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Using Features Extracted From Upper Limb
Reaching Tasks to Detect Parkinson’s Disease

by Means of Machine Learning Models
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Abstract— While in the literature there is much interest
in investigating lower limbs gait of patients affected by
neurological diseases, such as Parkinson’s Disease (PD),
fewer publications involving upper limbs movements are
available. In previous studies, 24 motion signals (the so-
called reaching tasks) of the upper limbs of PD patients
and Healthy Controls (HCs) were used to extract several
kinematic features through a custom-made software; con-
versely, the aim of our paper is to investigate the possibility
to build models–using these features–for distinguishing
PD patients from HCs. First, a binary logistic regression
and, then, a Machine Learning (ML) analysis was performed
by implementing five algorithms through the Knime Ana-
lytics Platform. The ML analysis was performed twice:
first, a leave-one out-cross validation was applied; then,
a wrapper feature selection method was implemented to
identify the best subset of features that could maximize
the accuracy. The binary logistic regression achieved an
accuracy of 90.5%, demonstrating the importance of the
maximum jerk during subjects upper limb motion; the
Hosmer-Lemeshow test supported the validity of this model
(p-value=0.408). The first ML analysis achieved high evalu-
ation metrics by overcoming 95% of accuracy; the second
ML analysis achieved a perfect classification with 100% of
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both accuracy and area under the curve receiver operating
characteristics. The top-five features in terms of impor-
tance were the maximum acceleration, smoothness, dura-
tion, maximum jerk and kurtosis. The investigation carried
out in our work has proved the predictive power of the
features, extracted from the reaching tasks involving the
upper limbs, to distinguish HCs and PD patients.

Index Terms— Machine learning, rehabilitation engineer-
ing, modelling.

I. INTRODUCTION

NEUROLOGICAL disorders, with particular reference to
neurodegenerative diseases, have a negative impact on

the quality of life and are the leading cause of disability
and death globally [1], [2], [3]. Among the neurodegenerative
movement disorders, Parkinson’s Disease (PD) is one of the
most common movement disorders after Essential Tremor [4].
The motor dysfunction in PD is due to the degeneration of
dopaminergic neurons in the substantia nigra [5]; in addition,
the disease also involves the degeneration of neurons in regions
of the brain controlling autonomic functions, cognition, and
mood [6]. Nevertheless, PD, among the neurodegenerative dis-
orders, is better managed by using a combination of medica-
tion and regular physiotherapy. Indeed, physical rehabilitation
is considered as an adjuvant to pharmacological treatments
for PD to maximize functional ability and minimize compli-
cations; exercise increases synaptic strength and influences
neurotransmission, thus potentiating the functional circuitry
in PD [7]. There is a considerable literature which provides
evidence that physical exercise of moderate intensity leads to
an increase in the level of dopamine, which suggests that an
exercise program for PD patients would be beneficial [8]. For
instance, Formisano et al. evaluated the efficacy of physical
therapy together with drug therapy in a group of parkinsonian
patients, compared with a group of patients treated using
drug therapy only; patients treated by means of physiotherapy
showed an improvement at the end of the study in both clinical
scales and motor performance tests [9]. On the same line,
Donisi et al. showed the positive impact of short-time gait
rehabilitation in PD patients on gait parameters [10]. Several
studies focused on the evaluation of lower limb parameters
through instrumentation for gait analysis, since individuals
with PD exhibit a gait pattern characterized by short stride
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length, increased cadence, and reduced velocity [11], [12]. Fur-
thermore, also the evaluation of the upper limb performances is
of paramount importance. Several studies, in fact, specifically
focused on discovering new rehabilitation tasks to improve the
upper limb function in PD patients [13], [14], [15], [16].

In this context, a potential obstacle for an appropriate design
and implementation of a rehabilitation task for the upper
limbs is related to the high degree of freedom of movement
of these limbs, which are among the most flexible in the
human body, thanks to a high number of joints. Moreover, the
intrinsic complexity of their control mechanism is, among the
others, one of the factors which can limit the benefits which
exercises (and their therapeutic impact) can bring. Albeit
these potential limitations, previous research has documented
that the investigation of grasping tasks, aimed at studying
kinematic and dynamic aspects of the spontaneous movement
of human upper limbs, have allowed to find common kinematic
features and patterns which can quite appropriately describe
spontaneous human movements [17], [18], [19]. To this regard,
several of the more important studies have been proposed
by Hogan, who was the first to publish research papers
focused on analyzing the movements of healthy subjects from
a theoretical point of view; the impact of this research was so
important that many physicians, when studying spontaneous
arm movements, still refer to these publications [20]. Briefly,
the main finding presented by Hogan was that healthy subjects
tend to create a straight, regular path without interrupting
acceleration, when moving their upper limbs from one point
in space to another. That study had such a strong impact
on research and technological innovation that, nowadays,
the literature is rich in papers that have demonstrated the
possibility of extracting a number of useful biomechanical
parameters, starting from biomedical signals. Such parameters
are suitable to investigate the “quality” of movement of healthy
and diseased subjects; even more important, they can be
monitored in different rehabilitation settings and for differ-
ent tasks. Approaches in this sense have been proposed for
robot-mediated or robot assisted rehabilitation exercises [21],
to improve upper limb [22] or lower limb rehabilitation [23],
after spinal cord injuries [24], stroke [25], or PD [26], [27],
also with the aim of proposing low-cost robot platforms for
physiotherapy [28], [29] and intelligent data-driven approaches
for gait training [12], motion reaching tasks [30], [31], [32],
and motion prediction purposes [33].

Simultaneously, several studies have aimed to exploiting
motion analysis data and comparing different instrumentations
for diagnostic purposes [34], [35]. Albeit the promising results,
nowadays a key limitation found in previous research is
that the biomechanical parameters still could not completely
contribute to form an effective and quantitative rehabilitation
outcome, e.g., to monitor the improvements in the motor
functions of PD patients. In addition, the previous issue could
be also ascribed to already not standardized rehabilitation
protocols.

On the other hand, in this context, the growing availability
of data provided from devices allow the use of data-driven
models based on artificial intelligence to find hidden pattern

among data and, in turn, to potentially help clinicians in the
decision-making process. Machine Learning (ML), in fact,
is gaining popularity in several fields to address different issues
and purposes, such as to identify potential digital biomarkers
for the diagnosis of specific diseases [36], to improve the
management of care processes by predicting patients outcome
variables [37], [38], [39], to classify biomedical signals like
heart rate, respiration [40], [41], [42], [43], [44], [45], [46],
and motion [47], [48], [49], with the aim of finding patterns
of movements in gait [50], [51], and distinguishing healthy
from pathological subjects (e.g. the PD ones), even following
a rehabilitation program [52]. In particular, ML has been also
used for investigating the lower limb of PD patients; previous
research has, indeed, documented that several symptoms of PD
have been correlated to gait patterns through ML, for example
mild cognitive impairment and freezing of gait [53], [54].
Therefore, in this last context, ML has demonstrated to be a
useful technique for analyzing data from motion analysis, since
it is often possible to extract quantitative features describing
movement which can be given as input to the algorithms.

However, although the findings suggest that an exercise
program is beneficial to PD patients, this area still lacks
validity. Indeed, there is the need, not only to standardize
the rehabilitation protocol, but also to define measurable,
repeatable, and reliable indicators to monitor the effectiveness
of the training program over time and to provide a quantitative
measure of the rehabilitation outcome. This is a necessary
step towards the design of personalized treatment programs,
where the rehabilitation exercises are centered on both the
patients characteristics and the motion impairment, or on
specific pathology they are affected with.

In our previous paper [55], we have extracted, from the
available motion signals, a set of features which have been
demonstrated, through a statistical analysis, to be useful for
distinguishing PD patients from healthy controls. Starting from
the study developed in [55], the main contribution of this paper
is assessing whether these features may serve as a basis to
define a potential predictive model to diagnose PD.

To this end, we first apply a binary logistic regression
(BLR) procedure in order to avoid the inclusion of correlated
variables into the model; moreover, both Cook’s distance and
Center Leverage value are used to check the presence of
outliers. Finally, the goodness of the BLR model will be
checked through the Hosmer-Lemeshow test.

Then, our investigation is reinforced through the comparison
of several ML algorithms, in order to find a subset of the
above-mentioned features, composed of those variables that
are more meaningful, to monitor the patients status and,
eventually, a rehabilitation treatment. In particular, ML models
are implemented twice. The first analysis consists in including
all the features from [55] and model the data by using a leave-
one-out cross-validation method. In the second phase, the
dataset is split into two parts, as per hold-out cross-validation,
and the wrapper method is exploited in order to find the best
subset of features that could maximize the model performance,

We shall show that the results obtained by the ML approach
are extremely positive, since, from one hand they confirm the
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outcome of the BLR approach, and, from the other hand,
almost all algorithms achieve a perfect score as regards all
the evaluation metrics.

II. MATERIALS AND METHODS

A. Data and Signal Processing
Retrospective data and signals were collected for 12 sub-

jects: six of them were healthy (from a population of healthy
individuals with: age = 40.0 ± 5.7 years old; Body Mass Index
(BMI) = 26.0 ± 4.0) while the other six were Parkinsonians
(from a population of pathological individuals with: age =

51.7 ± 13 years old; BMI = 27.6 ± 4.6).
Signals consisted in an angular displacement, acquired

through goniometer sensors, by implementing a kinematic task
made up of four movements performed by the upper limb,
as also reported elsewhere in the literature [56], [57], [58]. The
movements, a horizontal reaching task and a vertical one, have
been performed along two axes in a two-dimensional plane
starting from a reference position. During the acquisition, the
patient is in an upright position, with a straight trunk and neck
and the gaze fixed on the central point of the plane, on which
the reaching movements are implemented. Patients explore
four positions: top, bottom, right, and left; nevertheless, these
movements can also be divided into eight distinct kinematic
phases, four of elevation and lowering in the sagittal plane and
four of extension and flexion in the horizontal plane.

Signals have been processed and analyzed to extract a set
of kinematic parameters that were used to distinguish the two
groups through ML algorithms. Each subject performed the
task twice for a total of 24 signals.

Signal processing has been carried out in Matlab (Math-
Works, R2021a, Natick, MA, USA). In accordance with other
methodological approaches to process motion signals proposed
in the literature [55], [59], [60], [61], [62], after the signal
acquisition, velocity, acceleration, and jerk profiles have been
estimated from discrete position signal versus time information
by means of a derivative operation. Based on the velocity
profile, eight submovements have been detected by means of
an iterative algorithm aimed at identifying the onset and offset
of each submovement from the detection of local minima
and maxima of the velocity curve above and below a pre-
determined threshold. After the segmentation of the signal into
eight submovements, kinematic and statistical descriptors of
each submovement have been computed, namely:

• amplitude and duration;
• mean velocity;
• the maximum values for both velocity, acceleration, and

jerk;
• the coefficient of symmetry of the submovement curve;
• mean and mean square root values of the position profile;
• variance, skewness, and kurtosis of the velocity profile;
• the smoothness factor.

B. Binary Logistic Regression
A BLR was performed on the dataset to measure

the capability of distinguishing pathological signals from

healthy ones through a traditional statistical modeling
technique.

Before building the model, a few conditions should be
checked. The features to be used as input were reduced by
studying the coefficient of correlation among the variables; in
particular, the features correlated with a coefficient lower than
0.70 were kept. Then, in order to remove possible outliers, the
Cook’s distance

D =

n∑
i=1

(y j − y j (i))
2

pM SE
(1)

where
• n is the number of observations
• yj is the j-th fitted response value.
• yj(i) is the j-th fitted response value, where the fit does

not include observation i.
• MSE is the mean squared error.
• p is the number of coefficients in the regression model,
was computed together with the Center Leverage value [63].

They are both statistics of influence; the former provides an
indication of how much influence a single case has over a
regression model, while the latter is a measure of the effect
of a particular observation on the regression predictions, due
to the position of that observation in the space of the inputs.

Finally, the goodness of fit with the confusion matrix were
computed.

SPSS Statistics (IBM, v. 25, Armonk, NY, USA) was used
to perform this analysis.

C. ML Tool and Algorithms
In order to overcome the limitation of the BLR, a ML analy-

sis was conducted. It was performed through Knime analytics
platform (v. 4.2.1), an open-source platform for developing
workflows of ML analysis [64], which has been recognized as
one of the best choice in this context [65]. It has been widely
employed in the literature for conducting biomedical studies
of various types, such as foetal well-being [66] and motion
analysis [35]. In this research, ML models were implemented
twice. The first analysis consisted in including all the features
and model the data by using a leave-one-out cross-validation.
In the second analysis, the dataset was split into two parts,
as per hold-out cross-validation; on the training set (70% of
the total) the wrapper method was used to find the best subset
of features that could maximize accuracy, while the model
created with the training set was then applied on the test
set, and accuracy, sensitivity, specificity and Area Under The
Curve Receiver Operating Characteristics (AUCROC) were
computed as evaluation metrics [67]:

Speci f ici t y =
T N

T N + F P
(2)

• Specificity (equation 2): ability to correctly classify sub-
jects not belonging to the examined group,

Sensi tivi t y =
TP

TP + FN
(3)

• Sensitivity (equation 3): ability to correctly classify sub-
jects belonging to the examined group,
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Fig. 1. Cook’s distance and Center Leverage Value to detect the
presence of outliers. The record with a center leverage value greater
than 0,6 and Cook’s distance greater than 0,6; 3 outliers were removed.

• Accuracy (equation 4): overall percentage of correct pre-
dictions,

Accuracy =
T P + T N

T N + F P + F N + T P
(4)

• AUCROC a qualitative index ranging from 0 to 1 for the
binary classification with 0.5 indicating a classification
not better than random guessing,

where, as usual, TP, TN, FP and FN stand for true positive,
true negative, false positive and false negative respectively.
Several algorithms were implemented to classify the data into
healthy and Parkinsonians. Decision Tree (in the form of
J48) and its ensemble form Random Forest (RF) were used
as tree-based algorithms, while k-Nearest Neighbour (k-NN)
and Support Vector Machine (SVM) were implemented as
instance-based algorithms; finally, Naïve Bayes (NB), which
is based on the a priori probability theorem of Bayes, was
the last algorithm implemented. As regards hyperparameters
tuning, RF had 100 trees, no maximum depth and split
criterion set on information gain ratio, k-NN had a value of k
equal to 3 and no distance weighting and SVM was based on
the linear kernel.

III. RESULTS

As anticipated in the previous section, the first analysis
was a BLR; the correlation among the variables was checked
in order to avoid the inclusion of correlated variables into the
model, and both Cook’s distance and Center Leverage value
were used to check the presence of outliers; at the end of the
process three subjects were removed (Fig. 1). The results of
this first analysis are shown in Table I, while the matrix of cor-
relation is shown in Table II. In summary, the accuracy of the
BLR model was 90.5% and the maximum jerk resulted statis-
tically significant in the multivariate analysis (p-value=0.026).
In conclusion, the results of the Hosmer-Lemeshow
test confirmed the goodness of the BLR model
(p-value=0. 408).

Secondly, a ML analysis was implemented by including
the whole dataset (i.e. 13 features and 24 records) and cross
validating the data through a leave-one-out cross-validation.

TABLE I
BINARY LOGISTIC REGRESSION RESULTS

TABLE II
CONFUSION MATRIX FOR THE BLR ANALYSIS

The features employed in this analysis were the average of
all features related to the eight sub-movements (the results
for each sub-movement are shown in the Supplementary
Tables S1-S8). Table III shows the evaluation metrics per each
algorithm.

Following this analysis, a feature importance based on the
split criteria of the RF was computed; as illustrated in Fig. 2
the most important features were maximum acceleration,
smoothness, duration, maximum jerk and kurtosis.

Thirdly, the ML analysis was implemented after a feature
selection. The wrapper method was used to build the models
(J48, RF, KNN; SVM, NB) on the training set and then applied
on the test set to compute the evaluation metrics (Table IV).

The results were extremely positive, since four algorithms
out of five achieved a perfect score as regards all the evaluation
metrics (accuracy, sensitivity, specificity, AUCROC). In order
to investigate the pattern of data, they were also investigated
graphically.

Fig. 3 shows that the data were almost linearly separable,
thus explaining the reason why so many algorithms were able
to achieve a perfect classification score.

IV. DISCUSSION

In this paper, displacement signals from healthy and PD
patients were acquired and processed to obtain a set of
kinematic parameters describing the upper limb movement.
These parameters were used as input features to perform a
BLR and then fed as input to five ML algorithms based on
different operating principles.

The BLR techniques showed interesting results by reaching
an accuracy of 90,5% and identifying the maximum jerk as
an important feature which is reasonable since the presence
of jerk in the movement can be considered a characteristic of
PD patients. After applying the BLR, in order to have a larger
overview of the results, the ML algorithms were implemented
because they can be used without the assumptions of the BLR.

The models identified in this research paper showed high
goodness in light of the high evaluation metrics obtained (up to
100% of accuracy, sensitivity, specificity and AUCROC). This
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TABLE III
EVALUATION METRICS (%) PER EACH ALGORITHM USING ALL THE FEATURES AND A LEAVE ONE OUT CROSS-VALIDATION. AUCROC IS

EXPRESSED AS [(%)/100]

Fig. 2. Representation of the feature importance. The x-axis unit is [%].

finding, using the wrapper technique, was not unexpected due
to the (almost) linear separability of the two classes (Fig. 3)
for the selected features. Moreover, the use of the wrapper
technique in the ML analysis allowed us to identify the most
important features useful to distinguish the groups.

As Fig. 2 shows, smoothness and duration demonstrated
both informative. These results are consistent with those found
in the previous study [55] where the statical analysis revealed
both smoothness and duration were statistically significant.
It is worth noting the among the top-5 features both the BLR
and the ML reported maximum jerk.

The promising findings obtained, to the best of the authors
knowledge, could represent a partially unexplored strategy
in this field, which set this study apart from other scientific
contributions on these topics, which are discussed with greater
details in the following.

Recently, Bai [16] demonstrated that the combination
of drawing tests and inertial sensors was an effective
method to acquire biomedical signals (namely, time-frequency
spectra) of the upper limbs movements; nevertheless,
Kotsavasiloglou et al. previously demonstrated that a simple
drawing tests setup (using a commercial tablet connected to
a PC) could be enough to extract features to be fed to ML
algorithms in order to classify unknown healthy/PD subjects
based on their line-drawing performance [68]. The authors
found subsets of the extracted features (linked to the kinemat-
ics of hand motion during line drawing tasks) demonstrated
an effective predictive power to distinguish healthy and PD
subjects; the ML algorithms used (like those used in this study)
showed really high scores (greater than 85%) considering the
best possible features subsets. In the same year, Butt et
al. presented a different strategy that demonstrated able to
achieve an effective classification of healthy and PD subjects.

Fig. 3. This scatterplot shows how the data are almost linearly
separable when considering smoothness and duration. This plot should
only be considered as an explanation for the high results of ML.

In this case, the authors acquired time domain information
using a non-contact optical device (namely, the Leap Motion
Controller) to further extract biomechanical features related
to four tasks, including the “forearm pronation/supination”
task that can be considered similar to the ones considered
in this paper. Butt et al. demonstrated that the 17 overall
features extracted from the four tasks, when fed to different
ML algorithms, allowed to fairly classify healthy and PD
patients’ (accuracy higher than 75%) [27].

Later, the same authors also investigated the possibility to
use other strategies to acquire biomedical signals, focusing,
in particular, on wearable sensors. For instance, in the recent
work [69], an Inertial Measurement Units based wireless
device (“SensHand V1”) was exploited to acquire accelera-
tion and angular rate data from the same (plus two novel)
biomechanical tasks. After the post-processing operations (the
authors extracted up to 23 features for the six biomechani-
cal tasks related to the upper limbs), the extracted features
were fed to both RF and SVM demonstrating promising
scores for both distinguishing healthy and PD subject and,
in addition, to classify healthy, PD and idiopathic hypos-
mia patients. These results were simultaneously confirmed
in another work of the group, where the authors considered
more in deep potential differences between the limbs and
increased ML classification difficulty. The achieved scores
(adding NB as additional algorithm) confirmed the promising
findings of [52], where RF demonstrated the best classifier.
Later, the same group published another paper [70] were the
number of patients (idiopathic hyposmia excluded) were more
than doubled, NB as classifier was considered in addition
to RF, and SVM – where linear and Gaussian kernels were
implemented simultaneously with a third-polynomial kernel
– and different features datasets were analyzed. Overall, the
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TABLE IV
EVALUATION METRICS (%) PER EACH ALGORITHM USING A FEATURE SELECTION METHOD. AUCROC IS EXPRESSED AS [(%)/100]

metrics achieved by the algorithms resulted promising, since
all the classifiers showed excellent ability in distinguishing
the two groups, according to the motor performance analysis.
For all the datasets, algorithms accuracies proved higher than
90% [70].

Earlier in 2018, Belgiovine et al. conducted a similar work
either to detect and classify L-dopa-induced dyskinesia [71] or
to detect dyskinesia in upper or lower limbs [72] separately.
In both works, 18 PD patients were enrolled and each of
them worn – on the most compromised arm – a commercial
smartwatch, integrated with accelerometer and gyroscope,
while performing several tasks (e.g., writing). After a post-
processing step to extract time and frequency domain (28
and 168, respectively) features from acceleration and angular
velocity signals, the features were fed to both decision tree
and (linear and Gaussian) SVM, demonstrating, on average,
that SVM performed better with respect to Decision Tree
and linear and gaussian kernel SVM showed comparable
performances. In further research, the authors enrolled three
more patients, confirmed the previous results and indicated
the overall strategy allows the detection of unknown patients
in real-time [73].

Finally, a recent study of Monje et al. also demonstrated
that the findings – based on data extracted from signals
acquired using wearable sensors – agree with data collected
with other strategies (e.g. video analyses); in this context,
the authors reported a significant negative correlation of the
e.g. pronation-supination movement of the hand of the most
affected site – of a cohort of PD patients (22) – with the
corresponding results found using wearable sensors [74].

Based on the discussion above, it is possible to conclude
that, with respect to the existing literature, the strength of our
study does not rely on the mere application of ML algorithms
for distinguishing PD from healthy controls; rather, it is based
on the use of the features listed in Section II-A. to diagnose
PD, and specifically on the subset of the more significant
variables showed in Fig 2. In particular, the almost linear
separability of the two groups observed in Fig. 3, obtained
thanks to the optimal choice of the features, provides evidence
that the tasks performed by healthy and parkinsonian patients
could be straightforwardly distinguished; at the best of our
knowledge, such evidence is not found elsewhere in the
literature. Moreover, it is worth noting that, differently from
most of the previous studies, the motion signals, which have
been exploited in our work, are related to various upper limbs
reaching tasks. In addition, the features extracted according
to our methodology, could be also used for other purposes,
since they also exhibits clinical relevance. To this regard,
other researchers have recently shown, after a rehabilitative

therapy of 10 weeks, that smoothness increases while jerk
decreases in PD patients, testifying that these features are
sensitive enough to be used for rehabilitation purposes [75],
therefore suggesting that the research is already going toward
this approach.

Of course, this study has some limitations. The most rel-
evant is represented by the low number of patients, which
does not allow us to perform a further validation of our
analysis. Consequently, acquiring a larger cohort of patients
would allow to investigate more deeply patients affected by
PD, parkinsonism, and related symptoms.

V. CONCLUSION

In conclusion, this paper has proved the predictive power
of features – related to upper limb kinematics tasks – fed
to ML algorithms to distinguish healthy and PD patients.
The ML algorithms achieved promising high scores; in fact,
more than one algorithm presented a very high metric (mainly
after using the wrapper method). Consequently, addressing
the limitations highlighted in the previous paragraph, the data
obtained suggest the approach could be applicable to find other
powerful features subsets able, not only to distinguish healthy
subjects from, potentially, PD or other pathologies, but also to
define helpful rehabilitation outcome metrics in subjects whose
symptoms could show a non-conventional behaviour of upper
limbs motor tasks.
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