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ST-CapsNet: Linking Spatial and Temporal
Attention With Capsule Network
for P300 Detection Improvement
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Abstract— A brain-computer interface (BCI), which pro-
vides an advanced direct human-machine interaction, has
gained substantial research interest in the last decade
for its great potential in various applications includ-
ing rehabilitation and communication. Among them, the
P300-based BCI speller is a typical application that is capa-
ble of identifying the expected stimulated characters. How-
ever, the applicability of the P300 speller is hampered for
the low recognition rate partially attributed to the complex
spatio-temporal characteristics of the EEG signals. Here,
we developed a deep-learning analysis framework named
ST-CapsNet to overcome the challenges regarding better
P300 detection using a capsule network with both spa-
tial and temporal attention modules. Specifically, we first
employed spatial and temporal attention modules to obtain
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refined EEG signals by capturing event-related informa-
tion. Then the obtained signals were fed into the capsule
network for discriminative feature extraction and P300 det-
ection. In order to quantitatively assess the performance of
the proposed ST-CapsNet, two publicly-available datasets
(i.e., Dataset IIb of BCI Competition 2003 and Dataset II of
BCI Competition III) were applied. A new metric of averaged
symbols under repetitions (ASUR) was adopted to evaluate
the cumulative effect of symbol recognition under differ-
ent repetitions. In comparison with several widely-used
methods (i.e., LDA, ERP-CapsNet, CNN, MCNN, SWFP, and
MsCNN-TL-ESVM), the proposed ST-CapsNet framework
significantly outperformed the state-of-the-art methods in
terms of ASUR. More interestingly, the absolute values of
the spatial filters learned by ST-CapsNet are higher in the
parietal lobe and occipital region, which is consistent with
the generation mechanism of P300.

Index Terms— Brain-computer interfaces (BCIs), capsule
network, P300, attention.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCI) provide an opportu-
nity for people to directly interact with their surroundings

through brain waves [1], [2]. For example, Long et al. com-
bined motion imagery and P300 potentials to control a 2-D
cursor movement [3], and further developed a BCI-based sys-
tem to control the movement of a wheelchair [4]. Wang et al.
identified the user’s gaze direction using frequency-encoded
steady-state visual evoked potentials [5]. Lin et al. devel-
oped a BCI-based system to estimate drivers’ drowsiness [6].
Zheng et al. proposed a high-performance brain switch based
on code-modulated visual evoked potentials with both fast
reaction and low false positive rate (FPR) during idle state [7].
Among all BCI paradigms, Electroencephalography (EEG) is
a method of acquiring brain waves that has attracted many
researchers due to its high temporal resolution and non-
invasive nature [8], [9]. An event-related potential (ERP) based
EEG is a brain reaction that occurs directly from a specific
event [10]. A typical ERP component, P300 that occurs around
300ms after the target stimulus onset at the parietal lobe,
has been widely used in BCI [11], [12], [13]. For instance,
Farwell and Donchin [14] proposed a P300 speller paradigm
in 1988, allowing individuals to type with their minds.
Many datasets of P300 are based on this pioneer paradigm.
It is noteworthy mentioning that the international BCI com-
petition datasets also include the P300 paradigm, which are
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usually the benchmark datasets to compare the performance of
various models on EEG classification. Alain Rakotomamonjy
and Vincent Guigue [15] won the championship using an
ensemble of support vector machines (ESVMs) for P300
detection in BCI III Competition [16]. However, the method
does not take into account the importance of the individual
electrodes and simply feeds the raw data into the classifier for
training.

In order to improve the accuracy of detecting ERP signals,
Rivet et al. [17] raised xDAWN, a spatial filtering method,
to enhance P300 potentials with respect to the Non-P300
potentials; further, Barachant improved the xDAWN to a
generalization to any type of ERP [18]. Most recently, with
graphics processing units (GPUs) becoming more powerful,
deep learning has grown tremendously. Zhang et al. proposed
an improved EEGNet [19] that combined xDAWN saptial
filtering with EEGNet [20] for the individually-calibrated rapid
serial visual presentation (RSVP) task and won second place in
the BCI Controlled Robot Contest at 2022 World Robot Con-
test [21]. Wang et al. proposed denoising autoencoder neural
networks to improve the symbol recognition accuracy by about
0.7% compared to ESVMs, which can automatically learn
features from unlabeled data and solve the problem of local
minima in neural networks due to random initialization [22].
Cecotti and Graser [23] used convolutional neural networks to
detect P300 for the first time and achieved a high recognition
rate (95.5%) in the 15th repetition. However, it has a low
symbol recognition rate in the first 5 or even 10 repetitions,
leading to a low information transfer rate (ITR). To further
increase the symbol recognition rate in the first 5 repetitions,
Wang et al. [24], who have crowned champions of the P300-
based BCI competition in the 2019 World Robot Conference,
proposed Multiscale-CNN to enhance the performance of P300
detection. Three temporal kernels at different scales were
applied on its temporal convolution layer to obtain discrimi-
native time features. However, some valuable information that
would help in classification will be lost during the forward
propagation, because it employed the max pooling operation to
reduce feature maps which only retains the most active features
and discards the rest. To overcome the information loss in the
pooling operation, Sabour et al. [25] proposed capsule network
(CapsNet). A capsule contains a set of neurons and the output
is a vector which represents various entity materialisation
parameters, such as position, size, rotation etc. The length
of the vector represents the probability of the corresponding
class. The lower level capsules are connected to the higher
level capsules by a dynamic routing algorithm. Several recent
studies have demonstrated that CapsNet could achieve better
performance than traditional techniques. For example, we used
a multi-kernel capsule network to identify schizophrenia which
outperformed other methods in our previous study [26]. Chao
et al. combined multiband feature matrix (MFM) and CapsNet
outperforming 2D-CNN in emotion recognition [27]. Liu et al.
employed 1D-CapsNet to detect P300 which reached 96%
symbol recognition rate [28]. Ma et al. attempted to use
ERP-CapsNet for ERP detection and obtained much better
results than the traditional machine learning algorithms and

CNNs [29] and also explained the mechanism of how P300
components are preserved in capsules. However, ERP-CapsNet
just took the raw EEG signals as input, which introduced
additional noise.

In order to reduce signal noise and further improve the
P300 detection accuracy, we employed spatial and temporal
attention mechanism to refine the input EEG signals, and
then fed the refined EEG signals into ERP-CapsNet for
classification. Several attention mechanisms have been widely
used, such as the Squeeze-Excitation (SE) block [30] proposed
by Hu et al. which adaptively generates channel attention
maps and recalibrates the feature responses of channels by
explicitly modelling the interdependencies between channels.
It first generates average-pooled features from the original
convolutional feature maps via the average pooling functions,
then feeds the generated features into a multilayer perceptron
(MLP) with Sigmoid activation, which yields a channel
attention map. Then the element-wise multiplication of
original convolutional feature maps with the channel attention
map gives the calibrated channel feature response, i.e., the
channel refined feature map. The work of Hu et al. inspired
Woo et al. to develop a more powerful attention mechanism,
the Convolutional Block Attention Module (CBAM) [31].
It consists of a channel attention module and a spatial attention
module. The channel attention module is a variant of the SE
block. It generates average-pooled and max-pooled features
from the original convolutional feature maps via the average
pooling and max pooling functions which are then fed into a
shared MLP where the outputs are summed and activated by
a Sigmoid function to produce a channel attention map. The
channel attention map is also element-wise multiplied with
original convolutional feature maps to obtain channel refined
feature maps. The spatial attention module first compresses
the channel refined feature maps into two features via the
max and average pooling functions respectively, and then
generates the spatial attention map via a 7 × 7 convolution.
Finally, the channel refined feature maps are element-wise
multiplied with the spatial attention maps to obtain channel
and spatial refined feature maps. Their experimental results
on various image datasets showed that inserting CBAMs into
the baseline model can significantly improve the classification
performance. Inspired by this, we try to combine ERP-
CapsNet [29] with CBAMs, which we call ST-CapsNet,
expecting to improve the performance of P300 detection.

The main contributions of this work are summarized as
follows: 1) To our knowledge, this is the first attempt to
combine spatial and temporal attention with a capsule network
to improve the accuracy of P300 detection. 2) We proposed
a more comprehensive method (ASUR) to measure symbol
recognition performance by comparing the average correctly
recognized symbols under the first 5, 10 and 15 repetitions of
a stimulus round.

II. DATASETS

A. Description
The data sets used in this paper are the dataset IIb of BCI

competition 2003 and dataset II of BCI competition III [16].
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TABLE I
THE SAMPLE COMPOSITION OF THE TRAINING

AND TESTING SETS FOR EACH DATASET

We separated dataset II into two data sets: dataset II-A
and II-B because it contains two subjects (subjects A and B).
These datasets are complete records of P300 evoked potentials
recorded with BCI2000 [32] using a paradigm described by
Farwell and Donchin [14]. The subjects were presented with a
6× 6 matrix of symbols. All rows and columns in the matrix
were randomly intensified at a frequency of 5.7 Hz. By staring
at the desired symbol in the matrix, a P300 evoked potential
would occur in the subjects’ brains when the desired symbol
flashed. When other symbols flashed, stimulated potentials do
not have a P300 component and are called Non-P300 evoked
potentials. The P300 potentials are different from the Non-
P300 potentials, because the rare target stimuli cause subjects’
brains to generate P300 potentials [33]. Six columns and six
rows were randomly intensified in the matrix; only one column
and one row contain the desired symbol, which means there
are two P300 evoked potentials and ten Non-P300 evoked
potentials in one stimulation round. Due to the extremely low
SNR of ERPs, the stimulation round should be repeated several
times to improve the P300 recognition accuracy.

The EEG data was recorded from 64 electrodes at a
sampling rate of 240 Hz in several sessions. Each session
consisted of a number of runs. In each run, subjects focused
on a series of symbols. At first the screen was displayed for
2.5 seconds, during which time each symbol had the same
intensity (i.e., the matrix was blank). Subsequently, one of
the rows or columns in the matrix was randomly enhanced
for 100 ms, and then the matrix was blanked for 75 ms. The
enhancement of the rows/columns was carried out randomly
12 times in a block. The block was repeated 15 times for each
symbol to spell. There were a total of 31 symbols in dataset
IIb, and 100 symbols in datasets II-A and II-B. Table I shows
the number of P300 and Non-P300 samples for training and
testing in each dataset. For more information pertaining to the
dataset, please refer to https://www.bbci.de/competition.

B. Data Preprocessing
To reduce the effect of the imbalance of the data sets,

we averaged two randomly selected samples from P300 sam-
ples many times so that the number of P300 is the same
as the number of Non-P300. The preprocessing step consists
of the following stages. We first extracted all data samples
between 0 to 650 ms, i.e., 156 time samples after the start of an
intensification. Afterwards, an FIR band-pass filter (Hamming
window) with a frequency range of 0.1 to 20Hz was adopted
that was followed by downsampled (to half of the staple points
for each channel) and normalized steps (via Z-score in eq (1)
and sigmod approach) to normalize the filtered EEG data. The

sigmoid function was used because the value range of the
reconstructed EEG signal in the decoder layer is from 0 to 1.
The obtained band-pass filtered and normalized EEG data was
set as input for the ST-CapsNet.

X i j ←
X i j − X̄ i

σi
(1)

X ∈ RC×78 is the half downsampled filtered EEG signal and
X i j is the signal value of the i-th electrode at the j-th time
point. X̄ i and σi are the average and standard deviation of the
i-th electrode signal. C represents the number of electrodes,
and 78 stands for the time samples of the signals. We set C to
64 because datasets IIb, II-A, and II-B all have 64 electrodes.

III. METHODS

ERP-CapsNet has shown good performance in P300 detec-
tion [29]. However, it just took the raw EEG signals as input
which might introduce some additional noise. Hence, to reduce
the noise of EEG signals and improve the accuracy of P300
detection, we linked spatial and temporal attention modules
with ERP-CapsNet as illustrated in Fig.1.

A. Spatial Attention
We define the variable V ∈ Rc×h×w, where c, h and w

represent the channel, height and width dimensions of V,
respectively. The spatial attention module is used to enhance
the spatial information of the raw input EEG signal X ,
as summarised below.

MS=σ(W1
T ReLU(W0

T F s
avg)⊕W1

T ReLU(W0
T F s

max )) (2)

where F s
avg and F s

max ∈ RC×1×1 are the features generated
from the reshaped signal X R ∈ RC×1×78 through max pooling
and average pooling function along the width dimension (the
pooling kernel size and pooling stride were set to 78 and 1,
respectively). In the shared MLP, W0 ∈ RC×C

r is the weight
between the input layer and the hidden layer, while W1 ∈

R
C
r ×C is the weight between the hidden layer and the output

layer, and r is the reduction ratio. We set r to 16 as suggested
in [31]. The function ⊕ denotes element-wise addition, and
σ is the sigmoid operation. MS ∈ RC×1×1 is the spatial
attention map that we get at last in the spatial attention module.
By simply multiplying the reshaped signal X R with the spatial
attention map MS through the function ⊗ which denotes the
element-wise multiplication, we get the spatial refined signal
X S ∈ RC×1×78. Note that Ms is auto broadcasted along the
width dimension when doing the element-wise multiplication
due to the special mechanism of Pytorch [34].

X S = X R ⊗ MS (3)

B. Temporal Attention
In the temporal attention module, the spatial refined signal

X S first compressed itself into two feature maps (i.e., F t
avg and

F t
max ∈ R1×1×78 ) through max pooling and average pooling

function along the channel dimension (the pooling kernel size
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Fig. 1. Overview of ST-CapsNet architecture. It consists of three blocks, (a) the spatial attention module, (b) the temporal attention module and
(c) the capsule network.

and pooling stride were set to C and 1, respectively). Then the
two feature maps were stacked and convolved by a convolution
layer with a 1 × D (D can be taken as 3, 5, and 7) filter, a
stride of 1, same padding, and sigmoid activation, producing
a temporal attention map MT ∈ R1×1×78.

MT = σ
(

Conv1×D
(

F t
avg; F t

max

))
(4)

Afterwards, we can get the refined EEG signal X ST ∈

RC×1×78 through the function below, which is auto broad-
casted along the channel dimension.

X ST = X S ⊗ MT (5)

C. Capsule Network
In the capsule network, we first extracted temporal features

from X ST using 10 C × 1 spatial filters through convolution
operation and ReLU function, where the stride is 1. Next,
we used 64 1× 13 temporal filters by convolution and ReLU
operations to extract temporal features of which size is 64×1×
8. The temporal features are divided into 8 groups. The size of
each group is 8×1×6, which means six 8D primary capsules.
So we got 48 8D primary capsules in total as the input of the
dynamic routing. The output of the dynamic routing is two
16D output capsules. The lengths of the two output capsules,
calculated through the L2 norm and then activated by Softmax,
represent the probabilities of P300 and Non-P300, respectively.
We can determine the label of the input sample X using eq
(6), where ptarget and pnon represent the probability that the
model identifies sample X as a P300 and a non-P300 sample,
respectively

Classi f ier(X) =

{
1 , i f ptarget > pnon

0 , otherwise
(6)

The mechanism of the dynamic routing algorithm is com-
pletely different from that of the CNN and is described in
Algorithm 1. Sabour et al. suggested that better convergence
can be obtained by using three routing iterations than one
iteration [35]. Therefore, we set the maximum number of
routing iterations, i.e., N to 3. After the dynamic routing layer,
we keep the output capsule representing the category of the
input EEG sample X as the input of the decoder network and
mask the other output capsule. The decoder network consists
of three fully connected layers; the number of neurons is 512,
1024, C × 78, and the activation functions are ReLU, ReLU,
sigmoid, respectively.

The loss function of ST-CapsNet consists of two compo-
nents, namely margin loss and reconstruction loss. The margin
loss is defined as follows:

L j = T j max (0, m+ − ||v j ||)
2

+λ(1− T j ) max (0, ||v j || − m−)
2 (7)

where L j stands for the loss of j-th output capsule, λ =

0.5, m+ = 0.9, m− = 0.1. T j = 1 if the label of the input
sample is j, otherwise T j = 0. For binary classification, the
margin loss function is more efficient, because it punishes
the predictions depending on how closely they match with
the sign of the target [36]. The reconstruction loss Lr is
obtained by calculating the mean squared error between the
input EEG signal and the reconstructed EEG signal. Adding
the reconstruction loss can boost the routing performance [25].
The total loss of the ST-CapsNet is summed as follows:

L =
∑
j=1

L j + αLr (8)

where α is set to 0.0005.
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Algorithm 1 Dynamic Routing
Input:

ui ∈ R8: primary capsule, i ∈{1, 2, . . . 48}
Output:

v j ∈ R16: output capsule, j ∈{1, 2}
Begin:

b = 0 ▷ initialize parameter b ∈ R48×2

for k in 1:N do ▷ routing iteration
for i in 1:48 and j in 1:2 do

ci j =
exp(bi j )∑2
j=1 exp(bi j )

▷couping coeffcients

for j in 1:2 do
s j =

∑48
i=1 ci j Wi j ui ▷ weight Wi j ∈ R16×8

v j =
∥s j∥

2

1+∥s j∥
2

s j

∥s j∥
▷ squash

for i in 1:48 and j in 1:2 do
bi j = bi j +Wi j ui · v j ▷ update

return v1, v2

TABLE II
PRE-TRAINED NETWORK ARCHITECTURE. C REPRESENTS THE

NUMBER OF ELECTRODES. C IS SET TO 64 FOR

DATASETS IIB, II-A, AND II-B

D. Training
We used parameters of a pre-trained model to initialize

ST-CapsNet in attention layers and two convolution layers to
obtain better convergence and avoid local optimum as sug-
gested in [35]. The pre-trained model is shown in Table II. All
models were implemented in PyTorch and trained on GeForce
RTX 2080 Ti. The batch size was set to 64. The learning rate
was initially set to 0.001 with an exponential decay rate of
0.96. For the pre-trained CNN, we employed cross-entropy
loss. The Adam optimizer with default parameters was used
to optimize all models. To avoid overfitting, the early stop and
data augmentation in braindecode [37] were used.

E. Target Symbol Recognization
The StimulusCodes [16] shown in Fig.2 have a value range

of 0 to 12 (0 when no row/column is being intensified,
1 to 6 for intensified columns, 7 to 12 for intensified rows).
Because of the low SNR of ERP, subjects need to take
15 repetitions to recognize one symbol in the P300 speller
paradigm. Each repetition has 12 stimuli that correspond to
12 stimulus codes. Let pk

(i) denote the length of the 16D
output capsule which stands for the probability of P300 when
the stimulus code is k in the i-th repetition. Pk is the sum of
those P300 possibilities from the first to the n-th repetition.

Pk =

n∑
i=1

pk
(i) (9)

Fig. 2. Different row/column intensifications are assigned to the
StimulusCodes [16]. The numbers in blue are the StimulusCodes.

Then we can identify the column c and row r of the target
symbol in the n-th repetition by:

c = arg max
k∈[1,6]

Pk (10)

r = arg max
k∈[7,12]

Pk (11)

IV. RESULTS

A. Algorithms for Comparison
To evaluate the accuracy of P300 detection and symbol

recognition, we compared our ST-CapsNet with six models
(i.e., a capsule network, two traditional methods, two deep
learning models, and a method combining deep learning and
traditional algorithms). The details of the models are described
as follows:

1) ERP-CapsNet, which was state of the art, is the first
capsule network applied to ERP detection and achieved
good results [29]. The network structure is the same as
the Capsule Network in Fig.1.

2) CNN-1 is the first proposed CNN model for P300
detection [23]. It consists of four layers; the first two
are convolutional layers (with a 64×1 spatial kernel and
50 1 × 13 temproal kernels separately) used to extract
spatial and temporal features respectively, and the last
two are fully connected layers (with 100 and 2 neurons
respectively) used to classify ERP signals.

3) MCNN-1 is an ensemble of five CNN-1 models, each
trained on a different partition of the data [23]. There are
five data partitions in total because the number of Non-
P300 samples is five times larger than the number of
P300 samples in the original data. Each data partition
is derived from the original data and has the same
number of P300 and Non-P300 samples. CNN-1 and
MCNN-1 are often used to compare P300 performance
as benchmarks.

4) Linear discriminant analysis (LDA) with covariance
shrinkage has shown better performance than a conven-
tional LDA classifier in detecting single trial ERP sig-
nals [38]. We abbreviated this approach as S-LDA and
copied the reproduction results done by Ma et al. [29]
for a clear comparison.

5) Spatially Weighted FLD-PCA (SWFP) is designed for
single trial ERP detection, which outperformed than
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Hierarchical Discriminant Component Analysis (HDCA)
[39] and Hierarchical Discriminant Principal Component
Analysis Algorithm (HDCPA) [40]. First, a spatial filter
is estimated at each time point using Fisher Linear
Discriminant (FLD), and then all the estimated spatial
filters (78 in total) are applied to an EEG sample to
obtain a spatially filtered EEG sample. Each channel
of this EEG sample is then applied with principal
component analysis (PCA) for dimensionality reduction.
Six principal components are retained to explain > 70%
variance as reported in [40].

6) MsCNN-TL-ESVM was proposed by Sourav Kundu and
Samit Ari [41]. It consists of two blocks, the feature
extraction block and the classification block. The authors
first used a convolution network with spatial filters with
fixed size (64 × 1) and multiple temporal filters of
different sizes (1 × 20 and 1 × 10) based on transfer
learning to extract discriminant spatial and temporal
features, after which they applied Fisher ratio to select
important features and then sent those selected features
to the ensemble of SVMs for symbol recognition.

B. Evaluation Metrics

We adopted accuracy (Acc.) and F1-score as metrics to
evaluate the performance of P300 detection in single trial.
To evaluate the performance of symbol recognition, it is
not sufficient to compare the number of symbols correctly
recognized under separate repetitions, because the P300-based
speller paradigm has the characteristic of cumulative effect,
i.e., the recognition accuracy of the previous repetition affects
the recognition accuracy of the next repetition. Here we give an
assumption that a good model should perform well with fewer
repetitions (reach a higher information transfer rate) without
sacrificing overall performance (correctly identifying as many
symbols as possible under all repetitions). Hence, to quantify
the performance of models in recognizing symbols under
different repetitions, we proposed a comprehensive evaluation
measure as following:

ASURk =
1
k

k∑
i=1

Ci (12)

where Ci means the correctly recognized symbols in the i-th
repetition. ASURk stands for the average correctly recognized
symbols per repetition when we take k repetitions into account.
We take three values of k (5, 10, 15). ASUR5, ASUR10 and
ASUR15 represent the average correctly recognized symbols
in the first five, ten and fifteenth repetitions separately. It is
worth mentioning that ASUR15 means the overall performance
of symbol recognition because there are 15 repetitions in total.
Besides, higher ASUR5 and ASUR10 mean higher accuracy
of symbol recognition with fewer repetitions. In addition,
to compare the symobol recognition speed of models under
different repetitions, we referred to the formula for calculat-
ing ITR under the i-th repetition in the paper [42], defined

TABLE III
RESULTS OF P300 DETECTION IN SINGLE TRIAL

as follows:

ITR =
60

(
(1− Ai ) log2

1−Ai
G−1 + Ai log2 Ai + log2 G

)
2.5+ 2.1i

(13)

where Ai is the accuracy of symbol recognition rate (in
percent) under the i-th repetition, and G (G is 36 here) is the
number of symbols presented in the p300-speller paradigm as
shown in Fig. 2.

C. Performance of P300 Detection in Single Trial
The kernel size of temporal attention module in ST-CapsNet

was chosen to be 1× 5. The results are shown in Table III.
It is obvious that ST-CapsNet outperforms other models both
in accuracy and F1-score on datasets IIb and II-B, while
ERP-CapsNet has a little higher F1-score than ST-CapsNet
on dataset II-A. The results indicate attention modules of ST-
CapsNet could boost the performance of P300 detection in
single trial.

D. Performance of Symbol Recognition
The correctly recognized symbols in every repetition

for each model on datasets IIb, II-A, II-B are shown
in Tables IV, V, VI. The character ’-’ means the authors did
not report the value in their papers. Table IV illustrates that
ST-CapsNet, ERP-CapsNet, CNN1 and MsCNN-TL-ESVM
can correctly identify all symbols in the 4th repetition, while
S-LDA requires 5 repetitions and even SWFP need take
8 repetitions to correctly recognize all symbols on dataset IIb.
In addition, ST-CapsNet and MsCNN-TL-ESVM have almost
the same performance and are better than the other methods.
On dataset II-A, both ST-CapsNet and ERP-CapsNet correctly
identified 98 symbols in the 15th repetition, and ST-CapsNet
is more accurate in the 5th to 10th repetitions while ERP-
CapsNet is more accurate in the 11th to 13th repetitions.
On dataset II-B, ST-CapsNet has the highest accuracy from
repetition 4 to 7, while MsCNN-TL-ESVM are the most
accurate from repetition 9 to 13.

As summarized in Table V and Table VI, some models have
higher accuracy when there are more repetitions but lower
recognition accuracy when there are fewer repetitions, which
means that different models have different accuracy tendencies
under repetitions. Our ST-CapsNet tends to be more accurate
with fewer repetitions, while ERP-CapsNet and MsCNN need
more repetitions to be accurate. Table VII illustrated that
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TABLE IV
NUMBER OF CORRECTLY CLASSIFIED SYMBOLS FOR DATASET IIB

TABLE V
NUMBER OF CORRECTLY CLASSIFIED SYMBOLS FOR DATASET II-A

TABLE VI
NUMBER OF CORRECTLY CLASSIFIED SYMBOLS FOR DATASET II-B

TABLE VII
ASURK (K = 5, 10, 15) ON DATASETS II-B, II-A AND II-B

ST-CapsNet has the highest accuracy of symbol recognition
on the overall performance (highest ASUR15) on the three
datasets (II-b, II-A and II-B). ERP-CapsNet is a little more
accurate in the first 5 repetitions. In summary, our ST-CapsNet
outperforms ERP-CapsNet by about 1 percent and is better
than the other models in symbol recognition.

E. Performance of ITR
To show the speed of symbol spelling, we compared the

ITR under each repetition as shown in Fig.3. The kernel size
of the temporal module was chosen to be 1×5. On dataset IIb,
ST-CapsNet and MsCNN-TL-SVM achieved almost the same

TABLE VIII
RESULTS OF P300 DETECTION UNDER DIFFERENT KERNEL

SIZES OF TEMPORAL ATTENTION MODULE

TABLE IX
NUMBER OF CORRECTLY CLASSIFIED SYMBOLS UNDER DIFFERENT

KERNEL SIZES OF TEMPORAL ATTENTION MODULE

TABLE X
ASURK (K = 5, 10, 15) UNDER UNDER DIFFERENT KERNEL

SIZES OF TEMPORAL ATTENTION MODULE

ITR performance (both with highest ITR of 51.56 bits/min)
and outperformed the other models significantly. Furthermore,
ST-CapsNet achieved the highest ITR of 13.32 bits/min in
the 6th repetition on dataset II-A and 19.74 bits/min in
the 2nd repetition on dataset II-B, respectively. Interestingly,
we found that with the same symbol recognition rate, the
performance of ITR decreases significantly with the num-
ber of repetitions. Thus, improving the symbol recognition
rate for the first few repetitions is a key point to obtain a
higher ITR.

F. Effect of Temporal Attention to Model Performance
Under Various Kernel Sizes

We also explored the performance of ST-CapsNet with
different temporal attention kernel sizes (1× 3, 1× 5, 1× 7).
Table VIII illustrates that, in single trial P300 detection, 1× 3
kernel outperformed the other two on dataset IIb, and 1× 5
is the best on datasets II-A and II-B. Although there is
a difference in performance between these three kernels in
detecting the P300, it is not significant. The number of
correctly recognized symobols and ASURk values are given
in Tables IX,X separately. ST-CapsNet with 1× 7 kernel has
better performance of symbol recognition in the first five and
ten repetitions, while with 1× 5 kernel has the best overall
performance. Those findings showed that ST-CapsNet is not
sensitive to the choice of kernel size of the temporal attention
module.
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Fig. 3. ITR Comparison under 15 repetitions. (a), (b) and (c) are for datasets IIb, II-A and II-B, respectively.

V. DISCUSSION

In this paper we used a capsule network with spatial
and temporal attention modules to improve the performance
of detecting P300. This method has superior performance
compared to ERP-CapsNet, CNN-1, MCNN-1, S-LDA, SWFP,
MsCNN-TL-ESVM for P300 detection in single trial. Among
them, the traditional methods (S-LDA, SWFP) have the worst
performance, probably because those handcrafted features do
not contain rich discriminative information, and the number of
parameters of these two models is so small that there is a risk
of underfitting. The results of classical convolutional networks
(CNN-1, MCNN1) are slightly better, but still less satisfactory.
ERP-CapsNet is about two points higher than classical convo-
lutional networks, probably because the capsule network used
a dynamic routing layer to replace the max pooling layer, thus
avoiding information loss during backpropagation. MsCNN-
TL-ESVM is a combination of multi-scale convolutional net-
work (automatically extract rich multi-scale temporal features)
and ensembled SVMs (reduce the variance of the classifiers to
avoid the risk of overfitting), and employed migration learning
training stratage (ensure the amount of training data). The
results are excellent and have nearly the same performance as
ERP-CapsNet. Our proposed ST-CapsNet outperformed ERP-
CapsNet by about 1 percentage probably because we employed
attention mechanisms to make the capsule model automatically
learn and strengthen discriminative features focusing on space
and time.

To be able to accurately detect the symbols to be spelled,
a typical solution is to increase the number of repetitions which
could improve SNR. However, as the number of repetitions
increases, the time taken to detect individual symbols becomes
longer. A good model should be able to recognize as many
symbols as possible with as few repetitions as possible. A tra-
ditional metric of evaluating the accuracy of symbol recogni-
tion is to directly compare the correctly recognized symbols at
repetitions 5, 10 and 15, respectively as used in [43] and [44].
However, this approach does not take into account the cumu-
lative effect of the P300-based speller paradigm, where the
spelling accuracy of the previous repetiton affects the accuracy
of the next repetition. Thus, we introduced a new metric ASUR
to evaluate the accuracy of symbol recognition. Higher ASUR5
and ASUR10 indicate higher average symbol recognition rate

Fig. 4. Region of Interest (marked by red circles) in spatial attention
module. These red-circled channels correspond the largest 8 values in
the spatial attention maps. The leftmost, middle, and rightmost represent
the regions of interest for datasets IIb, II-A, and II-B, respectively.

Fig. 5. Averaged topography with the target minus the non-target
component over the entire time winodw. From the leftmost column to
the rightmost column correspond to datasets IIb, II-A, II-B.

for the first 5 and the first 10 repetitions, respectively. Higher
ASUR15 indicates better overall performance of the symbol
recognition. Our experimental results show that the spatial and
temporal attention modules can improve the accuracy of ERP-
CapsNet for symbol recognition at low repetitions without
losing the overall performance. In addition, in the temporal
attention module, we tested different sizes of kernels (1 × 3,
1×5 and 1×7). These three different kernels all could achieve
better results than ERP-CapsNet on both P300 detection in
single trial and symbol recognition with similar performance,
indicating that ST-CapsNet is less sensitive to the choice of
kernel size.

To investigate the region of interest learned by spatial atten-
tion module, we ranked the averaged values of spatial attention
maps in descending order, and marked top eight electrodes in
red as shown in Fig.4. We found that all three spatial attention
maps share two common channels (Cz and CPz), and the
enhanced electrodes were located roughly in the central and
parietal lobes of the brain, indicating that the attention module
was able to capture the spatial features of P300. Furthermore,
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Fig. 6. The spatial filters obtained in the first convolutional layer.
There are 10 spatial filter feature maps for each dataset. (a), (b) and
(c) correspond to datasets IIb, II-A and II-B, respectively.

Fig. 7. The weights of the average of 10 spatial filters in the first
convolution layer. The topographic maps correspond to datasets IIb, II-
A, II-B from the leftmost to the rightmost.

the learned spatial attention maps generally accords with those
of previous studies [15], [23], [24].

To further investigate the mechanisms of how the spatial
and temporal attention modules affect the raw EEG signals,
we sent all raw EEG signals to attention layers and obtained
refined EEG signals. However, due to complex non-linear
transformations, the characteristics of the EEG signals change
considerably in time and space, which is difficult to understand
humanly. From another perspective, comparing the difference
between the mean P300 signal and the mean Non-P300 signal
is a better approach, as the attention layers maximize the dif-
ference between the P300 samples and the Non-P300 samples,
as shown in Tables III. We therefore subtracted the mean Non-
P300 signal from the mean P300 signal and averaged the EEG
topographies over the entire time period, as plotted in Fig.5.
We can see from this figure that on datasets IIb and II-A, the
energy areas of both the refined and raw EEG topographies
are concentrated in the parietal lobe; while on dataset II-B,
the energy in the parietal lobe of the refined versus the raw
EEG topographies is more focused. Those findings indicate

TABLE XI
THE RANKING OF BEST 8 ELECTRODES FOR

DATASETS IIB, II-A, AND II-B

that attentional mechanisms can enhance the ability to capture
P300 features.

We also explored the spatial features learned by the capsule
newtork in ST-CapsNet. First, we selected 10 spatial filters
in the first convolutional layer of the capsule network, and
took their absolute values for normalization. Next, we used
MNE-Python [45] to plot the topography of datasets IIb, II-A
and II-B. Fig.6 shows the weights of each of the learned spatial
filters. Fig.7 shows the average of the 10 spatial filter weights
for each dataset. We can find that the average spatial filter has
higher values in the parietal and occipital regions, which is
consistent with the results in [23] and [24]. The ranking of
best 8 electrodes for the datasets IIb, II-A, II-B are shown in
Table XI. The electrodes are arranged in descending order of
absolute values of the averaged 10 spatial filters. The common
electrodes between the three datasets are PO7, PO8, O1, CPz,
Pz, which is in general agreement with the results in [23].

Our approach illustrates that extracting good spatial and
temporal features is crucial for the classification of EEG
signals, as reported by others. For example, the deep
subject-adapted convolutional neural network (SACNN) by
Liu et al. uses parallel multiscale convolutional networks to
extract temporal and spatial features from raw EEG data and
achieve good classification accuracy [46]. Despite the excellent
performance of ST-CapsNet in P300 detection, the method
has some shortcomings. The capsule network model has a
relatively large number of parameters compared to traditional
methods and CNNs which means it needs longer training
time and requires higher performance equipment. Although
ST-CapsNet is able to achieve higher accuracy of symbol
recognition at low repetitions, we are not able to precisely
control the recognition accuracy at a single repetition. Because
P300 detection in single trial and symbol recognition are two
tasks, and our model and loss function are designed for the first
task without a well-designed training method for the second
task. In the future, we will look for a better approach in
terms of reducing the number of parameters in the model
and designing a separate training method for the symbol
recognition task.

VI. CONCLUSION

In this study, we proposed a novel deep-learning analy-
sis framework—ST-CapsNet to enhance the performance of
P300 detection. Specifically, instead of sending EEG signals
directly to the capsule network, the complex spatio-temporal
characteristics of EEG signals were initially extracted through
spatial and temporal attention modules, which were served
as inputs to the capsule network for P300 detection. On this
account, the spatial and temporal of P300 features could be
attained. Subsequent performance evaluation was conducted
on two publicly-available datasets that reveals superiority of
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the proposed ST-CapsNet in both single-trial P300 detection
and cumulative effect under different repetitions (i.e., better
ASUR). Within this context, our results demonstrate the ben-
eficial effect of adding attention mechanisms to the capsule
network in P300 speller, which may lead to new directions
for developing better P300-based BCI communication system.
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