acceleration but using all CPU cores and
without GPU acceleration and using a single CPU core. This
gives a better idea of the available performance in power
constrained scenarios such as in mobile applications and
embedded systems.

V. DISCUSSION
A. Interpretation

As the results show, our model reached accuracy levels
comparable to the current state-of-the-art while being
significantly faster, especially when running only on the CPU.
Given the original goal of using this gaze estimation model
for assistive technologies such as controlling an assistive
robotic arm directly mounted on a motorized wheelchair, this
performance improvement is significant. We thus achieve a
reduction of computing time of 39% against the fastest method
in the worst-case scenario and up to 91% against the slowest
in the best-case scenario.

Moreover, as we can see from the frame times, our
GazeIrisLandmarks model requires lower computation time
due to the low number of parameters. In fact, as can be
seen from the multi-core and single core frame times, the

960 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

overhead of splitting the task on multiple cores makes the
overall computation almost as slow as running it on a
single core. This is confirmed by the model size used, with
ours being 3.8 megabytes, whereas the RT-GENE 4 models
ensemble is 1312 megabytes in total and the FAZE model is
27.5 megabytes.

As for the accuracy of our model, Tables I, II and III show
that our model can reach accuracy figures comparable to the
current state-of-the-art, being better in certain datasets and
slightly worse in others.

B. Limitations and Further Work
Throughout our research, we have found that performance

and computational requirements are rarely discussed exten-
sively, let alone analyzed quantitatively, especially when
comparing gaze estimation techniques. There is currently no
benchmark or standardized way of comparing computational
requirements of gaze estimation methods. This thus requires
making the original model code available online for
comparisons to be made and thus limits the number of models
that can be compared.

Indeed, because performance numbers such as inference
time depend on the hardward on which the numbers
are produced, comparison must often be relative, where
performance numbers for all compared methods must be run
on the same computer as is the case for this paper.

It should also be noted that advances in technologies and
new dedicated hardware, such as inference hardware now
found in some smartphones could favor some algorithms over
others, which is a limitation of the comparison method used
in this paper.

Moreover, as has been demonstrated by [4], deep learning
models can be adapted to leverage metalearning frameworks
to improve accuracy of models by using calibration with very
few samples. Given the context of assistive technologies, very
long calibration procedures might be off-putting or just not
possible but acquiring just a few calibration samples might
be a good way to improve person specific accuracy and is
therefore considered as a possible path of improvement. The
drawback of such an approach is the added hyperparameter
tuning required on top of the very high training computational
requirements since higher order gradients are required [4].

Finally, the work presented in this paper focuses on
appearance-based gaze estimation methods using singular
cameras. Other methods exist, such as infrared reflections-
based PCCR methods [28] which are often found in
commercial eye trackers or calibration-based methods [33].

Some examples of the limitations of appearance-based
gaze estimation methods without calibration includes lower
accuracy when compared to PCCR methods and training
dataset biases, where for example the ethnicity of the subjects
in the training dataset limits the attainable accuracy with some
users [59].

Furthermore, the domain of gaze and head pose angles for
which an appearance-based model achieves accurate results is
in our experience limited by the domain on which it is trained.
As such, use cases for appearance-based models should take
into consideration the training dataset’s gaze and head pose
angles domain and the typical use case angles to ensure they
remain within the dataset’s domain.

VI. CONCLUSION

We have shown that leveraging existing very small pre-
trained models for eye region landmarks recognition and
modifying the structure to access the latent information within
the model can lead to accuracy comparable to the current
state-of-the-art while significantly reducing the computational
requirements. While we achieve a 4.5◦ average error which
is similar to the current state-of-the-art for appearance based
gaze angle estimation for the MPIIGaze dataset [29], we see
a decrease in computation time ranging from 39% up to 91%
against the current appearance-based gaze estimation methods
publicly available. We also achieve a state-of-the-art 3.9◦

average error on the UTMultiview dataset [2] and 3.3◦ error
on the GazeCapture dataset [3], [4].

This also allows the model to produce face and eye
landmarks that can be used for other vision-based assistive
tasks as well without needing further computation because
these features are computed as part of the gaze estimation
workflow. Furthermore, we show that a holistic approach
describing a complete workflow such as proposed in this
paper leads to improved accuracy when translated to real-
world scenarios due to the high dependency of certain models
to accurate and manually obtained annotations.

An implementation of our method, including a trained
model, training description and real-time demo is available
at: https://github.com/cedriclmenard/fastgaze

ACKNOWLEDGMENT
We acknowledge the support of the Natural Sciences and

Engineering Research Council of Canada (NSERC).

REFERENCES

[1] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “MPIIGaze: Real-
world dataset and deep appearance-based gaze estimation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 1, pp. 162–175, Jan. 2019.

[2] Y. Sugano, Y. Matsushita, and Y. Sato, “Learning-by-synthesis for
appearance-based 3D gaze estimation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2014, pp. 1821–1828.

[3] K. Krafka et al., “Eye tracking for everyone,” Jun. 2016,
arXiv:1606.05814.

[4] S. Park, S. De Mello, P. Molchanov, U. Iqbal, O. Hilliges, and J. Kautz,
“Few-shot adaptive gaze estimation,” Oct. 2019, arXiv:1905.01941.

[5] A. Campeau-Lecours et al., “JACO assistive robotic device:
Empowering people with disabilities through innovative algorithms,”
in Proc. Annu. Conf. Rehabil. Eng. Assistive Technol. Soc. North
Amer. (RESNA), Arlington, VA, USA, 2016. [Online]. Available:
https://corpus.ulaval.ca/entities/publication/4d72ec44-c987-2b71-e053-
2528090a90b1 and https://www.resna.org/sites/default/files/conference/
2016/other/campeau_lecours.html

[6] C.-S. Chung, H. Wang, and R. A. Cooper, “Functional assessment and
performance evaluation for assistive robotic manipulators: Literature
review,” J. Spinal Cord Med., vol. 36, no. 4, pp. 273–289, Jul. 2013.

[7] S. S. Groothuis, S. Stramigioli, and R. Carloni, “Lending a helping hand:
Toward novel assistive robotic arms,” IEEE Robot. Autom. Mag., vol. 20,
no. 1, pp. 20–29, Mar. 2013.

[8] V. Maheu, J. Frappier, P. S. Archambault, and F. Routhier, “Evaluation of
the JACO robotic arm: Clinico-economic study for powered wheelchair
users with upper-extremity disabilities,” in Proc. IEEE Int. Conf.
Rehabil. Robot., Jun. 2011, pp. 1–5.

[9] F. Routhier, P. S. Archambault, M.-C. Cyr, V. Maheu, M. Lemay,
and I. Gélinas, “Benefits of JACO robotic arm on independent living
and social participation: An exploratory study,” in Proc. RESNA,
Indianapolis, IN, USA, 2014. [Online]. Available: https://www.resna.
org/sites/default/files/conference/2014/Robotics/Routhier.html

[10] S. Allin, E. Eckel, H. Markham, and B. R. Brewer, “Recent trends in the
development and evaluation of assistive robotic manipulation devices,”
Phys. Med. Rehabil. Clinics North Amer., vol. 21, no. 1, pp. 59–77,
Feb. 2010.

LEBLOND-MENARD AND ACHICHE: NON-INTRUSIVE REAL TIME EYE TRACKING USING FACIAL ALIGNMENT 961

[11] B. D. Argall, “Autonomy in rehabilitation robotics: An intersection,”
Annu. Rev. Control, Robot., Auto. Syst., vol. 1, no. 1, pp. 441–463,
May 2018.

[12] M. Karrenbach, D. Boe, A. Sie, R. Bennett, and E. Rombokas,
“Improving automatic control of upper-limb prosthesis wrists using
gaze-centered eye tracking and deep learning,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 30, pp. 340–349, 2022.

[13] C. Bousquet-Jette, S. Achiche, D. Beaini, Y. S. L.-K. Cio,
C. Leblond-Ménard, and M. Raison, “Fast scene analysis using vision
and artificial intelligence for object prehension by an assistive robot,”
Eng. Appl. Artif. Intell., vol. 63, pp. 33–44, Aug. 2017.

[14] Y.-S.-L.-K. Cio, M. Raison, C. L. Menard, and S. Achiche, “Proof of
concept of an assistive robotic arm control using artificial stereovision
and eye-tracking,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27,
no. 12, pp. 2344–2352, Dec. 2019.

[15] H. Jiang, T. Zhang, J. P. Wachs, and B. S. Duerstock, “Enhanced
control of a wheelchair-mounted robotic manipulator using 3-D vision
and multimodal interaction,” Comput. Vis. Image Understand., vol. 149,
pp. 21–31, Aug. 2016.

[16] H. Jiang, J. P. Wachs, and B. S. Duerstock, “Integrated vision-
based robotic arm interface for operators with upper limb mobility
impairments,” in Proc. IEEE 13th Int. Conf. Rehabil. Robot. (ICORR),
Jun. 2013, Art. no. 6650447.

[17] H. Ka, D. Ding, and R. A. Cooper, “ARoMA-V2: Assistive robotic
manipulation assistance with computer vision and voice recognition,”
in Proc. 9th Conf. Rehabil. Eng. Assistive Technol. Soc. Korea.
Goyang, South Korea: RESKO, Nov. 2015. [Online]. Available: http://
d-scholarship.pitt.edu/26361/

[18] C. P. Quintero, O. Ramirez, and M. Jägersand, “VIBI: Assistive vision-
based interface for robot manipulation,” in Proc. IEEE Int. Conf. Robot.
Automat. (ICRA), May 2015, pp. 4458–4463.

[19] R. Atienza and A. Zelinsky, “Intuitive interface through active 3D gaze
tracking,” in Proc. Int. Conf. Act. Media Technol. (AMT), May 2005,
pp. 16–21.

[20] M. Buckley, R. Vaidyanathan, and W. Mayol-Cuevas, “Sensor suites for
assistive arm prosthetics,” in Proc. 24th Int. Symp. Comput.-Based Med.
Syst. (CBMS), Jun. 2011, pp. 1–6.

[21] M. Leroux, M. Raison, T. Adadja, and S. Achiche, “Combination of
eyetracking and computer vision for robotics control,” in Proc. IEEE
Int. Conf. Technol. Practical Robot Appl. (TePRA), May 2015, pp. 1–6.

[22] S. Li, X. Zhang, and J. D. Webb, “3-D-gaze-based robotic grasping
through mimicking human visuomotor function for people with
motion impairments,” IEEE Trans. Biomed. Eng., vol. 64, no. 12,
pp. 2824–2835, Dec. 2017.

[23] R. O. Maimon-Mor, J. Fernandez-Quesada, G. A. Zito, C. Konnaris,
S. Dziemian, and A. A. Faisal, “Towards free 3D end-point control for
robotic-assisted human reaching using binocular eye tracking,” in Proc.
Int. Conf. Rehabil. Robot. (ICORR), Jul. 2017, pp. 1049–1054.

[24] D. P. McMullen et al., “Demonstration of a semi-autonomous hybrid
brain–machine interface using human intracranial EEG, eye tracking,
and computer vision to control a robotic upper limb prosthetic,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp. 784–796, Jul. 2014.

[25] C.-C. Postelnicu, F. Girbacia, G.-D. Voinea, and R. Boboc, “Towards
hybrid multimodal brain computer interface for robotic arm command,”
in Augmented Cognition (Lecture Notes in Computer Science),
vol. 1580. Cham, Switzerland: Springer, 2019, pp. 461–470, doi:
10.1007/978-3-030-22419-6_33.

[26] P. M. Tostado, W. W. Abbott, and A. A. Faisal, “3D gaze cursor:
Continuous calibration and end-point grasp control of robotic actuators,”
in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2016,
pp. 3295–3300.

[27] E. Zahir, M. A. Hossen, M. A. A. Mamun, Y. M. Amin, and
S. M. Ishfaq, “Implementation and performance comparison for two
versions of eye tracking based robotic arm movement,” in Proc. Int.
Conf. Electr., Comput. Commun. Eng. (ECCE), Feb. 2017, pp. 203–208.

[28] A. Kar and P. Corcoran, “A review and analysis of eye-gaze estimation
systems, algorithms and performance evaluation methods in consumer
platforms,” IEEE Access, vol. 5, pp. 16495–16519, 2017.

[29] Y. Cheng, H. Wang, Y. Bao, and F. Lu, “Appearance-based gaze
estimation with deep learning: A review and benchmark,” 2021,
arXiv:2104.12668.

[30] E. Finnigan, “Eye gaze tracking for assistive devices,” Ph.D. dissertation,
Dept. EECS, Univ. California, Berkeley, CA, USA, May 2019.

[31] T. Fischer, H. J. Chang, and Y. Demiris, “RT-GENE: Real-time eye
gaze estimation in natural environments,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 334–352.

[32] S. Park, A. Spurr, and O. Hilliges, “Deep pictorial gaze estimation,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 721–738.

[33] S. Park, X. Zhang, A. Bulling, and O. Hilliges, “Learning to find eye
region landmarks for remote gaze estimation in unconstrained settings,”
in Proc. ACM Symp. Eye Tracking Res. Appl. (ETRA). New York, NY,
USA: Association for Computing Machinery, Jun. 2018, pp. 1–10.

[34] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It’s written all over
your face: Full-face appearance-based gaze estimation,” May 2017,
arXiv:1611.08860.

[35] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based
gaze estimation in the wild,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 4511–4520.

[36] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multi-task cascaded convolutional networks,” IEEE
Signal Process. Lett., vol. 23, no. 10, pp. 1499–1503, Oct. 2016.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Apr. 2014, arXiv:1409.1556.

[38] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. (CVPR), vol. 1, Dec. 2001, pp. I-511–I-518.

[39] A. Adouani, W. M. Ben Henia, and Z. Lachiri, “Comparison of Haar-
like, HOG and LBP approaches for face detection in video sequences,”
in Proc. 16th Int. Multi-Conf. Syst., Signals Devices (SSD), Mar. 2019,
pp. 266–271.

[40] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and
M. Grundmann, “BlazeFace: Sub-millisecond neural face detection on
mobile GPUs,” Jul. 2019, arXiv:1907.05047.

[41] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” Apr. 2017, arXiv:1704.04861.

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” Mar. 2019,
arXiv:1801.04381.

[43] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645,
Sep. 2010.

[44] Y. Kartynnik, A. Ablavatski, I. Grishchenko, and M. Grundmann, “Real-
time facial surface geometry from monocular video on mobile GPUs,”
Jul. 2019, arXiv:1907.06724.

[45] C. Lugaresi et al., “MediaPipe: A framework for building perception
pipelines,” Jun. 2019, arXiv:1906.08172.

[46] K. Sokal. (Sep. 25, 2020). MediaPipe 3D Face Transform. Google
LLC, Mountain View, CA, USA. [Online]. Available: https://developers.
googleblog.com/2020/09/mediapipe-3d-face-transform.html

[47] X. Zhang, Y. Sugano, and A. Bulling, “Revisiting data normalization for
appearance-based gaze estimation,” in Proc. ACM Symp. Eye Tracking
Res. Appl. New York, NY, USA: Association for Computing Machinery,
Jun. 2018, pp. 1–9.

[48] X. Zhang, Y. Sugano, and A. Bulling, “Evaluation of appearance-
based methods and implications for gaze-based applications,” in Proc.
CHI Conf. Hum. Factors Comput. Syst. (CHI). New York, NY, USA:
Association for Computing Machinery, May 2019, pp. 1–13.

[49] A. Ablavatski, A. Vakunov, I. Grishchenko, K. Raveendran, and
M. Zhdanovich, “Real-time pupil tracking from monocular video for
digital puppetry,” Jun. 2020, arXiv:2006.11341.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[51] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
p. 1–12.

[52] W. Falcon et al. (2019). PyTorch Lightning. [Online]. Available:
https://github.com/PyTorchLightning/pytorch-lightning

[53] G. Bradski, “The OpenCV library,” Dr. Dobb’s J. Softw. Tools, vol. 25,
no. 11, pp. 120–123, 2000.

[54] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” 2015, arXiv:1603.04467.

[55] L. Wright and N. Demeure, “Ranger21: A synergistic deep learning
optimizer,” Aug. 2021, arXiv:2106.13731.

[56] L. Liu et al., “On the variance of the adaptive learning rate and beyond,”
Oct. 2019, arXiv:1908.03265.

[57] T. Fischer. (Jun. 2021). Tobias-Fischer/RT_GENE. [Online]. Available:
https://github.com/Tobias-Fischer/rt_gene

[58] (Jul. 2021). NVlabs/Few_Shot_Gaze. [Online]. Available: https://github.
com/NVlabs/few_shot_gaze

[59] N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci, and A. Tzovara,
“Addressing bias in big data and AI for health care: A call for open
science,” Patterns, vol. 2, no. 10, Oct. 2021, Art. no. 100347.

