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Abstract— The diagnosis of mild cognitive impairment
(MCI), a prodromal stage of Alzheimer’s disease (AD),
is essential for initiating timely treatment to delay the
onset of AD. Previous studies have shown the potential
of functional near-infrared spectroscopy (fNIRS) for diag-
nosing MCI. However, preprocessing fNIRS measurements
requires extensive experience to identify poor-quality seg-
ments. Moreover, few studies have explored how proper
multi-dimensional fNIRS features influence the classifica-
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tion results of the disease. Thus, this study outlined a
streamlined fNIRS preprocessing method to process fNIRS
measurements and compared multi-dimensional fNIRS
features with neural networks in order to explore how
temporal and spatial factors affect the classification of
MCI and cognitive normality. More specifically, this study
proposed using Bayesian optimization-based auto hyper-
parameter tuning neural networks to evaluate 1D channel-
wise, 2D spatial, and 3D spatiotemporal features of fNIRS
measurements for detecting MCI patients. The highest test
accuracies of 70.83%, 76.92%, and 80.77% were achieved
for 1D, 2D, and 3D features, respectively. Through extensive
comparisons, the 3D time-point oxyhemoglobin feature was
proven to be a more promising fNIRS feature for detecting
MCI by using an fNIRS dataset of 127 participants. Further-
more, this study presented a potential approach for fNIRS
data processing, and the designed models required no
manual hyperparameter tuning, which promoted the gen-
eral utilization of fNIRS modality with neural network-based
classification to detect MCI.

Index Terms— Convolutional neural networks (CNN),
functional near-infrared spectroscopy (fNIRS), mild cogni-
tive impairment (MCI), multi-dimensional feature evaluation,
multilayer perceptron (MLP).

I. INTRODUCTION

WHILE the general awareness of mild cognitive impair-
ment (MCI) is low, MCI’s high lifetime cost of care

for the patient and high conversion rate to Alzheimer’s dis-
ease (AD) urges the need for screening and treating MCI
worldwide. In September 2021, the World Health Organiza-
tion (WHO) has reported that more than 55 million people
live with dementia and nearly 10 million new cases globally
every year. Among those dementia cases, 60-70% are AD
[1]. According to a model created by the Lewin Group for
Alzheimer’s Association, for Americans age 65 and older with
Alzheimer’s or other dementias, the cost of care in 2022 is
estimated at $321 billion. Furthermore, the caregivers of those
individuals provided an estimated 16 billion hours of unpaid
assistance in 2021, valued at $271.6 billion [2]. The above
evidence shows the broad impact of AD on diagnosed patients,
their families, caregivers, and society. Currently, WHO has
concluded that dementia is underdiagnosed worldwide, and
even if a diagnosis is made, the patient is typically at a
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relatively late stage [3]. Several research groups have made
estimations that the delayed onset of AD can significantly
reduce the cost of care and increase the individual’s lifespan
[4], [5]. Thus, early AD diagnosis is crucial for patients to
improve awareness and receive timely treatments. Both the
Alzheimer’s Association and the WHO have set the early
diagnosis of AD as one of their principal goals [2], [3].

Individuals with MCI have cognitive decline beyond those
expected based on an individual’s age and education but
may not affect their abilities to perform daily activities
[6]. Petersen et al. identified MCI as an intermediate stage
between normal aging and early AD [7]. A systematic review
has conducted a random-effects meta-analysis of more than
30 studies of MCI and reported that 11.8-21.1% of people
aged 60 and older have MCI [8]. Furthermore, studies suggest
that approximately 10% to 15% of these individuals progress
to AD annually [2], [8]. To diagnose MCI, physicians use
patient questionnaires, cognitive assessments, neuroimaging
methods, blood tests, and review the patient’s medical history
[2]. Compared to clinical tests and questionaries conducted
by doctors for one single diagnosis, Model-based diagnosis
through neuroimaging methods has the unmatched advantage
of objectivity and time efficiency.

Neuroimaging methods, such as functional magnetic reso-
nance imaging (fMRI), positron emission tomography (PET),
electroencephalography (EEG), functional near-infrared spec-
troscopy (fNIRS), and EEG-fNIRS hybrid, were already
proven to be effective for detecting MCI by many works [7],
[9], [10], [11], [12]. fNIRS signals are measured by trans-
mitting near-infrared (NIR) light onto the scalp by NIR light
sources, collecting the backscattered light by photo-detectors
at a certain distance, and measuring changes in light attenu-
ation. As the result of neural activities causing increases in
oxygen metabolism and oversupplies of cerebral blood flow
to compensate for the loss of oxygen in blood [13], there is
an overall elevated oxyhemoglobin (HbO) concentration and
decreased deoxyhemoglobin (HbR) concentration in the local
brain area [14]. Studies have shown that the changes in light
attenuations from fNIRS measurements are directly related to
changes in hemoglobin concentrations, thus, directly related
to neural activities [15], [16], suggesting that fNIRS measure-
ments can provide promising biomarkers for measuring neural
activity.

This work aimed to conduct community screenings of MCI
by using the fNIRS signals. Pinti et al. have reviewed the
pros and cons of using the fNIRS compared with other
neuroimaging modalities. The fNIRS modality is lower in
price than fMRI systems and non-invasive, perfectly safe,
and more comfortable for subjects [17], making them suit-
able for our community screening set-up. However, fNIRS
measurements have a lower temporal resolution, making them
unsuitable for real-time systems as EEG signals are [18].
Moreover, fNIRS measurements have a shallower penetration
depth compared to fMRI. Those two disadvantages were
avoided in our offline classification of MCI because we needed
to measure task-related cerebral neural activity rather than
real-time classifications through neural activities of deeper
brain tissues. Two more challenges for signal processing of

the fNIRS measurements are: 1) poor signal quality due to
variable signal-to-noise ratio between subjects [19] or caused
by rapid head movements, and 2) lack of standardized data
processing methods [17]. For researchers and medical staff
new to the field, the two points mentioned above and their
lack of experience will make it hard to judge the quality
of fNIRS signals and lead to possible false diagnoses. Our
work summarized and utilized a series of signal preprocessing
methods from published works [20], [21], [22] to form an
fNIRS data processing algorithm that required fewer manual
interventions to remove or correct poor-quality signal seg-
ments. The streamlined signal processing algorithm aimed to
improve signal quality and was applied to our dataset.

The results from signal processing were often used for
identifying MCI by statistical analysis, machine learning,
or deep learning methods. According to a review paper by
Niu et al., MCI patients showed a delayed increase in aver-
aged HbO concentration change compared with cognitively
normal (CN) individuals at the group level [23]. While most
works have concluded that MCI patients had lower local blood
volume compared to CN individuals [13], [24], some works
have observed a higher local blood volume from the MCI
group or no difference between the two groups [23], [25].
For subject-level classifications of MCI vs. CN, Yang et al.
have employed statistical analysis, machine learning, and deep
learning methods to evaluate 15 biomarkers from task-related
fNIRS signals. The comparison showed that the convolutional
neural network (CNN) for classifying MCI vs. CN was supe-
rior to statistical analysis and traditional machine learning
methods [26]. Our research found three main challenges we
wanted to solve using fNIRS signals and deep learning meth-
ods to classify MCI vs. CN. Firstly, while many works used
fNIRS signals with deep learning methods for other diagnoses
(like detecting the pain intensity, epileptic seizure, and autism
spectrum disorder), cortical analysis, and brain-computer inter-
face and showed accurate classification results [27], [28], [29],
only a few works utilized deep learning methods to detect MCI
vs. CN [26], [30]. Secondly, deep learning methods require a
large amount of data to prevent overfitting, yet the existing
studies in our area mostly had small datasets of less than
50 participants [29]. Finally, few studies have investigated how
multi-dimensional fNIRS features affect classification results,
despite machine learning and deep learning having proven
effective at diagnosing MCI.

This study compared 1D channel-wise, 2D spatial, and 3D
spatiotemporal features of fNIRS measurements for detecting
MCI patients. Various studies used 3D features extracted from
human brain signals as inputs to their designed 3D CNN
architectures [31], [32], [33], [34]. Generally, two types of
3D features were used in current studies regarding human
brain signals. The first type was the most commonly used
3D image data based on the human head’s x, y, and z
coordinates. Yagis et al. utilized 3D MRI data as input for
their VGG-16 architecture-inspired 17-hidden-layer deep 3D
CNN model for diagnosing AD [31]. In their case, the input
size was 176 × 208 × 176. However, in our work, the 3D
feature size was maximumly 10 × 10 × 7, making a 3D CNN
model at a such depth not feasible. Moreover, although the 3D
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image features had abundant spatial information, they lacked
temporal information that could help differentiate AD and
cognitively normal individuals. The second type of the 3D fea-
ture was the 2D topology arrangement with sample points (or
time points). Kumar et al. used topography-preserving EEG
inputs for their 5-layer 3D-CNN to predict various components
of hand movements [32]. Zhang et al. also used 2D spatial
distributions of EEG electrodes and sample points to construct
3D EEG tensors as inputs for their cascade and parallel 3D
CNN to classify attentive mental states [33]. Although fNIRS
with 3D CNN was widely used to classify medical data, most
used 3D image data as inputs [19]. To the best of our effort,
we only found a few related works using 2D topology arrange-
ment with sample points features. Kwak et al. constructed
3D fNIRS features from 1D fNIRS signals using fNIRS
channel spatial locations and timesteps [34]. However, they
only utilized the 3D fNIRS features for extracting spatially
important regions. They applied that information to 3D EEG
features for the classification of mental arithmetic and motor
imagery tasks without fully exploring the 3D fNIRS features
for classifications. To fully employ our spatial and temporal
information of the measured fNIRS signal for classification,
we designed our 3D feature as 2D spatial with time points or
statistical temporal information for HbO and HbR. Then we
utilized those different 3D spatiotemporal features with our
(relatively shallower) 3D CNN to classify MCI vs. CN.

The primary task of this work is to use neural networks
to classify MCI patients versus CN individuals by fNIRS
measurements. The significant contributions of our work are
as follows.

1) An fNIRS dataset of 127 MCI and CN participants from
community screenings is preprocessed using streamlined
processing steps, aiming to reduce the possibility of
overfitting of our neural networks.

2) To our knowledge, this is the first work that constructs
multilayer perceptron (MLP), 2D CNN, and 3D CNN
networks with Bayesian optimization-based auto hyper-
parameter tuning mechanisms for MCI detection using
fNIRS measurements.

3) Multi-dimensional (1D channel-wise, 2D spatial, and
3D spatiotemporal) features are extracted and evaluated
through constructed multi-dimensional neural networks
on our large dataset. The best performance of an 80.77%
test accuracy with 76.92% sensitivity, 83.33% precision,
and 80% F1 score is obtained, and the 3D time-point
HbO feature with our auto hyperparameter tuning 3D
CNN network is recommended to detect MCI patients.

In this article, Section II describes our dataset, including
study participants, fNIRS equipment, and the experimental
paradigm employed. Section III introduces our preprocessing,
feature extracting, and model building methods. Section IV
shows the experimental results and our analysis. Finally,
Section V presents the conclusions.

II. DATA ACQUISITION

A. Participant
In this study, 154 participants were enrolled for fNIRS

data acquisition from Huashan Hospital. None of the enrolled

Fig. 1. Flowchart representing study participants, data inclusion criteria,
and data partitions for models.

TABLE I
AGE AND GENDER DEMOGRAPHICS OF CN AND MCI GROUPS

participants had motor or other neurological diseases, and all
of them had normal or corrected to normal visual acuity and
normal color vision. Moreover, all participants were right-
handed, with no acute hearing loss, and with no history of
drug abuse, head injury, or use of psychoactive medications
that could affect brain’s blood flow. Before the experiment,
informed consent was obtained according to the procedure
approved by the Ethics Committee of Institute of Automation,
Chinese Academy of Sciences (approval no. IA-201944).
Senior doctors conducted each participant’s clinical diagnosis
of MCI or CN before fNIRS data acquisition according
to the 2018 Guidelines for Diagnoses and Treatments of
Dementias and Cognitive Impairments in China [35] and the
Diagnostic and Statistical Manual of Mental Disorders—Fifth
Edition (DSM-5) [36]. Fig. 1 shows fNIRS measurements
were acquired from enrolled 154 participants. Seven subjects’
fNIRS data were excluded due to incompletion or lack of
tags. There were 20 more subjects’ data excluded for bad
data quality due to coefficient of variation (CV) rejection
calculation. We included the resulting 127 subjects in our
experiment for further data preprocessing, feature extraction,
and model construction, and their demographics are shown in
Table I.

B. Equipment
We acquired fNIRS measurements using a continuous

70-channel fNIRS NirSmart system (Danyang Huichuang
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Fig. 2. (a) NIR light source(red) and detector(blue) locations in cm. The origin of the coordination is the right-back side of a head. (b) fNIRS channel
locations in cm. Channel locations are approximated to be midpoints of each source-detector pair. (c) A 10 × 10 matrix of fNIRS 2D spatial feature
with channel numbers. This arrangement preserved the channel location relationship within the prefrontal cortex and within the parietal cortex while
the matrix’s size remained small for a faster model processing speed.

Fig. 3. Our Stroop paradigm lasts 6.5 minutes (390 seconds) for a
session and we simultaneously record subject’s hemoglobin changes
through fNIRS. One session of the experiment contains thirteen
30-second parts starting from 30-second rest period, then 6 Stroop
tasks with a rest period following each Stroop task.

Medical Equipment Corporation, China). The fNIRS system
contains 24 NIR light sources and 24 photo-detectors and
was placed according to the international 10-20 electrode
placement system (see Fig. 2(a)). We placed the sensors on
the scalp to measure hemoglobin changes of the prefrontal
cortex and parietal cortex for cognitive functions. Seventy
fNIRS channels (see Fig. 2(b)) were defined as the mid-point
of source-detector pairs [14], and all sources and detectors
were mounted on an elastic cap to ensure good contact
with the subject’s scalp. Two wavelengths (730 and 850 nm)
at 11 Hz were used to measure the changes in HbO and HbR,
respectively.

C. Experimental Paradigm
We asked subjects to sit in a comfortable chair and avoid

sudden movements in our experiment. They needed to perform
the color-word matching Stroop task while we recorded fNIRS
signals simultaneously. Stroop tests were commonly used to
test cognitive control and executive function inhibition, and
the fNIRS measurements during a Stroop task were proven
effective in detecting MCI patients [30]. For our Stroop
task shown in Fig. 3, the E-Prime software displayed the

stimulus presentation. Each subject was asked to perform one
experiment session starting from a 30-second rest period, then
six trials of 30-second Stroop tasks with 30-second rest periods
following each Stroop task. We designed each Stroop task to
have 10 congruent and 5 incongruent tests in a pseudo-random
order. For a congruent Stroop test, the color of the displayed
word (red, yellow, blue, or green) and the word’s meaning
match, whereas for an incongruent test, they mismatch. The
entire session lasted 6.5 minutes (390 seconds).

III. METHODS

A. fNIRS Signal Processing
We experimented and concluded a standardized fNIRS

data processing method for our dataset to remove bad sig-
nals and artifacts to preserve the validity of the data. For
our 154 participants’ fNIRS data, we first checked for data
completeness(as step-0 in Fig. 4(a)), ensuring they all had
6.5 minutes long of data and valid onset tags for each
Stroop trial (6 in total). Seven participants had incomplete
data and were excluded from further data processing. Since
fNIRS can have poor signal quality due to variable signal-
to-noise ratio, we then utilized the coefficient of varia-
tion (CV) to exclude channels and trials with poor signal
quality [37].

1) CV Rejection: Coefficient of variation (CV) values were
calculated to evaluate variable signal-to-noise ratios for unpro-
cessed raw data(as step-1 in Fig. 4(a)). We made rejec-
tion strategies for trials, channels, and subjects based on
the CV of trials and channels. There were 147 subjects’
fNIRS data, each with 70 fNIRS channels of data, and each
channel data contained six pieces of data from each Stroop
trial.
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Fig. 4. (a) The overall processing steps. (b) The detailed preprocessing sub-steps (2.1 to 2.7). (c) Left: The total of 24 initially extracted features
belong to 4 different feature classes. Right: Rearranging each extracted feature into 1D, 2D, and 3D shapes resulted in the finalized 1D channel-
wise, 2D spatial, and 3D spatiotemporal features of fNIRS signal. There were 24 features each for 1D channel-wise and 2D spatial features that
correspondingly converted from the initially extracted features and 4 3D spatiotemporal features converted from combining each class of the initially
extracted features. The variable n for 3D feature was 7 for tPoint features and 5 for tStat features.

We calculated the CV of trials according to the following
formula [37]:

CVtr ial(%) =
σtr ial

µtr ial
× 100%, (1)

where σtr ial and µtr ial are the standard deviation and mean
of the same 30-second Stroop trial’s fNIRS data. Trials with
CVtr ial > 10% [38] were rejected from further usage since a
high CV represents a poor signal-to-noise ratio. Furthermore,
since there were six Stroop trials in each channel’s data,
if more than 50% of trials (that is, more than three trials) were
rejected, we rejected that channel for poor signal quality.

The next step was the CV rejection of channels. CVchannel
was defined as follows:

CVchannel(%) =
σchannel

µchannel
× 100%, (2)

where σchannel and µchannel are the standard deviation and
mean of the same 6.5-minute session of channel data. Channels
with CVchannel > 15% [37] were rejected, and if a subject had
more than 10% channels (7 channels) rejected, we excluded
that subject from further data processing. The calculations of
CV were done in MATLAB. Throughout the entire CV rejec-
tion process, there were 20 subjects excluded because of poor
signal quality, leaving us 127 subjects for data preprocessing.

2) Preprocessing: The data preprocessing of fNIRS was
conducted using the HOMER2 toolbox [39]. Referring to
Fig. 4(b), for step-2.1, the measured light intensity was con-
verted to the change in optical density for each NIR wave-
length by the hmrIntensity2OD function. The optical density
change 1O D(λ, t) (unitless) of each λ for time t (in seconds)
was defined as [40] and citeScholkmann2014:

1O D(λ, t) = ln
(

I (λ, t0)
I (λ, t)

)
, (3)

where λ denotes the NIR light wavelengths, which are 730 and
850 nm in this study. We assume the light intensity emitted
by the NIR light source is constant. I (λ, t0) and I (λ, t) (in
units M) are detected light intensity at time t0 and t (t0 is the
initial time point) for the corresponding wavelength λ.

For step-2.2, we performed channel-wise motion artifact
detection using the function hmrMotionArtifactByChannel.
In step-2.3, we performed visual inspections on the HOMER2
user interface to improve our signal quality, where the detected
motion artifacts would be highlighted. Any highlighted artifact
that lasted more than 5 seconds was selected and excluded
from further processing. For step-2.4, detected motion artifacts
were corrected by spline interpolation using the hmrMo-
tionCorrectSpline function. Then, for step-2.5, we used the
hmrBandpassFilt function to perform bandpass filtering of
0.005 to 0.1 Hz to remove low-frequency baseline drift and
high-frequency physiological noise (i.e., Mayer signal-0.1 Hz;
respiration-0.25 Hz; and heartbeat-1 Hz).

For step-2.6, we further converted the change of opti-
cal density to the change in hemoglobin concentrations
(1HbO and 1HbR) at time point t according to the
Modified Beer-Lambert Law (MBLL) [41] using function
hmrOD2Conc. The calculation was as follows:[

1HbO(t))
1HbR(t))

]
= l−1

[
εHbO(λ1) εHbR(λ1)

εHbO(λ2) εHbR(λ2)

]−1
[

1O D(λ1,t)
d(λ1)

1O D(λ2,t)
d(λ2)

]
,

(4)

where l is source-detector separation (in cm) and ε denotes the
molar extinction coefficients in µM−1cm−1. d(λ) (unitless) is
the differential path length factor of each wavelength. λ1 and
λ2 are 730 and 850 nm, respectively.

Finally, for step-2.7, we extracted the trial (block) averages
from −5 to 40 seconds of each Stroop trial for each channel
using the hmrBlockAvg function and exported the processed
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data from the HOMER2 toolbox in MATLAB for further
feature extractions.

B. Feature Extraction
In this work, there were two types of features in three

arrangements. The two types of features were time point
features (tPoint) and time-domain statistical features (tStat) for
each channel of each subject. Since we were studying Stroop
task-induced hemoglobin changes, we extracted tPoint features
from t at 5/10/15/20/25/30/35 seconds (where t at 0 seconds
is the onset time of the Stroop task) for each hemoglobin type
(1HbO and 1HbR) from trial averages resulting from the
signal processing stage.

For tStat features, we used mean values of 5 to 25 seconds
and 5 to 35 seconds and slope values of 2 to 7 seconds,
10 to 30 seconds, and 30 to 40 seconds for each hemoglobin
type from the resulting block averages. The mean value of
hemoglobin change of the chosen time range is computed as
follows [26].

Mean(1Hb(t1 : t2))

=
Meansignal(1Hb(t1 : t2)) − Meanbase

Meanbase
, (5)

where 1Hb is 1HbO or 1HbR, t1 and t2 are the beginning
and end times of the chosen time range, Meansignal is the
signal mean of the hemoglobin change at the chosen time
range, and Meanbase is the baseline mean value at the time
range of −5 to 0 seconds. The tStat feature of mean value of
5 to 25 seconds was chosen because the task-related initial
peak of hemodynamic response usually occurs in the first
20 seconds since task onset [42]. The tStat feature of mean
value of 5 to 35 seconds was chosen to represent the overall
average of hemoglobin change due to the 30-second Stroop
task. The slope values of hemoglobin changes were calculated
using NumPy polyfit function in Python for each slope range.
We used the 2 to 7 seconds slope feature since hemodynamic
change usually was delayed by 1 to 2 seconds compared to
neural activities and would reach its first peak at 4 to 6 seconds
from a single neural response. Furthermore, we expected the
hemodynamic change to be steady in the 10 to 30 second
period and gradually drop to the baseline value in the 30 to
40 seconds interval, hence the use of 10 to 30 and 30 to
40 seconds slope features.

After we extracted all 24 initial fNIRS features from
our processed Stroop-task fNIRS data (Fig. 4(c), left part),
we reconstructed the initially extracted features into differ-
ent dimensional arrangements, respectively. There were three
ways we reconstructed the features, namely 1D channel-
wise, 2D spatial, and 3D spatiotemporal features (examples
shown in Fig. 4(c), right part). 1D channel-wise features were
constructed as a series of tPoint or tStat values for each subject
in the order of 70 channels from No. 1 to No. 70 (numbered
by the equipment used). There was a total of 24 1D channel-
wise feature datasets, whereas 7 each for HbO and HbR tPoint
features and 5 each for HbO and HbR tStat features.

Channel locations were used to form 2D spatial features.
The channel locations were calculated as the mid-point of

each source-detector pair [14], and the resulting locations
are shown in Fig. 2(b). As we reconstructed the features
into 2D features, we wanted to preserve the relative location
information while minimizing the size of the feature and the
number of interpolated values for empty pixels. The latter was
to reduce model computing time and maximize the percentage
of the original data. The resulting 2D arrangement was a
10 × 10 image (shown in Fig. 2(c)), where the numbers
represented the channel number. The empty pixels’ values
were filled by firstly using piecewise cubic interpolations
(SciPy CloughTocher2DInterpolator function) and then using
nearest-neighbor interpolation (SciPy NearestNDInterpolator
function) for empty ‘corners’ (the lower left and lower right
corners of our 2D image). Like the 1D channel-wise features,
there was a total of 24 2D spatial feature datasets, whereas
14 for tPoint features and 10 for tStat features.

Finally, the 3D spatiotemporal features were constructed by
layering each class’s 2D spatial features into one 3D feature.
There were 4 3D spatiotemporal features corresponded to each
class, namely tPoint HbO, tPoint HbR, tStat HbO, and tStat
HbR, where the 3D tPoint features had shapes of 10 × 10 × 7
and 3D tStat features had shapes of 10 × 10 × 5. The resulting
1D, 2D, and 3D features were later fed into our constructed
models for the classification of MCI and CN.

C. Model Construction
An artificial neural network (ANN) like MLP or CNN

contains an input layer, one or multiple hidden layers, and
an output layer. For a classification task, an ANN aims to find
underlying relationships between the input data and the output
label based on layers of artificial neurons and the weights
between neurons. That makes ANNs suitable for fNIRS signals
because the measured signals are temporally and spatially
related. Therefore, in this study, we classified 1D channel-
wise features using MLP, 2D spatial features using 2D CNN,
and 3D spatiotemporal features using 3D CNN. To the best
of our knowledge, this was the first work to use 3D CNN to
detect MCI and the first to compare 1D, 2D, and 3D ANNs
on the same MCI dataset.

Furthermore, ANNs are suitable for diagnosing MCI using
fNIRS signals because they can dynamically adjust parameters
learned from errors and have good fault tolerance. Based on
that advantage, we designed auto hyperparameter (HP) tuning
ANNs to automatically evaluate HP choices and chose the
best combinations for a higher classification accuracy with no
manual HP tunings needed.

Our network structures are shown in Fig. 5. For our MLP
network, the input layer was a dense layer with an input size
of 70, which was our number of fNIRS channels. We set the
number of neurons and activation function of the input layer
as auto-tuned HPs. The activation functions were chosen from
the Keras package in Python. The first layer of MLP’s hidden
layer was a normalization layer, where we set whether to
normalize the batch dataset and the normalization rate as HPs
to be auto-tuned. Next, we implemented a sequence of dense
layers, where the number of neurons and activation function
were the same as the auto-tuned HPs in the dense input layer.
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Fig. 5. (a), (b) and (c) are designed auto hyperparameter (HP) tuning MLP, 2D CNN, and 3D CNN network structures, respectively. For each
structure, the middle part is the flowchart of the mainframe, and the right part marks the auto-tuned HP of the corresponding layer. The HPs and
network structures will be further explained in part III. Methods. The variable n for 3D CNN’s input is 7 for tPoint features and 5 for tStat features.
Within one network, the values of HPs with the same name for different layers (i.e., number of neurons and activation functions) are identical. The
colored (orange) layers of different networks mark the main distinctions between those structures.

However, in this sequence, we set the number of dense layers
(as the number i in Fig. 5(a)) to be an auto-tune HP as well,
where it was an integer from 1 to 3. Then we implemented a
dropout layer and set whether to drop out and the dropout rate
to be auto-tuned HPs. We added another sequence of dense
layers next, and it was set up in the same manner as the first
sequence of dense layers, but with the number of dense layers
in this sequence as a separate HP (the number j in Fig. 5(a)).
For the last layer of MLP, we added a dense output layer with
activation function sigmoid and output size 2 for our binary
classification task of MCI vs. CN.

Finally, to configure the model for training, we set the opti-
mizer to be AdaDelta [43], the metrics to be the classification
accuracy (the frequency with which the classification results
matched the true labels of the subjects), and the loss function
to be the cross-entropy loss. The cross-entropy loss L(w) was
defined as follows:

L(w) =
1
N

n=1∑
N

{
yn log ŷn + (1 − yn) log(1 − ŷn)

}
, (6)

where w is the weights of the ANN, N is the dataset size,
yn is the true label, and ŷn is the classification label. For this
compile stage, we set the learning rate, batch size, and the
number of epochs as HPs for auto-tuning. Unlike most works
that chose typical HPs like the number of neurons, dropout
rate, learning rates, and the number of epochs for auto-tuning
[29], [44], [45], we also included activation functions, batch
size, and most importantly, network structures as our auto-
tuned HPs, which were as much we can auto-tune as possible.

The 2D and 3D CNN networks were constructed similarly
to the MLP network. There were three differences. Firstly, for

the 2D CNN, the input layer was a 2D convolution layer with
input size 10 × 10 and filter size 2 × 2. Similarly, for the 3D
CNN, the input layer was a 3D convolution layer with input
size 10 × 10 × n (n is 7 for tPoint features and 5 for tStat
features) and filter size 2 × 2 × 2. The number of filters in
2D and 3D CNN was equivalent to the number of neurons in
MLP. Secondly, the first sequence of dense layers in hidden
layers of MLP was changed to a sequence of 2D convolution
layers for 2D CNN with filter size 2 × 2 and a sequence of
3D convolution layers for 3D CNN with filter size 2 × 2 × 2.
Thirdly, the second sequence of dense layers in MLP was
changed to a flatten layer for both 2D and 3D CNN.

We first utilized the Bayesian optimization method for our
auto HP tuning networks for our data experiment to find the
optimal combination of HPs. Bayesian optimization builds
a posterior distribution of functions (Gaussian process) for
HP values to the objective function and returns the best
combination of HPs expected to be close to the optimum [46],
[47]. We partitioned 60% of our dataset (train set in Fig. 1)
and utilized 5-fold cross-validation for HP tuning.

The BayesianOptimization package in Python was used for
our optimization problem. We included all of the hyperparame-
ters (HPs) that needed to be auto-tuned (listed in the shadowed
area of Fig. 5) with their respective value ranges as the domain
space for optimizing each network structure. The choice range
of activation functions included all commonly used functions
(for 1D MLP: relu, sigmoid, softplus, softsign, tanh, selu, elu,
and exponential, and for 2D CNN and 3D CNN: relu, sigmoid,
and tanh). The number of neurons (for 1D MLP), filters (for
2D and 3D CNN), layers, batch size, and epochs were set
to be integers at reasonable ranges that were large enough to
consider all values to optimize the objective function, yet taken
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Fig. 6. MCI and CN subjects’ average change in HbO and HbR of all
channels. Solid lines represent the average hemoglobin changes for all
subjects of the same type, and the corresponding shaded area is that
type’s 95% confidence interval. Time at 0 seconds is the onset of the
30-second Stroop task.

consideration of the size of our data. Moreover, the whether
to use a dropout and normalization layer HPs had continuous
ranges of 0 to 1, where a value below 0.5 was not to use such
layer and vice versa. The dropout rate ranged from 0 to 0.99,
the normalization rate ranged from 0 to 1, and the initial
learning rate ranged from 0.0001 to 0.5 continuously.

The objective function of the Bayesian optimization was
the 5-fold cross-validate average classification accuracy of
the MLP, 2D CNN, or 3D CNN using one chosen set of
HPs on the training set [48]. The algorithm randomly initial-
ized 15 sets of HPs to evaluate the objective function and
returned 15 corresponding classification accuracies. Then, the
algorithm predicted how the objective function would vary
with HPs and chose where to sample next in domain space
with the highest probability to give a maximum classification
accuracy [47], [48]. This process was iterated 15 times as
well. In Bayesian optimization, the domain space was both
explored and exploited, aiming to find a closer estimate of
the global maximum of the average classification accuracy.
Finally, we chose the set of HPs with the highest average
cross-validate classification accuracy as our final hyperparam-
eter set for each model.

After we acquired each set of optimized HPs, we fit the
model using 80% of the dataset. At last, our final test results
of each model using different features would be concluded
by testing the finished model on the remaining 20% of the
dataset. This process required fewer manual interventions to
find each model’s optimal combinations of HPs.

IV. RESULTS

A. Data Observations and Model Training Tactics
Fig. 6 shows the averages and 95% confidence intervals of

the change of hemodynamic responses due to the Stroop task
of all channels after data processing. From Fig. 6, we can
see that after the onset of our Stroop task, the subject’s
HbO started to increase and reached its peak value at around
8 to 20 seconds. HbO continuously increased during the task
period and decreased about 5 seconds after the task (at the
35th second). By comparing HbO changes between CN and
MCI, we observed that MCI individuals had a delayed initial
increase and a delay in reaching the peak value. Furthermore,
MCI patients’ HbO change from the 6th second was generally

greater than that of CN individuals. On the other hand, there
was no significant group difference in the HbR change between
MCI patients and CN individuals.

We noticed the overlaps of the confidence intervals not only
for the already similar 1HbR values but also for 1HbR
values of MCI and CN subjects. We went back and observed
the 1HbO and 1HbR graphs for each subject and noticed
vast differences between subjects within the same diagnosis
group. The differences between individuals motivated us to
conduct our training of the same model using the same
feature with different random shuffling seeds to avoid bias
caused by the level of similarity between training and testing
datasets. We designed our model experiment to each run
5 times with different shuffling seed numbers for partitioning
our training, validation, and test datasets. We showed the
model experimental results in four aspects, 1) the 5-random-
shuffle average performances of each feature (Table II and IV),
2) the best single-run performing features of each dimension
of features (in-text and Table V), 3) the comparisons between
features and class of features of the same dimensional structure
(in-text and Table V), and 4) the comparisons between classes
of features of different dimensions (Table III and IV).

To evaluate the performances of different dimensions of
features with their corresponding models, we utilized 4 typical
metrics: test accuracy, sensitivity, precision, and F1 score. The
definition of those metrics was as follows.

T est Accuracy =
T P + T N

T P + T N + F P + F N
, (7)

Sensi tivi t y =
T P

T P + F N
, (8)

Precision =
T P

T P + F P
, (9)

F1 Score = 2 ×
Sensi tivi t y × Precision
Sensi tivi t y + Precision

, (10)

where TP, TN, FP, and FN denote the count of true positives,
true negatives, false positives, and false negatives, respectively.

B. Classification Results of 1D Channel-Wise and 2D
Spatial Features

We performed data experiments on 24 1D channel-wise
features for our 1D MLP HP auto-tune network and 24 2D
spatial features for our 2D CNN HP auto-tune network. The
detailed 5-random-shuffle average performances for each of
the features are shown in Table II. We further calculated the
overall average class performances of 1D and 2D features,
in which we categorized the features into tPoint HbO, tPoint
HbR, tStat HbO, and tStat HbR classes, and the result is shown
in Table III.

For 1D channel-wise features, the best 5-random-shuffle
average performance feature was the 1HbO at 35 seconds,
and the overall average test accuracy was 62.5%. The over-
all best-performed class was the tPoint HbO features (test
accuracy was 59.17%). However, the class differences were
close (within 1.34%). By comparing best single runs among
all the 1D channel-wise features, the tPoint feature-1HbO at
35 seconds and the tStat feature-1HbR mean at 5-35 seconds
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TABLE II
THE 5-RANDOM-SHUFFLE AVERAGED PERFORMANCE FROM ALL 1D CHANNEL-WISE FEATURES IN THE 1D MLP NETWORK

(LEFT) AND ALL 2D SPATIAL FEATURES IN THE 2D CNN NETWORK (RIGHT)

TABLE III
THE OVERALL AVERAGED CLASS PERFORMANCE OF 4 CLASSES OF FEATURES AND THE TOTAL AVERAGE PERFORMANCE FROM 1D

CHANNEL-WISE FEATURES IN THE 1D MLP NETWORK (LEFT) AND 2D SPATIAL FEATURES IN THE 2D CNN NETWORK (RIGHT)

performed the best, with 70.83% test accuracy and 74.07% F1
score.

Next, for 2D spatial features, the best 5-random-shuffle aver-
age performance feature was the HbO at 20 seconds, and its
average test accuracy was 66.15%. The overall best-performed
class was (again) the tPoint HbO features, with an average
class test accuracy of 62.75%. The test accuracy of the 2D
best-performed class was improved by 3.58% compared with
1D tPoint HbO features. Furthermore, the best-performed
single run for 2D features was the 1HbO at 35 seconds with
76.92% test accuracy and 78.57% F1 score, which was 6.09%
and 4.5% improvements compared with 1D best-performed
single run features.

Although the class differences between 1D channel-wise
features were not distinct, the class differences between 2D
spatial features showed some patterns. Table III shows that
for 2D feature classes, 1) the HbO features outperformed
the HbR features, and 2) the tPoint features had better
average performances than the tStat features. The reason

that HbO features outperformed the HbR features could be
explained by our previous data observations (see Fig. 6),
where the 1HbO between MCI and CN did have distinct
differences, yet the 1HbR of MCI and CN were very
similar. Moreover, from the observation that the tPoint fea-
tures had better performances compared with tStat features,
we could deduce that the tPoint features benefited more
by adding spatial information compared with tStat features.
It was possibly because tPoint features were the original
fNIRS measurements with spatial correlations between chan-
nels, and tStat features were processed statistical features that
may counteract the spatial correlations to a certain degree.
Lastly, the difference was not as apparent as we expected
by comparing the total average performances between 1D
and 2D features. We deduced that the channel numbering
from 1 to 70 for 1D channel-wise features still preserved some
local spatial correlations (shown in Fig. 2(c)), which reduced
the spatial information leverage that 2D spatial features
had.
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TABLE IV
THE 5-RANDOM-SHUFFLE AVERAGED PERFORMANCE FROM 3D

SPATIOTEMPORAL FEATURES IN THE 3D CNN NETWORK

TABLE V
THE BEST SINGLE RUN PERFORMANCE FROM 3D SPATIOTEMPORAL

FEATURES IN THE 3D CNN NETWORK

C. Classification Results of 3D Spatiotemporal Features
Table IV shows the 4 3D spatiotemporal features’

5-random-shuffle classification results from our 3D CNN
models. Again, the tPoint HbO feature showed the best average
performance with a 73.85% test accuracy and a 72.56% F1
score. The 3D tPoint HbO feature test accuracy outperformed
1D and 2D tPoint HbO features by 14.68% and 11.1%,
respectively. Table V shows the best-performed single run for
the 3D features was the HbO tPoint feature with 80.77% test
accuracy, 76.92% sensitivity, 83.33% precision, and 80% F1
score. The single-run best test accuracy was improved by
9.94% and 3.85% compared with 1D and 2D single runs,
respectively.

Comparing the resulting models of 3D CNN with the
models of 1D MLP and 2D CNN, they all utilized the same
Bayesian optimization hyperparameter auto-tuning frame-
work. The numbers of the second and the third sets of
dense/convolution layers were set to be between 1 to 3. Other
structural (if to use normalization and dropout layers) and
traditional (number of neurons, dropout rate, learning rates,
and the number of epochs) hyperparameters were also to
be tuned with the same value ranges. Hence, the resulting
3D models benefited from neither network complexity nor
superior model tuning techniques. Then, the main difference
between the 3D CNN and 1D MLP or 2D CNN was the
3D input and the 3D convolution layers. The 1D MLPs took
input data in series and thus failed to leverage the spatial
information fully. The 2D CNNs took single matrices as
input and failed to leverage context from adjacent matrices.
Temporal information for tPoint features and generally more
information for tStat features may be helpful for the classi-
fication of MCI. The 3D CNNs addressed this issue using
3D convolutional kernels to utilize volumetric patches of 3D
inputs. Their ability to take advantage of information within
a matrix and adjacent matrices was the main reason for 3D
spatiotemporal features with 3D CNNs’ leading classification
performances.

We also observed that the HbO feature performed better than
the HbR feature, and the tPoint feature outperformed the tStat
feature for 3D spatiotemporal features. This confirmed our
observations from 2D spatial features. The further explanation
for our observations from 3D feature performances was that,
firstly, the temporal information added to the 3D HbR features
was not as effective because the temporal change of 1HbR
was significantly smaller than that of 1HbO (see Fig. 6). Sec-
ondly, stacking 2D tStat features to form 3D tStat features was
ineffective because different tStat features were not necessarily
correlated. Thus, we could conclude that the fNIRS 3D tPoint
feature is the best candidate for 3D CNN classification because
of its apparent temporal change and strong spatial correlations.

V. CONCLUSION

In this study, we acquired and processed the Stroop
task-induced fNIRS measurements of 127 MCI and CN par-
ticipants. Then, we extracted 24 initial fNIRS features and
constructed them into 1D channel-wise, 2D spatial, and 3D
spatiotemporal features. Afterward, we designed MLP, 2D
CNN, and 3D CNN networks with an auto hyperparameter
tuning mechanism for fNIRS signal MCI detection. We fed
the extracted 1D, 2D, and 3D features into the MLP, 2D CNN,
and 3D CNN networks for classification and evaluated their
performances. We concluded that the 3D tPoint HbO feature
was the best fitted and best-performed feature among all our
features. The highest performance was by the HbO tPoint
feature with 80.77% test accuracy, 76.92% sensitivity, 83.33%
precision, and 80% F1 score.

We provided the most promising fNIRS feature for clinical
use based on our large dataset and comprehensive comparisons
of different fNIRS features. Furthermore, with our streamlined
data processing framework and Bayesian optimization-based
auto hyperparameter tuning neural network structure requiring
no manual intervention, we hope to encourage non-specialists
to utilize the fNIRS methodology for MCI diagnosis. We will
aim for more accurate classification of MCI and CN for our
future work. We plan to further investigate the tPoint HbO
features by refining extracted time points and evaluating their
importance in detecting MCI patients.
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