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Towards Practical BCI-Driven Wheelchairs: A
Systematic Review Study

Mohammad Y. M. Naser and Sylvia Bhattacharya

Abstract— The use of brain signals in controlling
wheelchairs is a promising solution for many disabled indi-
viduals, specifically those who are suffering from motor
neuron disease affecting the proper functioning of their
motor units. Almost two decades since the first work, the
applicability of EEG-driven wheelchairs is still limited to
laboratory environments. In this work, a systematic review
study has been conducted to identify the state-of-the-art
and the different models adopted in the literature. Fur-
thermore, a strong emphasis is devoted to introducing the
challenges impeding a broad use of the technology as well
as the latest research trends in each of those areas.

Index Terms— Assistive technology, brain-computer
interface (BCI), electroencephalography (EEG), motor
imagery (MI), P300, SSVEP, wheelchair.

I. INTRODUCTION

OVER the past several years, Brain-Computer Inter-
face (BCI) applications have attracted more and more

researchers, taking advantage of the advancements in compu-
tational capabilities and Machine Learning (ML) science. BCI
refers to a system designed to interact with the brain to extract
a certain level of valuable information that reflects its complex
functions for use in engineering and medical applications. One
of the noble goals of BCI is to develop new means of utilizing
modern technology to help improve the quality of life of the
human being. The field of assistive and restorative technology
is a widespread common example.

BCI implementation is often a straightforward process.
Having said that, achieving adequate performance for real-
life applications remains a challenge [1]. The BCI field has
not matured enough to be carried from the research domain
to solve real-life problems. Hence, considerable work is still
needed to exploit the technology for the wide range of appli-
cations BCI can serve. Following is a brief overview of BCI
in engineering applications, which is the topic of interest in
this review work.

A. BCI in Biomedical Engineering Applications
One of the primary applications of BCI is controlling a

screen cursor, hoping to help individuals with limited physical
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abilities interact with computers without asking for external
help. Due to the simplicity of the task, it was one of the
first BCI applications to receive attention from the scientific
community. Research started more than three decades ago with
the work of Wolpaw et al. [2]. It was shown to be a promising
application of BCI [3], [4] mainly because of the few com-
mands needed from the subject and the application’s lax timing
requirements. With that, the application is still arguably limited
in its capabilities and lacks the smooth feeling that would
allow broad implementation. Hence, it is still open for research
to this day. The latest research has succeeded in achieving
satisfactory performance from an accuracy perspective (upper
90s) [5], [6]. Nevertheless, the technology still suffers from
a number of issues, such as the extra hardware needed to
facilitate the system parts (higher cost) [5] or the personalized
nature of the model (designed for individual users) [6].

Another active BCI research topic in the restorative technol-
ogy field is the development of modern, intelligent artificial
limbs (prostheses). Limbs share a high level of complexity [7]
due to the high number of tasks the artificial limb must be
able to perform to imitate the physiological organ. Because of
this, prostheses are often constructed using multiple modal-
ities, Electroencephalography (EEG) and Electromyography
(EMG), for example [8], or by combining EEG paradigms,
such as the work in [9]. Though BCI-based prostheses have
been extensively researched, their implementation is still nar-
row [10]. Therefore, it is one of the current dominant focus
areas in the BCI domain.

One equally important application is the design of BCI-
driven wheelchairs that are entirely operated by human brain
signals. This application can be of extreme help for individuals
that rely on wheelchairs to meet their movement needs, par-
ticularly for those diagnosed with any type of Motor Neuron
Disease (MND). MND is a medical condition that restrains
the person’s physical motion ability while maintaining a fully
functional brain. Symptoms of MND begin to appear gradually
and keep developing with time till all skeletal muscle activities
become impossible [11]. One of the common types of MND
is Amyotrophic Lateral Sclerosis (ALS). Additionally, BCI
wheelchairs can be beneficial for individuals diagnosed with
any medical condition affecting mobility, such as Spinal Cord
Injury (SCI). Every year, around 5000 people are diagnosed
with ALS [12] and there were approximately 294,000 active
SCI patients in 2020 in the U.S. alone [13]. With 13.7% of the
adult population in the U.S. living with a mobility disability
in 2020 [14], smart wheelchairs have the potential to improve
the quality of life of many people around the globe. Thus, it is
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one of the active research areas in the BCI field, and it is the
focus of this study.

B. Neural Activity Measuring Techniques
Brain activity can be explored using different techniques.

A main breakdown of BCI’s different techniques is based on
invasiveness. Invasive techniques require surgical intervention
for the placement of certain tools inside the human body.
These tools are often microchips. Though this technique
offers direct interaction with the brain, it demands substantial
human resources such as time, effort, and human skills, which
translates into higher costs. As a result, it is less researched
compared to non-invasive techniques that do not require such
resources.

EEG is among the most non-invasive techniques used in
BCI due to its low cost and overall effectiveness in depicting
brain activity [15]. It is mainly composed of a headset of
electrodes that provides a low-resistance path to the electrical
signals generated from the underneath brain activity. These
signals are then carefully processed to identify the brain
activity associated with signal behavior. Several challenges
pertain to EEG that can be intimidating to BCI researchers.
First, EEG signals are naturally poor in spatial resolution,
in order of a few centimeters [16], [17]. This is mainly
due to the way the signals are transferred from the bottom
layers of the brain (the source) through the brain tissues to
the scalp where the electrodes are placed, this is called the
Volume Conduction (VC) effect [8]. VC creates a challenge
of mapping the electrodes to the targeted brain region, which
already has little known about its functional structure [19]. The
temporal resolution of EEG is considerably better, in order of
milliseconds [20]. The high nonstationary behavior of EEG
causes the technique to be more susceptible to environmental
conditions such as surrounding noise, and makes it prone to
many artifacts such as eye movement and biological processes
inside the body [21], leading to an overall low Signal-to-
Noise-Ratio (SNR) [22], [23]. As a result, EEG resembles a
signal processing challenge to properly utilize the non-linear
distorted brain signals.

Besides EEG, functional Near-Infrared Spectroscopy
(fNIRS) is a commonly used technique for characterizing brain
activity. It is based on a different methodology than EEG.
It detects neural activity by sending an infrared light into the
head tissues. This light gets absorbed by the oxyhemoglobin
and deoxyhemoglobin [24] and based on this absorption,
blood oxygenation levels are estimated [25] and these reflect
the neural activity at the cortical location. fNIRS can be
portable, easier to implement, and less susceptible to artifacts
compared to EEG [26], but it can be more expensive. The two
techniques can be coupled together for enhanced performance,
such as in the work of [27] and [28]. In addition, medical
imaging techniques can be applied with EEG and fNIRS, but
those are rarely used for engineering applications due to their
complexity and high cost.

C. BCI-Driven Wheelchairs
Compared with other EEG-BCI applications, such as cursor

control and prosthesis, wheelchairs are accompanied by higher

TABLE I
ABBREVIATIONS

risks associated with system malfunction. First, this applica-
tion is time-sensitive; the right command must be issued at the
exact right time for proper operation. This is less significant
in other applications, while for wheelchairs, this may lead to
serious injuries. Also, BCI wheelchairs are expected to operate
in a highly dynamic environment with several variations in the
surrounding objects every time a task is performed. These are
two main challenges specific to the wheelchair application.
A separate section is dedicated to discussing the issues of
EEG-powered wheelchairs, and since every challenge is an
opportunity for progress, some of the most relevant research
is introduced as well.

The article is organized as follows. The literature review
is described in Section II. Then, the background information
that is essential to comprehend the findings, along with some
observations are in Section III. Section IV is dedicated to com-
paring the different approaches followed in the literature, along
with a detailed description of the underlying reasons for the
observed behavior. Section V is dedicated to introducing the
challenges and proposed solutions for EEG wheelchairs. And
finally, section VI highlights the conclusions of the study. Note
that the acronyms used in this article are shown in Table I.

II. LITERATURE REVIEW

For many, the work of Millan et al. [29], [30] established
the research of BCI for mobility applications. It has kept
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TABLE II
THE KEYWORDS AND FILTERS USED FOR THE LITERATURE REVIEW

slowly evolving, resulting in rich literature on all aspects of the
model available today. Because of that, and since the target of
this study is the practical implementation of BCI wheelchairs,
a systematic review was conducted to limit and control the type
of articles considered. The search was conducted in accordance
with the Preferred Reporting Items for Systematic review and
Meta-Analysis-Protocols (PRISMA-P) guideline [31] where
the search and consideration criteria are documented for better
reproducibility.

A. Search Strategy and Eligibility Criteria
The search was conducted on Mar 16th, 2022, between

9:00 PM and 11:00 PM EST in the following databases: Web
of Science, PubMed, and Scopus. IEEE was excluded as it
is part of Scopus. The keywords and the Boolean expressions
used, along with the applied filters, are shown in Table II. The
keywords were chosen to obtain the results specifically related
to EEG-driven wheelchairs. Also, the search was limited to
peer-reviewed articles written in English. These filters were
only available in Web of Science and Scopus. The search was
also limited to the article’s title and abstract to limit the number
of studies acquired. This is a plausible course of action,
assuming the articles related to designing BCI wheelchairs
would include the keywords BCI, EEG, and wheelchair in
their abstracts.

The procedure followed in obtaining the studies considered
herein is shown in Fig. 1. The total number of articles retrieved
is 417. The papers were exported and downloaded from the
three databases in Comma Separated Value (CSV) format.
Then, the duplicated articles were removed by Excel using
the Digital Object Identifier (DOI) of each. Papers without
DOI were removed manually. Next, all manuscripts that are
not peer-reviewed or written in any language other than
English were removed. These are the ones obtained from
PubMed where no filters were available in the search engine
(see Table II). Subsequently, the articles that were deemed
irrelevant were removed, mainly violating the search guide-
lines by not being a technical article addressing EEG-driven
wheelchairs. Most of these articles studied a specific aspect
of EEG-BCI applications, such as new feature extraction

Fig. 1. The stages of Prisma strategy as applied in this work.

or classification techniques. This type of articles frequently
mentioned the term “wheelchair” in the abstract as a direct BCI
application. After that, the rest of the articles went through a
thorough reading step to determine which articles to exclude
according to the following five rejection criteria:

• Criterion 1: No real-life navigation test using a full-
size wheelchair. This is to account for any differences
in performance resulting from user fatigue or any vari-
ables introduced by the environment or the hardware
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design. Hence, studies consisting of virtual (simulated)
wheelchairs or small robots in place of wheelchairs were
not included.

• Criterion 2:The EEG paradigm or acquisition details
are not given. These are the articles where significant
details about the paradigm used are missing. Such missing
details include the EEG acquisition procedure, testing
environment, etc.

• Criterion 3:No results reported.
• Criterion 4:Unclear testing procedure or results.
• Criterion 5:Wheelchair results embedded with other

functions.
The reason for applying the five exclusion criteria is to
keep this work focused on the practicality aspect of BCI
wheelchairs. The insightful papers that were excluded may
still be used to explain some methodologies but will not be
part of the comparison carried out later. Of what is left (28
articles), 4 papers were not available, 3 because the journal
repository is not accessible anymore, and the last one because
it has been retracted. The final count for the articles considered
is 24. Every step of the literature review process was repeated
twice to ensure accuracy.

B. Considered Articles
The articles resulting from the search are shown in Table III

sorted by the EEG paradigm used. The most useful details
and performance metrics are included in the table as well. The
following section will briefly introduce the needed background
information to comprehend the information in the table.
The performance metrics will be compared in the following
section.

III. OBSERVATIONS

EEG is the main modality used in smart wheelchairs. This
is mainly due to the large amount of information that can be
extracted from the brain due to its complex and essential role
in human cognitive and physical activities, and because it does
not require any physical activity from the human, which is the
main advantage of EEG over EMG, Electrooculogram (EOG),
and eye tracking for this type of applications. With that said,
EMG, EOG, and eye tracking have been used in conjugation
with EEG to leverage the special characteristics of each, such
as the work in [32], [33], and [34], respectively. A simplified
scheme of the EEG modality as applied in wheelchair control
is shown in Fig. 2. More details on the steps in the figure are
provided below.

A. EEG Paradigms
EEG signals can be categorized into two groups based

on how they are triggered: spontaneous and evoked. While
evoked signals only arise when triggered by external stimuli,
spontaneous signals are self-generated signals that reflect the
human mental and awareness status. Motor Imagery (MI)
signals belong to the spontaneous type of signals. They appear
on the EEG as a result of mentally performing motor tasks
using several body parts, such as the hands, the feet, and

Fig. 2. An overall scheme of EEG-driven wheelchairs.

the tongue. MI signals are identified by a decrease in brain
activity before and while performing motor tasks in a process
known as Event-Related Desynchronization (ERD). After the
motor task is completed, whether physically or mentally
performed, the brain activity returns to normal in a process
called Event-Related Synchronization (ERS) [35]. There are
spatial differences related to ERD and ERS as well. The tempo
spatial characteristics of ERD and ERS have been an open
discussion for the last three decades, mainly because of their
dependence on the limb used and on the rhythm of interest.
MI is mostly associated with two brain rhythms, Beta (β) and
Mu (µ) [35]. For hand MI, it is been shown that for ERD,
a dominant neural activity exists over the contralateral side of
the brain (opposite to the side of the limb used), while ERS
shows high activity on the ipsilateral side of the brain, and this
is valid for both the β and µ rhythms but it is less evident for
β-ERS [36]. For an in-depth view of the ERS and ERD spatial
characteristics, the reader is encouraged to review the work of
[37], [38], and [39].

For evoked signals, two types are often used in BCI: P300
and Steady-State Visual Evoked Potential (SSVEP). P300 is
a signal that appears approximately 300ms after the onset
of an uncommon stimulus, whether it is visual, auditory,
or somatosensory. This type of signals belongs to a group
of signals called Event-Related Potential (ERP), which rep-
resents the signal behavior in the brain after experiencing an
infrequent stimulus. This paradigm is used in BCI by utilizing
different stimuli that each flickers with a slight shift from
the other. This is to allow linking the signal observed on
the EEG with the stimulus chosen by the user. For example,
one stimulus can flicker at to and every other stimulus n can
set to flicker at tn + to. The other evoked signal paradigm,
SSVEP, is triggered by lighting stimuli. These signals, unlike
P300, are periodic, following the periodic stimulus rather
than a single spike. The frequencies of the generated signals
are integer multiples of the stimulus’ fundamental frequency.
Hence, it is relatively simple to achieve a high number
of commands by using stimuli flickering at distinctive low
frequencies.

While both signal types, spontaneous and evoked, are used
in the literature, each holds a different set of pros and cons.



1034 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE III
STUDIES CONSIDERED IN THIS WORK
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For evoked signals, several cycles are needed to conclude
the final decision. This is to ensure robust translation of the
response signal. In other words, to mitigate possible noise
and artifacts from the environment. This issue is critical as it
slows down the command translation process. Also, evoked
signals can cause tiring for the eye due to the continuous
exposure to flickering sources. While this issue does not exist
in the MI paradigm, MI suffers from the high mental workload
placed on the brain compared to evoked signals; both P300
and SSVEP do not require performing any mental imagery
tasks. One advantage of MI is that it gives the user a full
sense of control as the user can issue a command at any time,
unlike the evoked signals case where a sequence of stimuli
must occur to issue the command. Because of that, MI systems
are often called active systems, and evoked signals are called
reactive systems. The biggest disadvantage of active systems
is the need for extensive user-specific training sessions before
the chair is used. This is a result of the non-stationary and
noisy nature of EEG signals that cause high variability in
response among subjects and across different sessions. This
issue necessitates building the classifier using data from the
same subject that will be using the classifier in real time at
a later stage. The other disadvantage of MI is the limitation
on the number of commands, which arises from the limited
number of motor activities possible to perform by the user. One
solution to this problem is using other biological modalities to
perform the commands not achievable by EEG, such as EMG,
EOG, and eye movement and position tracking. Lastly, it is
believed that user MI training will result in better performance
with time as the user adapts to the classifier by receiving
several feedback cycles. P300 on the other side is expected
to have lower performance with time because of aging [40].
For the above reasons, both BCI systems, active and reactive,
have drawbacks that limit their implementation. They also
have some unique characteristics that are worth exploring for
the potential of transferring the technology to the real world.
Table IV shows a side-by-side comparison of the different
paradigms.

The three EEG paradigms (MI, P300, and SSVEP) can be
used alone, or in a combination of two or three. Any use
of multiple paradigms is referred to as hybrid models in this
article. EEG can also be combined with other physiological
modalities to form what is known as multi-modal BCI systems.
From Table III, secondary modalities include speech, and
EOG, which is a technique to measure the surface voltage
from the eye, mainly triggered by blinking. In addition to
the aforementioned EEG paradigms, the work of [63], [43],
and [41] used spontaneous EEG signals different from the
MI paradigm. In [63], they used the intensity level of the
filtered signal in the alpha band. In [43] and [41], they targeted
Mental Tasks (MTs) which they are ERS/ERD signals different
from MI. In [43], they used math solving, text reading, and
relaxing. In [41], mental arithmetic operations and word chains
were used. The use of MTs is far less common than MI.
From Table III, all paradigms are actively being used, which
indicates that no ideal model is determined. With that being
said, it is believed that MI provides a better user experience
compared to MTs in navigation applications. For example,

TABLE IV
DIFFERENT PARADIGMS USED FOR EEG-DRIVEN WHEELCHAIRS

associating right and left directions with right and left MI is
more intuitive than using MTs.

B. Control Methodologies
The control level refers to the method of interaction with

the chair. There are two control methodologies commonly used
in the literature, these are low-level (asynchronous) and high-
level (synchronous). In the first type, the user controls the
wheelchair through directional commands. The EEG signals
from the user are mapped to directional chair movement com-
mands, such as right, left, forward, etc. For example, a right-
hand MI is mapped to a 90◦ right turn of the wheelchair. High-
level systems on the other hand refer to systems where the
EEG signals are mapped to destinations rather than directions.
The destinations are built-in (pre-programmed) into the model.
So, each EEG signal will select a different destination that the
wheelchair is capable of automatically driving to it. There is
also a third type of control, which is a combination of low
and high-level control commands, known as hybrid systems.

From Table III, most systems adopt the low-level model.
This is probably due to the flexibility these systems offer in
navigating to unseen places and the fact they do not require
external aid. Also, very few articles show an independent high-
level system despite its advantage of requiring little mental
work and training from the user. This is understandable since
it is limited by the list of pre-defined locations; modifying the
list would probably need an intervention by someone besides
the user. Another reason is the extra equipment required for
environment detection and path planning. This is crucial from
a cost perspective as accurate path navigation and collision
avoidance systems require fast and reliable environment detec-
tion equipment implying higher cost, so it is generally less
appealing to the audience.
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TABLE V
EEG ACQUISITION AND PREPROCESSING DETAILS FOR THE ARTICLES IN TABLE III

C. Data Acquisition
An essential piece of information for BCI systems is the

details of the EEG signals acquisition, mainly the number
of electrodes and the targeted brain region. This is crucial
to assess the feasibility of the technique as setting up EEG
can be a tedious process that requires a certain level of
experience from the examiner. The data acquisition details and
the preprocessing steps for some of the articles in Table III
are shown in Table V. The brain signals are extracted using
an EEG cap composed of a number of electrodes placed
according to a well-established configuration called the 10-20
configuration. While more electrodes may offer greater detail,
it entails many practical issues. From Table V, the number of

EEG electrodes and their locations differ across the studies as
they target different brain signals active in different regions of
the brain.

The MI signals are active over the motor cortex [64], [65]
located in the central lobe close to the front region. This
explains the use of those regions in most studies utilizing the
MI paradigm. The entire area surrounding the motor cortex is
usually targeted to account for the poor spatial resolution and
the possible shift in electrode positions during the cap install.
The occipital region works well in showing the visual effects
on the brain, making it preferred to use in SSVEP applications.
The location to detect the P300 signal depends on the stimulus
type whether it is visual or auditory [66].
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In addition to the poor spatial resolution of EEG, another
fundamental reason for the difference in targeted brain regions
in the studies is the lack of a solid understanding of the
interconnections between the brain regions and the lack of
thorough understanding of the brain functional strategies.
Accurate targeting for a brain region lowers the number of
electrodes needed, which greatly influences the applicability
of EEG in social settings. For instance, the average number
of electrodes in the SSVEP case is noticeably lower than it is
for MI. This is due to the smaller area of concentration.

D. Signal Processing
A BCI-driven wheelchair system is composed of two parts,

as shown in Fig. 2. The first part is the training session, which
is a controlled experiment conducted before the navigation
test takes place to extract EEG signals from the users. These
signals are then downsized via what is called a feature extrac-
tion step for use in building and optimizing the ML classifier
in a step known as feature classification. Since the classifier
is constructed based on subject-specific data, it is called a
subject-specific classifier. The second part is the testing session
where the navigation test takes place. In this part, the user
initiates the commands and classifier performance is reported.
The details of each of the steps are out of the scope of this
study but below is a brief description of each. The typical EEG
preprocessing steps are:

1) Amplification: Amplifying the signal is a necessary step
to increase the SNR to help differentiate the brain signal from
the environment-induced noise and artifacts. Amplification can
be either done at the electrode level using active electrodes
(an individual amplifier is located next to each electrode)
or after the signals from all channels are transmitted to the
processing unit. The use of active electrodes is valuable in
that it is carried out before any interference from the neigh-
boring electrodes or nearby external sources of noise occurs.
Passive amplification, on the other side, is not able to address
electrode interference as it is done on the data transmission
level. The brought value of active electrodes is still up for
discussion. Though it was shown in [67] that lower power
values are noticed using passive electrodes, other studies show
comparable noise levels for both types [68], [69]. This should
not be surprising as the added value is highly dependent on
the interference level and experimental conditions, such as the
electrode impedance value [70]. For the studies screened in
this work, [42], [51], [56], [63] used active electrodes. Besides
[51], no significant improvement is observed. Note that the
four studies were conducted in an indoor environment with
limited noise sources, so the value of using active electrodes
is most likely underestimated herein.

2) Sampling: Sampling is needed to convert the signal from
analog to digital format for easier processing. As EEG is
known for its noisy behavior and fast activity, down sam-
pling the analog signal is usually done without a major loss
in accuracy. Of the studies in Table III, 21 studies used a
sampling frequency between 200 Hz and 256 Hz, so this is
an agreed-upon reasonable sampling frequency that maintains
good signal quality without necessitating much computing
capabilities.

3) Filtration: Filtration of unwanted frequencies is an essen-
tial step for all systems. Depending on the targeted frequency
range for the brain signals, the appropriate filters to remove
other frequency components are applied. Noise and artifacts of
high frequencies are easy to identify and remove since EEG
signals are mostly of low frequencies. The general filtering
procedure for most of the studies screened is to apply a
bandpass filter around the needed frequency range along with a
notch filter at 50/60 Hz to remove powerline interference. The
bandpass filter usually starts at very slow frequencies larger
than 0 to avoid Direct Current (DC) interference and extends
to around 30 Hz, this covers α, β, andγ rhythms in addition to
all possible P300 and SSVEP frequencies. The exact filtration
range differs in the literature as it is dependent on the noise
sources.

E. ML Steps (Feature Extraction and Classification)
1) Feature Extraction: Feature extraction is meant to extract

the features that Best represent the signal qualities to reduce
the data size with minimal loss in quality.

From Table III, it is evident how the Common Spatial
Pattern (CSP) [71], [72] is overwhelmingly dominating the
field of MI-BCI. CSP is a powerful spatial filtering technique
based on joint diagonalization of the spatial patterns to find
a transformation matrix for each of the two classes. The first
and last few rows of each matrix are used to maximize the
variance in the band power between the two classes. This
method is highly dependent on the subject and works with
only two classes at a time. Thus, when there are more than
two classes, which is often the case, it can be done in a one-
versus-all fashion, also known as multi-CSP. This has been
applied in [42], [56], [59], and [61]. There have been several
modifications to the original algorithm such as the popular
Discriminative Filter Bank CSP (DFBCSP) method [73], used
in [55]. Moreover, Band Power (BP) features can be used
for MI. As the name implies, BP features are the power
of the EEG signals in each frequency band [74]. For MTs,
many statistical features can be used. In [41], they used four
statistical features: mean absolute values, standard, deviation,
line length, and the number of zero crossings.

For SSVEP and P300 the process is less critical and not
always necessary as the amount of data is far more reasonable
compared to MI and it is easier to identify because of the
well-defined brain reaction to both paradigms. For SSVEP,
since the frequency of the generated signal is known, Power
Spectral Density (PSD) can be easily applied to identify a
specific frequency, [50] is an example of this technique. For
P300 on the other side, the timing of the generated signal
is what is known to the operator. Thus, the use of a Band
Pass Filter (BPF) targeting the expected time frame of the
P300 response is a valid common technique, the work in [59]
and [60] utilize this technique.

2) Feature Classification: From Table III, Support Vector
Machines (SVM) [75] and Linear Discriminant Analysis
(LDA) [76] are the most common techniques used in the
literature. LDA is a linear classifier that performs the sepa-
ration by constructing hyperplanes that minimize the variance
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within each class and maximize the distance between the two
classes’ means. It has various variants, such as Functional LDA
(FLDA) used in [51], and Step-Wise LDA (SWLDA) used
in [52]. SVM is a classifier that imitates transformation to a
higher dimension for maximized separability via using kernel
functions. In EEG, the Radial Basis Function (RBF) kernel is
very common to use, such as in the work of [58], as well as
the Hybrid Kernel Function (HKF) used in [55].

Canonical Correlation Analysis (CCA) is commonly used
for reactive systems to find the correlation between a reference
signal resembling the stimulus and the generated signals, such
as in [57]. It can also be used to link the response recorded
in training to the actual signal generated while testing. Filter
Bank CCA (FBCCA) is a modification of CCA that is better
utilized to detect the harmonics of the source fundamental
frequency [77] and it was used in [55]. CCA is only one
method of finding the correlation between two signals. Other
methods can be applied effectively to classify both P300 and
SSVEP response signals. For an extensive review of EEG
classifiers, the reader is encouraged to peruse the work of Lotte
et al. [78].

3) Classifier Training: Classifier training refers to the pro-
cess of collecting data from the subjects for the purpose of
constructing the ML classifier. Classifier training is often a
time-consuming process that takes much effort from both the
examiner and the user, particularly since training is a subject-
specific process. To the best of the authors’ knowledge, no one
has ever succeeded in using pre-trained BCI models, including
all studies in Table III.

In the table, the training sessions conducted in each of the
studies are shown. The term “trial” refers to the instance where
the user performs a mental task, whether it is an actual mental
task in the case of MI and MT or perceiving a stimulus in the
case of reactive systems. With a few exceptions, it is clear
how many trials are always needed before the experiment
takes place. Note that the trials must cover all mental tasks or
stimuli presented, which increases the time needed to finish
the experiment, especially as this session is repeated for each
subject. MI training can last for a few hours, while in reactive
systems, it can be carried out in a few minutes.

4) Testing and Performance Metrics: The number of subjects
who carried the tasks and their disability status are included
in the table. The letter “H” represents healthy participants,
meaning that no mobility disability was disclosed by the
subject. The letter “D” refers to individuals diagnosed with
any type of motor disability. There have been some studies that
discuss the difference in BCI performance between healthy and
disabled individuals. Hence, having several disabled individu-
als performing the tests adds credibility to the effectiveness of
the proposed model. Whether the difference in performance
is driven by physiological or behavioral reasons, this was
observed in at least two of the studies in Table III, these
are [51] and [60]. Also, the users are classified if they have
any experience of any type with BCI applications. This is to
weigh the effect of subject training, which is believed to be
a determining factor in the overall performance. The work
of [55] and [63] confirm this idea while [56] did not show
a difference between the two groups. The difficulty level of

the test along with the number of rounds performed by each
subject are included as well. The difficulty level is included
to provide a reference meaning to the results reported. While
most articles conducted a relatively easy indoor navigation
experiment, some performed more challenging ones by placing
obstacles in close proximity to the user’s navigation path for
example. High-difficulty tasks refer to challenging experiments
where the test is usually conducted in tight places and require
maneuvering skills to avoid collisions.

The last section of the table presents different performance
metrics important to assessing the different designs. First, there
are the accuracy values, as achieved during the navigation
task. Accuracy is defined as the number of correct commands
captured by the classifiers with respect to the total number of
commands initiated by the user in real-time. A more universal
testing performance metric is the time taken to cross a certain
distance [s/m]. Simply, it is the speed reciprocal. Except where
noted, the distance and time were taken directly from the
papers. More results are shown in the last column of the table.
These include the number of collisions and the number of
commands per unit of time or distance, the time and distance
taken with respect to the optimal minimum values, and also the
number of commands which is a valuable metric for assessing
the mental workload placed on the user.

IV. COMPARISON AND DETAILED DESCRIPTION

As said before, the several major differences in the designs
make the comparison between the different studies more
challenging. With that, a detailed look at the different articles
in Table III is introduced in this section to help shape some
conclusions on the methodologies adopted in the literature.

A. Spontaneous Paradigm
All MI studies utilize the low-level BCI model, which

should not be surprising due to the limited possible number of
MI tasks. Of the seven studies, only two report accuracy val-
ues: 65.50% and 76.92% for [41] and [44], respectively. Both
studies used band power features with an LDA classifier. The
data acquisition, training, and navigation tests are also similar
as they both are coming from the same group of researchers.
Though the reported accuracy exceeds the chance level, 50%
and 25%, respectively, they are lower than acceptable for
practical applications. The low accuracy values are reflected
in a long time needed to finish the experiments. For [41], the
average of 18.20 s/m is a high value, especially considering
the simple navigation task of moving in a short straight line
with two stops along the route. The short-distance route along
with the needed stops resulted in a high number of commands.
Though the accuracy is better in [44], the time/distance metric
is much higher due to the collision detection mechanism that
was automatically activated many times to avoid collisions
in the tight corridor used for navigation. In both studies, the
authors believe that the main driver of the poor performance
is the low accuracy values reported in the calibration session;
most participants scored in the 70s and 80s range. This is
despite the fact that the users with error exceeding 30%
were removed from the navigation experiment and claimed
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BCI illiterate. BCI literacy is a condition where the subject
cannot produce mental tasks with accuracy above 70% [79].
In [47], a similar system is proposed but less practical as every
command moves the chair to a new point of a grid covering the
testing area. This operation is less smooth as it requires a high
number of commands to travel between places (around one
command every ten seconds for the navigation task reported).
In [46], CSP features are used to train an LDA classifier, which
is a common combination in the literature. The model was only
tested using one subject for an easy task and similar mental
work to what is reported in [47] was needed. The installed
collision avoidance system was able to avoid all collisions
with a rate of 2.58 collision per minute. Based on the given
testing area geometry, the speed reciprocal is expected to be
very high.

The work in [42] is one of the promising studies utilizing
MI. 31 active electrodes were used to collect the signals, which
is on the high end. A CSP-LDA combination is used for users
with some level of BCI experience who went through rea-
sonable training before performing an indoor path navigation
task with one waypoint 15 times. The number of commands
turned out high as the task required several turns along the
way and because of a few collisions that occurred along the
way. On average, the chair needed 13.65 seconds to cross one
meter of distance including the stop point. Though this is a
high number, the authors believe thee results of this study are
truly reflective of the paradigm used as it was carried out with
several subjects in a non-trivial task and several meaningful
results are reported.

The work in [45] is the only work to conduct the navigation
task in an outdoor environment. This is of extreme significance
to assess the environmental effect on the overall performance.
With noting that the signals were acquired with 24 dry
electrodes and a typical SVM classifier is used to process the
CSP features, an impressive 5.60 s/m on average was needed to
perform an intermediate-level task of moving between objects
in an open space. The other results are encouraging as well.
Note that the time ratio is obtained by using a fixed 0.2 m/s
chair speed as a reference and the distance ratio is the ratio
of the distance taken to the lowest distance between the start
and end points.

Lastly, the single use of MTs was tested in [43]. The use
of a combination of classifiers exceeded the accuracy values
obtained from the single classifiers and was able to reach a
90% limit. Unfortunately, it is hard to analyze the overall
system performance by only knowing the Root Mean Square
(RMS) position error, but this study has shown potential in the
combined use of classifiers.

B. Evoked Signal Paradigms
The work shown in [48] and [50] use the SSVEP paradigm

for operating the wheelchair. They place several electrodes in
the occipital region to capture the signal resulting from the
lighting stimuli. The first note to make is the high accuracies
achieved compared to MI which is expected for evoked
signals. The speed reciprocal is approximated to be in the
range between 18 s/m and 40 s/m for [50]. The results are

based on four different tasks performed by several individuals
ranging between 4 and 13 per task. Based on the high number
of participants and considering the slow SSVEP paradigm,
it should not be surprising to have this high s/m ratio. The
same metric in the other study [48] is decent. This is mainly
due to the easy navigation task performed. From both articles,
it is also clear how the number of commands is noticeably high
compared with MI. With that, it is expected to induce a lighter
mental workload on the user as these commands resemble
gazing at the stimuli and not performing actual mental tasks.

The other study of SSVEP is [49]. The model created
for this work can be used in low, high, and hybrid formats.
The main paradigm is the low-level paradigm where the user
initiates control commands in the form of directions to the
chair. While traveling using that paradigm, the user is able to
program a specific location to be saved for later use in a high-
level fashion. The test conducted is a hybrid test composed
of two tasks, one carried in low and one in high level. Such
a system solves one of the biggest drawbacks of high-level
systems, which is the need for external aid to enter new
destinations.

The results using the P300 model are expected to be
comparable to those of SSVEP. The work in [53] achieved a
satisfactory performance when using P300 in a low-level fash-
ion for a challenging task (1.12 distance ratio, and 2.64 time
ratio). Accuracy (82.5%) is within expected as well.

The work of [54] shows a typical high-level system utilizing
the P300 response. All commands were translated successfully
(100% accuracy), and this is expected because of the limited
number of commands needed in high-level systems. On aver-
age, 15 seconds were needed to initiate the command from
the user. Once initiated, the wheelchair automatically drives
to the pre-defined destination.

The work of [52] shows a hybrid model where the user
initiates low-level commands to choose a destination of the
ones shown on the monitor. This system was particularly cre-
ated for short-distanced destinations. This control scheme has
resulted in the system being slower than expected. This raises a
question on the feasibility of using high-level commands and
whether it is easier to navigate to destinations within sight
using directional commands. A similar control methodology
is applied in [51]. The results in the table are obtained by
applying the low-level scheme. It is obvious that the accuracy
achieved is more than satisfactory, especially when noting that
the participants were a mix of healthy and disabled individuals.
Note that the signals are obtained using active electrodes as
well. The low number of commands is because a large portion
of the route is a straight path.

C. Hybrid Models
Hybrid models refer to models of more than one EEG

paradigm. The work shown in [56] and [59] are similar as
both utilize combining the MI and P300 paradigms to navigate
the wheelchair by directional commands. Both studies use
the CSP-LDA combination and conduct relatively challenging
navigation tasks in tight corridors. Both also provide satisfac-
tory results, but neither drastically outperforms other work in
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the literature. With that in mind, it is worth mentioning that
the use of multiple paradigms may offer new capabilities that
are not necessarily reflected in the results. One example of
this is the use of the evoked signal paradigm to control the
chair speed while dedicating MI for issuing the navigation
commands, such as in [59]. Another possible use is for
enhanced decision robustness.

Combining MI with SSVEP for low-level systems was
tested in the work of [55]. For a challenging task, the rate
of collisions is one per forty meters, which can be seen as
acceptable considering the difficulty of the task. As well, it is
worth noting that high classification accuracy values were
achieved in the study (above 90%) for both MI and SSVEP.

The work shown in [57] and [58] is resulting from the same
group of researchers utilizing very similar systems. The results
of both show comparable performance obtained by conducting
simple navigation tasks. The metrics reported do not show a
major increase in performance compared to some of the single
paradigm articles in the table.

D. Multi-Modal Models

Multi-modal models refer to models of more than one
modality. Here, EEG is always one of the two. The work
shown in [63] extracts the signals using a headband sensor
rather than an EEG cap. While this is a more practical
approach, it is limited by the area it covers. In this work,
the intensity of the α rhythm as well as eye blinking signals
appearing on EEG are taken as features. This approach resulted
in a high s/m metric for a simple navigation task.

In [62], human speech was used to initiate the stop com-
mand, P300 to start the chair, and MI for the navigation
commands. The test is a very simple one in a half-circle
path carried out ten times per each of the five subjects.
The s/m achieved is the lowest one seen in the literature.
This positive result is further confirmed by the optimal time
and distance ratios. Note that this exceptional performance is
compromised by the technical challenges of facilitating the
different modalities used.

Another common modality to use with EEG is EOG. It is
considered a different modality in this study because it requires
a different action besides mental activity. In [33], MI is
combined with EOG. The number of collisions per meter is
around 1/30m which is close to [55]. In [60], the P300 was
combined with EOG. It is applied in both low and high-
level fashion. Both were separately tested. It is clear that
the low-level system is slower as expected because of the
higher number of commands needed. Note that both results are
satisfactory compared to the other studies in the table. Lastly,
both P300 and MI are combined in [61]. A challenging task
was conducted by four experienced subjects and good results
were achieved.

V. CHALLENGES AND FUTURE TRENDS

The main challenges of EEG-driven wheelchairs that pro-
hibit a wider use of the technology are introduced below.

A. Lack of Standardized Testing
EEG-driven wheelchairs have many variables contributing

to their final performance. To that end, a unified strategy to test
the final product is a tricky task and under no circumstances
a single metric would be sufficient to describe all details of
the system. The metrics used in the literature are introduced
in Table VI.

While accuracy, is a preferred metric in a lot of BCI
applications, it has limited significance in high-level/hybrid
systems as the number of commands issued in such systems is
limited. Thus, the time/distance metric is believed to be a more
thorough representation of system performance. This metric
is not commonly used in the literature (the values reported in
Table III were calculated by the authors). The metric though
does not adequately account for any stop points along the route
or the difficulty level of the navigation path. Additionally,
the ratios of actual time and/or distance with respect to
the minimum values help assess how close the developed
model is compared to regular wheelchairs. The number of
collisions is essential to ensure system safety. In short, there
are several metrics to report. Excluding some of them may
produce incorrect or faulty conclusions. In our opinion, all
metrics in Table VI must be reported to avoid inaccurate
conclusions. If these are reported, a good indication of the
overall performance is possible, regardless of the navigation
task.

The mental workload of the paradigm is another critical
factor to consider. The direct way to assess the workload is by
observing the number, duration, and type of tasks performed.
Some researchers prefer using the well-established NASA
task load index [80], while others come up with their own
assessments, such as the work of [81]. The use of surveys is
also possible. And lastly, a more systematic signal-based way
is possible by studying the brain activity by means of ML,
similar to the work of [82], [83], and [84].

B. Issues With the MI Paradigm
Due to the many advantages of MI over reactive systems,

it is believed to have a real potential to become applicable
in real-life settings. One of the biggest drawbacks of MI is
the extensive training preceding the experiment. It is widely
accepted and intuitive to believe that longer training sessions
would generate better results. Classifier training is not only
critical as it increases the requirements of the model, but it
acts as a major barrier to commercial BCI wheelchairs since
the user needs to train the model and cannot obtain it pre-
programmed.

The other main issue with training is that it should be
carried out for each subject. This is a tiring step for potential
disabled users. This becomes more concerning knowing that
the motor neuron abilities of MND patients keep changing
with time [12]. In addition, there have been several studies that
show age as a responsible factor for changing the brain signals
behavior with time [85]. All of this indicates the instability
of current approaches. To that end, the authors believe that
adopting dynamic MI models where little-to-no user-specific
data is required will boost the applicability of such systems.
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A dynamic classifier is a classifier that needs a minimal
amount of information from the user and keeps adjusting
its parameters based on data obtained in real-time. This will
eliminate the training session and results in a classifier more
adaptable to different subjects and conditions. Reducing the
training time holds high significance that extends beyond
wheelchairs to several BCI applications. Recent work that
started to discover this area includes [86], [87]. In the studies,
the concept of transfer learning was deployed where only a
small data set is needed from the targeted user and promising
results of equal and even exceeding other user-specific training
models were achieved, which shows a positive trend towards
building robust universal classifiers.

One other limitation is the small number of achievable
commands with adequate accuracy. Most researchers target
the use of up to three MI movements, these are both hands
and feet. If a wheelchair design requires a higher number of
commands, these can be achieved by another modality or EEG
paradigm.

C. Issues With Evoked Signals Paradigms
One of the challenges of P300 and SSVEP is the non-

intuitive way the chair is being controlled which may cause
hesitancy from potential users to use the technology. Also,
these systems require extra equipment to be mounted on the
chair to facilitate having the stimulus. As well, since these
paradigms are often applied in a high-level fashion, they
require expensive equipment for path planning and obstacle
avoidance. And most importantly, the long response time in
these models is hard to overcome as it is an artifact of the
design itself.

Another issue for P300 models is the possibility of reduced
performance with time as the eye gets used to the stimulus.
Hence, the stimulus needs to be periodically changed. More
crucially, both P300 and SSVEP are tiring to the eye, but the
extent of this issue is still largely unexplored.

D. EEG Impracticality
One major challenge of EEG-based BCI is its impracticality

as it is notorious for its potential hiccups. First, the use of a
large array of electrodes increases the risk of individual elec-
trode failure. Second, if wet electrodes are used, this requires
frequent gel filling, which is a time-consuming process and
cannot be done by the disabled individual. Also, it can be
challenging to effectively attach the cap to the user’s scalp
and establish a secure connection, this is often the case for
users with thick hair. These reasons make it hard to apply
EEG in normal life situations and make it unappealing in
social settings. In recent years, the industry started introduc-
ing modern easy-to-set-up EEG headsets. Examples are [88]
and [89]. Although these are limited in their spatial coverage,
they prove the possibility of building light and easy-to-use
EEG headsets, especially if the targeted brain region is small.
Thus, a huge step towards easier use of EEG would be
examining the possibility of reducing the number of electrodes
by fully capturing the brain activity by a selected number
of electrodes. This is dependent on our understanding of the

TABLE VI
COMMON PERFORMANCE METRICS USED WITH

functional behavior of the brain. If fully understanding the
brain functions is a lengthy and challenging process, then
applying ML concepts to utilize the number and location of
EEG electrodes would be a cheaper, easier alternative. Several
studies have shown the validity of this approach, such as [90]
and [91].

The other main issue of EEG is the low SNR [22], [23]
which makes distinguishing the useful signal a challenging
task, especially in a highly noisy environment. The unpre-
dictable noise sources in the outdoor environment make it
difficult for this application and this is why all studies in
Table III, except for one, were conducted indoors with limited
noise artifacts. Noise sources include lighting, motion, and
any surrounding electrical devices. Some other noise sources
are internal, generated from the biological systems inside the
human body such as the hemodynamic continuous operation
[21], [92]. These artifacts and noise sources can be easily
removed when a great difference exists between their range of
operation and the typical frequencies of brain signals. Before
a robust filtration method is available, it is hard to imagine a
successful transition of EEG to the outside environment.

VI. CONCLUSION AND STUDY LIMITATIONS

This review examined 24 peer-reviewed articles related to
EEG-driven wheelchairs, with an emphasis on the feasibility
of the current models. This article detailed the different
approaches available in the literature, as well as the back-
ground material needed to understand the theory underlying
the technology. The substantial differences among the models
leave many open-ended questions about the best strategies
moving forward. The article highlighted the pros and cons
of the different systems and the needed improvements in the
fields of data science, neuroscience, and signal processing to
overcome the current challenges for wider implementation of
the technology.

Although PRISMA guidelines were followed in conducting
the review, there remains the possibility of human error in
data collection and/or interpretation. This is one of the work’s
limitations. Another limitation is the possibility that some
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articles are missing owing to the search strategy employed.
Having stated that, the authors are not aware of any relevant
work that meets the search criteria but was not included
herein. Finally, the nature of this review research prohibited a
thorough overview of the methodologies used in the articles
from being included. Thus, an interested reader is encouraged
to refer to the original articles for detailed information.
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