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Abstract— Due to physiological and anatomical

variations across users, myoelectric interfaces trained
by multiple users cannot be adapted to the unique hand
movement patterns of the new user. Most current work
requires the new user to provide one or more trials
per gesture (dozens to hundreds of samples), applying
domain adaptation methods to calibrate the model and
achieve promising movement recognition performance.
However, the user burden associated with time-consuming
electromyography signal acquisition and annotation
is a key factor hindering the practical application of
myoelectric control. As shown in this work, once the
number of calibration samples is reduced, the performance
of previous cross-user myoelectric interfaces will degrade
due to the lack of enough statistics to characterize the
distributions. In this paper, a few-shot supervised domain
adaptation (FSSDA) framework is proposed to address
this issue. It aligns the distributions of different domains
by calculating the distribution distances of point-wise
surrogates. Specifically, we introduce a positive-negative
pair distance loss to find a shared embedding subspace
where each scarce sample from the new user will be
closer to the positive samples and away from the negative
samples of multiple users. Thus, FSSDA allows every
target domain sample to be paired with all source domain
samples and optimizes the feature distance between each
target domain sample and the source domain samples
within the same batch, instead of direct estimation of
the data distribution of the target domain. The proposed
method is validated on two high-density EMG datasets,
which achieves the averaged recognition accuracies of
97.59% and 82.78% with only 5 samples per gesture.
In addition, FSSDA is also effective even when only one
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sample per gesture is provided. The experimental results
show that FSSDA greatly reduces the user burden and
further facilitates the development of myoelectric pattern
recognition techniques.

Index Terms— Electromyography (EMG), myoelectric pat-
tern recognition, gesture recognition, few-shot domain
adaptation.

I. INTRODUCTION

HAND movement recognition based on the surface elec-
tromyogram (sEMG) signals is a practical technique

since it is easy to use and non-invasive [1]. The myoelec-
tric interface enables interaction with the user and external
devices and helps both healthy and disabled people with
their everyday activities. The external devices consist of the
power prostheses [2], rehabilitation robots [3] and Virtual
Reality (VR) gaming interfaces [4]. As a key technology in
myoelectric control, myoelectric pattern recognition allows
dexterous movement of multiple degrees of freedom [5].
Typically, after collecting electromyogram (EMG) data from
the user using surface electrodes, the hand motion recognition
model can be configured using myoelectric pattern recognition
techniques. Following the guided training protocol process,
high gesture recognition accuracy could be achieved in a
controlled laboratory environment.

However, there still exists a gap between the research studies
and clinical implementations due to non-ideal factors, such as
heavy user burden and the variability in the characteristics
of sEMG signals [6]. The new user is required to perform
the calibration process to train the classifier before using the
prosthetic device, which is time-consuming and may take
several days in practice. Additionally, the EMG signal also
has a user-dependent nature, a factor that leads to differences
in the signal measured when different users perform the same
movement, despite the electrodes being worn in the same
position [7]. This property is attributed to physiological and
anatomical variations across users, e.g. fiber composition, skin
resistance, muscle geometry, and fat content [8].

Many efforts are devoted to designing a cross-user model
that is grounded in the background data of other users, with
minimal effort for accommodating changes in the EMG signal
characteristics from the new user [9], [10], [11]. Khushaba
tried to find the correlation relationship between the pooled
users and the new user [7]. All users’ features were projected
to a unified-style space associated with the expert set via
canonical correlation analysis (CCA). The mapping from the
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new user to the expert set was learned with one trial of each
gesture. This framework can overcome individual differences,
achieving accuracies of >83% across multiple users. On this
basis, Xue et al. [12] proposed a framework called CCA-OT
(canonical correlation analysis-optimal transport) to further
reduce the discrepancy in data distribution between the new
user and other users via optimal transport. They achieved
8.49% improvement on thirteen Chinese sign language hand
movements performed by ten intact-limb subjects compared
to the CCA-only framework.

In recent years, convolutional neural networks (CNN) have
been widely used in gesture recognition due to the develop-
ment of deep learning techniques [13], [14], [15]. Atzori et al.
have verified CNN with a simple architecture can achieve
superior classification performance than conventional meth-
ods [16]. However, it is not very effective to use CNNs
directly to solve cross-user gesture recognition problems.
Therefore, some domain adaptation methods such as multi-
stream Adaptive Batch Normalization (MS-AdaBN) [17], sup-
portive model selection [18] and adversarial training [11]
were combined with CNN to improve cross-user performance.
Domain adaptation (DA) is a technique that uses labeled
data from an associated source domain to solve the new
task in the target domain [19]. DA is divided into super-
vised DA (SDA) and unsupervised DA (UDA) according
to whether the target domain data is labeled or not. For
the supervised DA, Kim et al. [18] firstly selected supportive
CNN classifiers pretrained by several subjects, and then fine-
tuned the classifiers with the first trial per gesture of the
new subject. The final decision was based on the output
that was most commonly classified by all supportive CNN
classifiers. Campbell et al. [11] combined the adaptive batch
normalization and domain adversarial training to CNN, which
outperformed CCA in the single-repetition calibration cross-
user setting. While the above studies have achieved great
success for cross-user gesture recognition problems, they still
require the new subject to provide one or more trials per
gesture and hold one trial for 3-5 s, to achieve adaptation
to the model. With an increasing number of gestures to be
performed, the signal collection time has to be extended.
What’s worse, as a result of the non-stationary and sensitive
nature of sEMG, the classifiers, as well as the prostheses need
to be recalibrated every day to achieve optimal performance,
which may become a heavy usage burden to the end-user [20].
Recently, Zhang et al. [21] attempted to cope with the cross-
user gesture recognition problem using UDA method and
achieved promising performance. They proposed a method
to continuously update the parameters of the classifier by
incorporating a self-guided adaptive sampling strategy for
online learning. After several iterations, the performance of the
classifier will gradually reach stability and realize a plug-and-
play gestural interface. However, in the first few iterations, the
classifier also needs a few hundred samples from the new user
to align the margin distribution of the two domains. Therefore,
the end-user has to put up with the poor performance of the
model at the beginning of its use. Typically each trial is divided
into dozens to hundreds of samples after the sliding window,
and it would further reduce the usage burden on the new

user if only several samples per gesture were used to com-
plete the calibration. Previous methods relied on calculating
distances and similarities between distributions when learning
differences among data distributions for the new user and
multiple users, and those were difficult to represent with as
few as one sample per gesture. The need to design a cross-
user gesture recognition model that relies on less training data
while attaining high performance has not been met.

In the few-shot scenario, i.e. when the size of the new user’s
samples is small, alignment of the distribution of the source
domain and target domain becomes a challenge. To tackle this
problem, inspired by [22], we introduce a few-shot supervised
domain adaptation (FSSDA) framework based on positive-
negative pair distance loss (P-N pair distance loss). This loss
aims to learn a shared feature embedding so that each new
user’s sample will be closer to the positive samples and away
from the negative samples of source domain. Our proposed
model can adequately train each scarce target domain sample
by pairing it with the source domain samples within the same
minibatch to facilitate the classification of new user’s samples.
The strength of the point-wise surrogates approach is that
it even allows a labeled target domain sample to be paired
with all source domain samples, efficiently aligning the data
distributions across domains. In this study, we explore whether
the proposed multiuser myoelectric interface can rapidly adapt
to the new user using background data from other users and
significantly reduces the usage burden. Therefore, this work is
of interest to promote the widespread commercial and clinical
use of myoelectric control systems.

The rest of the paper is organized as follows. Section II
presents the datasets and details the proposed framework
FSSDA. In Section III, the design of experiments and results
are included. An in-depth discussion is presented in Section IV.
Finally, Section V concludes our work.

II. METHODS

A. Data Preparation
High-density surface electromyogram (HD-sEMG) is mea-

sured by a large two-dimensional array with close-spaced
electrodes, which increases the possibility of extracting spatial
information due to the increased density and coverage of the
electrodes [23]. In the field of gesture recognition, combining
it with CNN will achieve better performance [14], [15], [24].
Therefore, we conducted our experiments on two high-density
EMG datasets. The first was collected by our group [21] and
the second was the CapgMyo database collected by another
research group [17].

1) Dataset-I: The first dataset contains nine intact-limb sub-
jects (referred to as M1-to-M9), including five males and four
females, all right-handed and aged between 24 and 35 years.
All subjects were asked to execute six gestures, which included
little finger extension, middle finger extension, index finger
extension, extension of both index and middle fingers, exten-
sion of the last three fingers, and wrist extension. Each gesture
was performed 10 times and one repetition of a gesture is
called a trial. One trial lasted for about 5s at a comfortable
medium-force level followed by 3s of rest to avoid muscle
fatigue. HD-sEMG signal was collected using 100 mono-polar
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channels which were arranged in a 10 × 10 grid placed on
the surface of the extensor carpi ulnaris and the extensor
digitorum with a sampling rate of 1,000 Hz. The signal was
then processed by a two-stage amplifier with a total gain of
60 dB and filtered by a 20-500 Hz bandpass filter. More
details on signal acquisition and electrode configuration were
provided in [21].

2) Dataset-II: In addition to testing on our dataset, we fur-
ther utilised the CapgMyo DB-c dataset collected and first
used by Du et al. [17]. EMG signals were recorded from ten
healthy subjects (referred to as N1-to-N10) ranging in age
from 23 to 26 years with an 8 × 16 electrode array. The
array consists of 8 acquisition modules, each containing a
matrix (8 × 2) differential electrode array. The first module
was placed on the extensor digitorum communis muscle and
the other modules were arranged equidistantly around the
surface of the right forearm. The 16-bit analogue-to-digital
converter was used to sample the signal at 1000 Hz. The
signal was then transferred to the PC via WIFI and filtered
by a band-pass filter between 20 and 380 Hz. 12 classes of
finger movements relevant to the activities of daily living were
carried on during the experiments. Each gesture was required
to be held for 3s to 10s and repeated 10 times. The subjects
rested for 7s after completing one trial at a time to avoid
muscle fatigue. To perfectly match the labels, only the static
part of the movement (about 1s) was used. In the experiment,
the processed data from N1-N9 were used since the data of
N10 could not be downloaded from the website provided in
the paper [17].

B. Data Preprocessing
For DATASET-I, in accordance with the typical settings

described in the literature [5], [25], the sEMG signal stream
was split into a series of overlapping windows (window length:
256 ms, step size: 128 ms). For DATASET-II, Following
their earlier work [14], [17], the window length and the step
size were set to 150 ms and 50 ms respectively. Then the
windows of the resting segments were discarded using the
amplitude threshold [26]. The threshold was empirically set to
the mean plus three times the standard deviation of the baseline
signal averaged over all channels. Thus, for both datasets,
the EMG signal of one trial was split into approximately
40 and 20 samples respectively. For each analysis window
of the active segment, three features, namely the waveform
length from four time-domain feature set [27], f1 and f6
from the time-dependent power spectrum descriptors feature
set [28] for each channel were empirically extracted. As a
result, the analysis windows for the two datasets are converted
into a 10 × 10 × 3 and an 8 × 16 × 3 feature matrix
respectively. These processed feature matrices are considered
as feature images equivalently, facilitating the training of CNN
models [15], [16].

C. SDA With Scarce Target Domain Samples
Suppose that we have two domains: one is the source

domain (the training set made of pairs Ds
= {

(
xs

i , ys
i
)
}

M
i=1

representing the samples of existing users), the other is the
target domain (Dt

= {xt
j }

N
j=1 representing samples of the new

Fig. 1. Illustration of P-N pair distance loss effect on a target domain
sample in the embedding space. Different shapes represent different
classes. Different colours represent samples from different domains,
where purple represents the samples from source domain and red
represents the samples from target domain.

user). The features xs
i ∈ X s and xt

j ∈ X t are realizations
of the random variables Xs and Xt respectively, while the
labels ys

i ∈ Ys and yt
j ∈ Y t are realizations of the random

variables Ys and Yt respectively. In our issue, the feature
space and the label space of two domains are the same,
i.e. X s

= X t ,Ys
= Y t . Furthermore, the target domain

Dt contains partially labeled data {xt
k}

Nl
k=1 (the calibration set

Dtl ) and unlabelled data {xt
q}

Nu
q=1 (the testing set Dtu), i.e.

Dt
= Dtl

∪ Dtu . It is assumed that there is a covariate
shift [29] between Xs and Xt and thus a difference between
the probability distributions p(Xs) and p(Xt ). SDA is utilized
to train a robust classifier f : X → Y capable of classifying
Dtu by using the labeled data from Ds and Dtl . In this work,
our particular concern is that only several labeled samples per
class of target domain are available, or even only one sample
per class.

D. P-N Pair Distance Loss
Typically, f can be decomposed into two functions, i.e.

f = k ◦ h, where k : X → Z is a mapping from the input
space X to an embedding feature space Z , and h : Z → Y
is a function for making predictions. For each sample xt

i in
the target domain Dtl , we can find a positive sample xs

j of
the same class as it in the source domain and a negative
sample xs

k of the different class from it in the source domain.
As shown in Fig. 1, to make the distance between the target
domain samples and the positive sample (P-pair distance) as
small as possible and the distance between them and the
negative sample (N-pair distance) as far as possible, positive
and negative pair distance loss (P-N pair distance loss) is
defined as follows:

LP−N =

nt∑
i

ns∑
j,k

[(
∥k

(
xt

i
)
− k

(
xs

j

)
∥

2
F

− ∥k
(
xt

i
)
− k

(
xs

k
)
∥

2
F + α

)]
+

s.t. yt
i = ys

j ̸= ys
k (1)

where [·]+ = max (·, 0), ∥·∥F denotes the Frobenius norm, nt
and ns represent the size of target domain samples and source
domain samples in a batch, and α is the margin distance of
separability between the P-N pairs in the embedding space.
It is noted that without considering the sample selection from
two domains, P-N pair distance loss becomes the well-known
triplet loss [30].
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Fig. 2. Illustration of the proposed cross-user model FSSDA.

E. Description of FSSDA Framework
Fig. 2 shows our proposed FSSDA method for cross-user

gesture recognition based on CNN. For DATASET-I, the CNN
architecture was designed based on Lenet-5 [31], which has
been widely used in gesture recognition and shown good
performance [15], [21], [32], [33]. Each scarce target domain
sample is paired with all source domain samples, resulting in
M ∗ Nl pairs. This ensures that the total number of samples
in the source and target domain is equal, to facilitate the
design of the batch sampler. The sampler then allows for
the same number of samples from existing users and the
new user in each batch. The training architecture mainly has
two streams, one for source domain and the other for target
domain. For DATASET-I, a network structure similar to [21]
was used. Each stream contains two CNN blocks and two
fully connected (FC) layers. Within each CNN block, there is
a convolutional layer to extract features, a batch normalization
layer to accelerate model convergence and a maximum pooling
layer to reduce feature dimensionality while retaining the
more important information. The number of filters in the
convolutional layers of two convolutional blocks is 64 and
128 respectively, and kernel size is 3*3 with padding = 1.
The next two FC layers contain 128 and 64 units respectively.
Except for the last FC layer in the stream of target domain,
all the previous layers share the same weight, which can be
seen as the embedding function k. A rectified linear unit is
equipped after the convolutional layers and the FC layers
to avoid vanishing gradient and enhance non-linear fitting
capability of the model [34]. A separate FC layer containing
6 units is designed as a classification layer h for the target
domain. Additionally, a dropout layer with a probability of
0.5 is adopted before the final FC layer to reduce overfitting
over training. The output of h is the predicted probabilities
of the gesture categories. The overall loss of FSSDA is as
follows:

L = LP−N + LC (2)

where LP−N is defined in (1), and the loss LC is the
classification loss calculated from the target domain. In this

experiment, this classification loss function is chosen as the
CE (cross-entropy) function.

LC = −
1
nt

nt∑
i=1

C∑
c=1

yt
ic log f

(
xt

i
)

c (3)

where nt is the size of the target samples in a batch. C
represents the number of categories of gestures. yt

ic represents
a binary indicator function: it equals 1 if the sample xt

i
truly belongs to class c, otherwise it equals 0. f

(
xt

i
)

c is the
predicted probability that the sample xt

i belongs to class c.
At each training iteration, the samples of both domains

enter the network at the same time and pass through the same
defined layer to achieve the shared weight of these network
layers. The P-N pair distance loss is calculated after the second
FC layer of both domains. The classification layer for the
target domain stream is defined separately and allows the
calculation of the CE loss. Finally, the total loss is calculated
and the parameters of the model are updated by gradient back
propagation. For DATASET-II, the same network structure
as [17] is adopted for both streams of the source domain
and the target domain, except that the stream of the source
domain does not contain a final classification layer. The other
parameter settings are the same for both networks except
that the batch size is empirically set to 32 and 64 for two
networks. Within each batch, the number of samples in two
domains is equal (half of batch size). We use Adam optimizer
(β1 = 0.9, β2 = 0.99, weight_decay = 0.0001) [35],
an epoch number of 20 in all experiments. The learning rate
is initially set to 0.0001 and is divided by 10 after the 8th and
16th epochs. The models are implemented in PyTorch 1.12.0.
and all experiments are conducted on four GeForce RTX 2080
Ti GPUs.

F. Performance Evaluation and Statistics Analysis
As with other works in multi-user gesture recognition [7],

[11], [21], the leave-one-subject-out cross-validation scheme
was used to test our proposed framework, which means that
one subject was randomly selected as the new user from all
subjects and the rest of subjects were utilized as the training
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Fig. 3. The classification accuracies using the proposed method and 6 other cross-user gesture recognition methods on DATASET-I.

set until each user was tested once as a new user. For all
subjects, the first trial of each gesture was utilized as the
calibration set and the rest of trials were utilized as the testing
set or training set depending on whether it was from a new
user or background users. The performance of the classifier
is measured with classification accuracy, which is defined as
the ratio between the number of samples correctly classified
and the total number of samples for the new user in each
cross-validation.

Many cross-user gesture recognition methods were
employed for comparison purposes. (1) LDA (linear
discriminant analysis) [36]: a classifier that is easy to
implement and has efficient performance. (2) CNN: the
same network structure as the stream of target domain
in the proposed method, without any domain adaptation
operations. (3) CCA [7]: the most classic CCA-based
cross-user gesture recognition framework. (4) CCA-OT [12]:
this framework further reduces the discrepancy in data
distribution between the source and target domain by optimal
transport based on CCA. (5) Finetune [15]: a technique
that uses a few samples of the new user to fine-tune the
parameters of the FC layer of a model pretrained by other
users. (6) CCSA [22]: an approach to solving the problem of
domain adaptation with few samples is used for comparison
as it fits better with the problem we are trying to solve.
This method uses classification and contrastive semantic
alignment loss to achieve the alignment of the distribution
between two domains. (7) MS-AdaBN [17]: the first approach
to calibrate the cross-user gesture recognition model using
UDA. (8) SGDA (self-guided domain adaptation) [21]:
an UDA approach with a self-guided adaptive sampling
strategy. In this paper, to make a fair comparison, we used
the networks adopted in the papers proposing the datasets
respectively [17], [21]. The settings of training conditions
for the different methods are shown in Table I. For the deep
learning methods, other parameters (e.g. the learning rate, the
optimizer) are set to be the same as FSSDA. For the traditional
methods, the parameters are set according to their previous
work.

Additionally, statistical significance is assessed using a one-
way repeated-measure analysis of variance (ANOVA) test with
a significance value of p = 0.05. All statistical analyses were
conducted using SPSS (v.24.0, SPSS Inc. Chicago, IL, USA).

III. EXPERIMENTS AND RESULTS

A. Classification Performance of FSSDA on Two EMG
Datasets

In the few-shot learning scenario, each new user provides
5 samples of each gesture (1/8 of one trial for DATASET-I, 1/4
of one trial for DATASET-II). It should be noted that the data
used for training LDA and CNN is only the calibration samples
of the new user, as we have found that this works better than
using other users’ data or a combination of both. For CCA
and CCA-OT, due to the small number of calibration samples,
a replication operation was performed on these samples to
facilitate the transformation of features into a unified-style
space. The other experimental conditions for the seven meth-
ods were set equal to make a fair comparison. Fig. 3 and Fig. 4
show the classification accuracies achieved by six methods on
two datasets. The accuracies of nine subjects in DATASET-I
using our proposed method (FSSDA) and LDA, CNN, Fine-
tune, CCA, CCA-OT, and CCSA were 97.59 ± 3.10%,
90.39 ± 8.24%, 90.83 ± 5.36%, 84.13 ± 13.16%, 84.50 ±

6.90%, 89.73 ± 5.77%, and 94.75 ± 6.02%, respectively. Also,
the proposed method (FSSDA), LDA, CNN, Finetune, CCA,
CCA-OT, and CCSA, yielded accuracies of 82.78 ± 5.17%,
73.29 ± 7.87%, 72.80 ± 6.60%, 49.41 ± 3.38%, 52.15 ±

6.97%, 56.45 ± 7.18%, and 76.60 ± 7.70% on DATASET-II,
respectively. The results of the comparison with the other
two UDA approaches are presented in Table I. The ANOVA
revealed the proposed method performed significantly better
for cross-user gesture recognition than all other comparison
methods on both datasets (p < 0.05 for any comparison).

B. Experiments on Different Hyperparameter α

Fig. 5 shows the averaged accuracy of nine subjects in
DATASET-I under different α settings. The margin α controls
the distance between samples in the target domain and samples
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TABLE I
COMPARISON OF TRAINING CONDITIONS AND AVERAGED CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS

Fig. 4. The classification accuracies using the proposed method and 6 other cross-user gesture recognition methods on DATASET-II.

Fig. 5. The impact of the parameters of α on the classification accuracy.

of the same and different categories in the source domain. Note
that the accuracy gradually grows as α increases from 0.01 to
0.5, and reaches the best at α = 0.3. However, when α is
larger (e.g. α = 0.5), the accuracy starts to drop. It is due to
the fact that larger margins increase the difficulty of feature
learning. For DATASET-I, we set α to 0.3. The experimental
results on DATASET-II have a similar trend, and we selected
the optimal α = 0.05 for it.

C. Experiments on Different Numbers of Calibration
Samples

The impact of the number of samples utilized in the calibra-
tion process on classification accuracy when utilizing different
methods was also analyzed. A certain number of samples were
randomly selected from the first trial of each gesture performed
by the new user. The process was repeated 3 times and the

Fig. 6. Effect of the number of samples provided by the subjects on the
classification accuracy while using different methods on DATASET-I.

averaged recognition accuracy was calculated using different
approaches. Fig. 6 and Fig. 7 show the averaged recognition
accuracy of the different methods on both datasets as the
number of samples per gesture grows. Additionally, note that
as the number of training samples is equal to the number of
classes, the LDA classifier cannot be trained at this point,
so this curve starts when the number of samples is 2. It can be
observed that the performance of LDA and CNN is poor when
the number of calibration samples is small, and with increasing
numbers of calibration samples, the final results of the three
methods are almost equal. Additionally, FSSDA still works
well compared to the other two methods even when only one
sample is provided for each gesture, achieving 95.72% and
59.46% accuracy on the two datasets respectively.

D. Visualization of Few-Shot Domain Adaptation
Fig. 8 shows the visualization results of embedding features

using t-distributed stochastic neighbor embedding (t-SNE)
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Fig. 7. Effect of the number of samples provided by the subjects on the
classification accuracy while using different methods on DATASET-II.

Fig. 8. The t-SNE visualization of sample distributions of six gesture
tasks from a representative subject. (a) Source domain before FSSDA
(b) Target domain before FSSDA (c) Source domain after FSSDA
(d) Target domain after FSSDA. Dots of different colours indicate dif-
ferent patterns of samples.

technology [37]. Fig. 8(a) and Fig. 8(b) demonstrate the
visualization of the embedding of high-dimensional features
extracted from two domains into a two-dimensional space
before using FSSDA. It can be observed that the distribution of
samples in the same category varies considerably across users,
and some of the samples in different categories even overlap
significantly with each other. After applying FSSDA, the dis-
tribution of samples in the source (Fig. 8(c)) and target domain
(Fig. 8(d)) is close, with samples from the same category close
to each other and samples from different categories of different
users far away from each other, showing good separability and
thus facilitating the classification of the gesture tasks for the
new user.

E. Computational Complexity Analysis
The number of parameters (Params), floating point opera-

tions (FLOPs) and the running time of FSSDA on two datasets
are presented in Table II. The model used in DATASET-II has
more convolutional blocks, resulting in a larger number of
params than the model used in DATASET-I. We also test the
running time by inputting the testing samples of the subjects
from two datasets into the models one by one. Therefore,
the average processing time of one sample is considered
as the running time of FSSDA. Although the running time
of the model used in DATASET-II is slightly longer than the
model used in DATASET-I, they are both far less than the
time requirement (300 ms) of real-time gesture recognition in
myoelectric control systems [36].

TABLE II
THE COMPUTATIONAL COMPLEXITY OF FSSDA ON TWO DATASETS

IV. DISCUSSIONS

Even with the rapid development of EMG pattern recog-
nition technology in recent years, severe user burden is a
significant barrier to the development of cross-user gesture
recognition technology. Due to the non-stationary and variabil-
ity in the characteristics of the EMG signal, direct application
of classifiers trained with other user’s data to the new user
is poor, as has been demonstrated in the literature [11], [21].
The difficulty of this problem lies in adapting the cross-user
model to learn the user-specific nature of the new user with
minimal training data, while taking advantage of the similarity
of patterns between different users. In this paper, a cross-
user gesture recognition framework FSSDA based on the P-N
pair distance loss is proposed to alleviate the usage burden
of the end-user by requiring only several samples per gesture.
First, we pair the scarce samples of the new user with the
sufficient samples of the background users and feed them into
the network together, so that there is the same number of both
domain samples in each batch. Then, P-N pair distance loss is
employed to find a shared embedding space that finds the most
appropriate location for each new user’s sample, which is close
to the positive samples and far from the negative samples in
the source domain. Additionally, CE loss is calculated on the
samples of the new user to build a gesture classification model
more suitable for it. By leveraging the distribution distances of
point-wise surrogates for the new user and other users, FSSDA
enables adaptive stability, reducing sEMG signal recording
time by more than four times, without sacrificing accuracy
in gesture recognition.

As demonstrated in Fig. 3 and Fig. 4, in the few-shot
scenario, some previous methods did not provide a satisfactory
solution for cross-user gesture recognition. The recognition
accuracy of CCA, CCA-OT and Finetune is even lower than
the recognition accuracy of LDA trained with only a few
samples from the new user, dropping by 6.26%, 5.89% and
0.66% on the first dataset and by 23.88%, 21.14% and 16.84%
on the second dataset, respectively. CNN achieved similar
recognition rates as LDA in this case. In contrast, Finetune
achieved the worst results, probably because the number of
samples of the new user was too small to allow the network
to learn the differences in movement patterns between the new
user and other users. Although CCA-OT further reduces the
discrepancy between the distribution of two domains on top
of CCA, it does not exceed the strong baseline of LDA.
Inaccurate statistical information about the data distribution
of the new user is calculated, leading to negative migration,
i.e. knowledge learned from background users in the source
domain can have a negative effect on the prediction of the new
user’s samples in the target domain. In this case, training an
LDA or CNN with only calibration samples would produce
better results than a cross-user model with negative migration,
although prone to overfitting. Thus, the above approaches
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lack sufficient data from the target domain for learning the
differences between distributions, and do not make full use of
the scarce samples of the new user, resulting in a cross-user
model that is not well suited to the new user. Nevertheless,
CCSA achieves better results than the previous approach, with
improvements of 4.36% and 3.31% over LDA on the two
datasets respectively, which employs contrastive loss to bound
the relationship between the scarce target samples and large
source domain samples for the separation and alignment of
the distribution. However, the recognition rate achieved by this
method is still lower than that of FSSDA because it requires
the P-pair distance = 0, which can lead to model collapse,
i.e. all samples of the same category will output the same
embedding features, thus affecting the feature representation
ability. Instead, P-N pair distance loss is to require that for
each sample in the target domain, the distance between it and
samples of a different category from source domain is larger
than the distance between it and samples of the same category
from the source domain, which ensures the distinguishability
of the embedding features and avoids the difficulty of model
learning caused by overly strong constraints.

A noteworthy point is that our group has recently used unsu-
pervised domain adaptation to address the cross-user prob-
lem [21], implementing a plug-and-play myoelectric interface.
This approach designs an adaptive domain adaptation model
that uses an adaptive sampling strategy to gradually align
the margin distribution across users, continuously updating
the model until the new user are satisfied. Although this
approach does not require the new user to provide labels of
the gestures, it still requires several hundred samples to update
the model parameters (to ensure gesture diversity) to achieve
optimal performance, whereas we only need five samples
of each gesture. As shown in Table I, the final recognition
accuracies of this method on the two datasets are 90.41 ±

14.44% and 55.27 ± 5.54%, which are still poorer than our
result 97.59 ± 3.10% and 82.78 ± 5.17%. Therefore, for the
second dataset with poorly discriminated gesture samples, the
learning of margin distributions is difficult. With a few labeled
samples, SDA achieves better cross-user gesture recognition
performance than UDA.

Fig. 6 and Fig. 7 also investigate the effect of the number
of calibration samples on two classifiers and FSSDA for two
datasets. The trend of the curves with FSSDA on the two
datasets is similar, except that the curve on the DATASET-II
changes more significantly. This is because in DATASET-I,
the number of gesture categories is small and the samples
are well differentiated, so promising recognition accuracies
are achieved when only one calibration sample per gesture is
provided. In DATASET-II, the number of gesture categories
is large and the samples are poorly differentiated. Therefore,
the recognition accuracy is lower when there is one cali-
bration sample per gesture. With each additional calibration
data provided, the network learns more accurate classification
boundaries and the recognition accuracy improves. Neverthe-
less, when the number of calibration samples is small, the
results of all methods on DATASET-II are not very promis-
ing. Although the proposed method achieves the optimal
results, no obvious improvement in recognition rate is achieved

when only 2 and 3 calibration samples are provided. This
can be attributed to the difficulty of the proposed method
to adequately align the distributions of two domains when
the input information is limited. However, it is worth not-
ing that although the curves for the two datasets start out
with different levels of growth, they can reach stability once
the calibration samples reach five. Furthermore, the results
demonstrate that increasing the size of calibration samples
could gradually enhance the robust performance of the cross-
user gesture recognition method. However, it certainly places
an increasing burden on the new user to calibrate. The time-
consuming and frequent recalibration is one of the reasons for
the high rejection rate of myoelectric pattern recognition-based
prostheses. Our method achieves stable and good performance
with as few as 5 calibration samples on both datasets, which
confirms that FSSDA reduces the effect of the number of
the calibration samples on the cross-user model performance.
FSSDA achieves the best classification results with a short
signal collection time, which may have significant implications
for the design of prosthetic devices with a low user burden.

The visualization of t-SNE in Fig. 8 further validates the
effectiveness of FSSDA. The data distribution of the new
user always differs from that of existing users. Using the
positive and negative pair relationship between samples in
two domains, the samples in the target domain are brought
closer together with samples of the same category in the source
domain and further apart with samples of a different category
in the source domain. We can intuitively observe that the
decision boundaries between different gesture patterns in two
domains become similar after using FSSDA, indicating that
the model learns the inherent correlation patterns between the
new user and other users, consistent with the hypothesis that
the EMG patterns of specific muscle activation are similar
for different users. Overall our proposed method leverages
minimal calibration data from the new user and combines addi-
tional sources of variability provided by other users to build a
cross-user gesture recognition model, which is superior to the
previous cross-subject techniques and may be a viable option
for improving EMG control based on pattern recognition.

Finally, the current study still has several limitations. This
work did not take into account in the experiments the non-ideal
factors encountered in practice, such as electrode shift [5] and
limb position [38], which may lead to performance degradation
in myoelectric control. Another issue is that while FSSDA
reduces the size of calibration samples for the new user,
it still requires samples for each gesture. If it was possible
to calibrate all gestures using a small number of gestures or
to use zero retraining as in the cross-day gesture recognition
problems [39], [40], this would further reduce the usage
burden on the end-user, which would be our future work.

V. CONCLUSION

In this paper, we propose a novel multiuser myoelectric
interface FSSDA. This framework could generalize well after
observing very few samples per class of the new user. P-N
pair distance loss was proposed to perform domain adaptation
on the sufficient samples from the source domain and the
scarce samples from the target domain, despite the mismatch in
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distribution between them. We found that using the point-wise
surrogates of distribution distances to solve the problem of the
distribution alignment across users was very effective when
the number of calibration samples was small, even if there
was only one sample per gesture. FSSDA will substantially
reduce the heavy usage burden required, reducing the sEMG
signal recording time by more than four times. The results on
both HD-sEMG datasets verify the impressive performance
of FSSDA in comparison to the prior cross-user models in
the few-shot scenario. This work has important implications
for reducing the usage burden, improving acceptance, and
increasing the base of potential users using EMG gesture
recognition. This will facilitate the widespread use of EMG
control systems in consumer and industrial applications.
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