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Abstract— Currently there still remains a critical need
of human involvements for multi-robot system (MRS) to
successfully perform their missions in real-world applica-
tions, and the hand-controller has been commonly used
for the operator to input MRS control commands. However,
in more challenging scenarios involving concurrent MRS
control and system monitoring tasks, where the operator’s
both hands are busy, the hand-controller alone is inad-
equate for effective human-MRS interaction. To this end,
our study takes a first step toward a multimodal interface
by extending the hand-controller with a hands-free input
based on gaze and brain-computer interface (BCI), i.e.,
a hybrid gaze-BCI. Specifically, the velocity control function
is still designated to the hand-controller that excels at
inputting continuous velocity commands for MRS, while the
formation control function is realized with a more intuitive
hybrid gaze-BCI, rather than with the hand-controller via a
less natural mapping. In a dual-task experimental paradigm
that simulated the hands-occupied manipulation condition
in real-world applications, operators achieved improved
performance for controlling simulated MRS (average for-
mation inputting accuracy increases 3%, average finish-
ing time decreases 5 s), reduced cognitive load (average
reaction time for secondary task decreases 0.32 s) and
perceived workload (average rating score decreases 15.84)
with the hand-controller extended by the hybrid gaze-BCI,
over those with the hand-controller alone. These findings
reveal the potential of the hands-free hybrid gaze-BCI to
extend the traditional manual MRS input devices for cre-
ating a more operator-friendly interface, in challenging
hands-occupied dual-tasking scenarios.

Index Terms— Gaze tracking, electroencephalograph,
brain-computer interface, multi-robot system, dual-tasking.
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I. INTRODUCTION

EVEN with rapid advances in the autonomous multi-
robot system (MRS), many of the real-world robotic

missions still cannot be reliably assigned to fully autonomous
mobile robots [1]. For instance, when employing MRS as
a means of gaining essential information for supporting
follow-up firefighting operation, current MRSs are limited
in their world awareness and cognitive capabilities for han-
dling complex and dynamic incidents. The human-in-the-
loop MRS operation is a tenable way to overcome this
limitation [2], which involves dynamic authoritative control
of specific MRS activities based upon local circumstances
and human expertise, as well as concurrent monitoring of
mission execution and MRS statuses. To realize remote con-
trol and monitoring of MRS, a screen usually displays the
MRS in the environment and critical information collected
from sensors mounted on MRS, a haptic hand-controller is
commonly adopted where an operator holds it with dominant
hand for inputting velocity and formation commands to MRS
(the haptic feedback could also be provided with the hand-
controller), while the non-dominant hand is also bounded by,
e.g., the operating manual, the keyboard for dealing with
abnormal alarms from the monitoring program, etc. It has
been shown by Kruijff et al. [3] that manipulating robots in a
disaster scene is highly cognitive-demanding and difficult for
operators. One of the main factors increasing the cognitive-
load is that the commonly adopted user interface alone may
be inadequate for such challenging dual-task scenarios [4].
In specific, although the haptic hand-controller excels at spec-
ifying continuous velocity commands for MRS, it is poor at
issuing discrete MRS formation commands that are usually
derived with a less natural mapping from its continuous-
valued inputs. As a consequence, it may introduce extra cog-
nitive load that prevents effective and efficient executing the
mission [5].

To overcome the above limitation of current user interface
for the considered hands-occupied dual-task (i.e., concurrent
controlling and monitoring of MRS) scene, it is critical to
provide effective supplementary inputs. On one hand, the
operator’s non-dominant hand that is occupied may be too
busy to offer extra inputs. On the other hand, although
additional regular hands-on user interfaces (e.g., mouse,
keyboard, touchscreen) could provide intuitive inputs for
discrete target selection, frequent switches between holding
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the hand-controller and touching such hands-on interfaces by
dominant hand could easily foster human errors and slow down
the work pace as well [6]. In contrast to solutions above,
hands-free interfaces may provide a more viable means for
supplementing manual control. Considering the teleoperation
of MRS in a noisy disaster scene, it requires the visual-
motor integration, i.e., the operator’s gazes being directed at
the screen for inspections and the hands being busy at fine
motor control movement, thus we only focus on the non-verbal
attention-aware hands-free interactions based on brain or gaze
signals.

Harnessing the gaze to infer the operator’s intended on-
screen commands promises to be a natural control interface
for human-MRS interactions [7], [8], [9], [10]. Nevertheless,
accuracy of gaze-based input is found to largely depend on the
target size [11]. In real-world practice, it is difficult to design
an optimal command icon size for gaze-based input due to
the variations in subjects, screen sizes and etc., making the
gaze modality alone fail to be reliable enough to acquire user’s
intended command for our study. The brain-computer interface
(BCI) allows the interaction between a user and a machine
by the cerebral activity recorded from the electrodes on the
scalp, e.g., Electroencephalograph (EEG) signals. In particular,
BCI based on the steady-state visual evoked potential (SSVEP)
requires the user’s eyes to gaze at and pay attention to his/her
desired target associated with a specific flickering stimulus,
the cerebral pattern in response to the stimulation can be
recognized with high accuracy and speed for multiple targets
selection [12]. Though being intuitive to provide hands-free
inputs, there are also many factors that may degrade the detec-
tion performance of SSVEP in real applications [13], such as
changes in psycho-physiological states, inherent background
noise in EEG signals and etc. Requiring a long fixation at
the target may increase the evidences from gaze or EEG
data and thus can improve the user’s input accuracy [10],
but the interaction efficiency would probably be significantly
decreased.

All in all, neither gaze-based input alone nor SSVEP-based
input alone is able to realize reliable and efficient command
selections. Recently, there are several efforts toward exploring
the hybrid gaze-BCI that combines the gaze and EEG input
modalities [14], [15], [16], [17], [18], [19]. Typical hybrid
gaze-BCI sequentially utilizes the gaze to navigate the cursor
to the region containing potential targets of interest, and then
after the dwell time elapses, triggers the BCI paradigm to
confirm the selection [15], [17]. However, not only the ulti-
mate confirmation solely depends on the possibly unreliable
BCI [18], but also the input efficiency is low, since such a
hybrid interface remains in idle before the dwell time for the
gaze input and the time for recording and detecting specific
cerebral patterns elapse.

In this work, we take a first step toward developing a novel
hybrid gaze-BCI to supplement the commonly-adopted hand-
controller in a challenging MRS operation scenario. Firstly,
we present an effective solution to address the reliable and
efficient sensor-processing issue in hands-free on-screen com-
mands selection using hybrid gaze-BCI. Specifically, instead

of being sequentially processed, the gaze and SSVEP sensor
data are simultaneously processed to issue fused selection
decisions. Secondly, we assessed the impacts of the combined
user interface (the proposed hybrid gaze-BCI issuing discrete
MRS formation commands supplements to a hand-controller
issuing continuous velocity commands for MRS) on MRS
control performance, operator’s cognitive load and perceived
workload with respect to the hand-controller alone (issuing
both formation and velocity commands), in the context of a
hands-occupied dual-task mission (concurrent control of simu-
lated MRS and system monitoring) in a disaster environment.
In summary, the contribution of our paper is two-fold:

• We provide a collaborative gaze and BCI input by
simultaneous processing and fusion, other than sequential
combination as well as gaze/BCI alone. It may enable an
intuitive hands-free interface for reliably and efficiently
selecting on-screen commands to control MRS.

• The present study is to the best of our knowledge, the
first to validate the feasibility and effectiveness of hybrid
gaze-BCI as a hands-free interface supplementary to a
manual one for improving the human-MRS interaction
in a challenging scenario, i.e., the hands-occupied dual-
tasking.

II. RELATED WORK

A. BCI/Gaze-Based Input Supplementing to
Manual Input

BCI-based and gaze-based interfaces have been widely
studied for recovery or replacement of a lost ability for the
disabled [15], [20], [21]. Yet there has been little previous
work dedicated to investigate such hands-free interfaces sup-
plementary to conventional hands-on interfaces for augmenting
control capability of healthy operators.

For users with motor impairments who can only employ
EEG or electrooculogram (EOG) signals as the primary inputs
for interaction with the environment, EEG-based BCIs and
hybrid EEG/EOG-based BCIs with paradigms such as motor
imagery (MI), event-related potentials (ERP) and so on have
demonstrated their great values [15], [20], [21]. However,
for a wider BCI population, e.g., healthy operators who
mostly rely on normal manual controls, as pointed out by
Xu et al. [22], BCI should be more appropriately used as
an auxiliary control modality where it is more convenient or
there are no other alternatives. Under such circumstances, the
MI-based and ERP-based BCIs would suffer from significant
performance degradation, due to the interference from the
limb/hand movement, ocular, facial muscle related artifacts.
By contrast, a large body of literature [23], [24], [25],
[26], [27] have reported that the attention-aware SSVEP-based
BCIs could not only produce high accuracy and efficiency
for multi-target selection, but also perform more robustly
with the above artifacts, than MI-based and ERP-based BCIs.
Therefore, our work has also exploited the SSVEP paradigm
to facilitate the BCI-based input.

The eye movement signals have also been capitalized on to
realize hands-free intuitive interfaces for selecting the moving
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targets [7], [8], [9] or still targets [15]. In particular, our study
concentrates on selecting still targets, and the development of
such gazed-based interface suffers from Midas Touch prob-
lem [10], i.e., not every location we fixate is related to the
target. Early efforts for overcoming such a problem relies on
detecting unnatural customized gaze “gestures” (such as blink
timings, dwell times, or complex eye movement patterns),
which may soon lead to user fatigue [10]. Recent studies
have resorted to develop decoding algorithms to identify the
intended target from natural gaze signals [28]. Our work
further extends the existing work by fusing the accumulated
evidences of target zone from natural gaze signals with those
of target frequency from simultaneously recorded SSVEP
signals.

B. BCI/Gaze-Based Input Under Dual-Tasking
In contrast to the single-task scene, the concurrent task in

company with the one controlled by BCI or gaze in the dual-
task paradigm would require the same cognitive resources
simultaneously, so available resources have to be split and
thus extra mental workload introduces to operators [29]. For
this reason, the dual-task paradigm has been widely adopted
[29], [30], [31] to simulate the highly cognitive-demanding
operation scenarios in real world, where the performance
measurements of the primary task reflect the operator’s manip-
ulation ability under high cognitive load, and those of a sec-
ondary task provide objective information about the operator’s
cognitive load. Most previous studies have investigated the
BCI-based and gaze-based control performance in the single-
task paradigm [7], [8], [9], [32], [33], [34], [35], whereas
few efforts have been made in a more demanding dual-task
paradigm where the operator’s both hands are involved until
very recently.

The study closely related to our effort is [36], which
investigates the BCI control of a robot for human augmentation
under dual-tasking. In [36], the authors use goal-oriented
action imagery EEG signals to extend healthy participants to
control a supernumerary robotic limb for grasping/releasing
an object, while simultaneously balancing a ball placed on
a board held with their hands. Nevertheless, since both the
imagined hand grasping/releasing and the actual hands bal-
ancing movement activate the same brain regions for such
two tasks [37], the recognition accuracy of two-class goal-
action imagery EEG signals has been greatly affected, half
of the participants achieved poor dual-tasking performance.
By contrast, our work utilizes the SSVEP which has been
verified to be relatively robust to limb/hand movement, ocular,
muscle related artifacts [23], [24], [25], [26], [27], enabling
a better reliability. Besides, the SSVEP BCI could provide
more commands than the goal-action imagery one, which is
beneficial for controlling MRS of multiple freedoms.

III. HUMAN-MRS INTERACTION TEST-BED OVERVIEW

We developed a simulation platform of mobile grounded
robots with Gazebo and robot operating system (ROS) on
a PC running Ubuntu operating system, as a human-MRS

Fig. 1. The process for the MRS control task.

interaction test-bed. Following the dual-task paradigm, it con-
sists of a primary task (MRS control) and a secondary task
(system monitoring) illustrated below. The inputting interfaces
for conducting primary and secondary tasks will be introduced
as well.

A. Dual-Task Paradigm
1) Primary Task: The MRS control task is designed to

simulate the application of employing MRS to enter a disaster
scene, so as to gain essential information for supporting
follow-up firefighting operation. It involves manipulating the
MRS from the initial position to the target position, pass-
ing through a gate and a narrow passage on the half way.
As depicted in Fig. 1, there are nine steps for the MRS control
task, where the red pentagram denotes the target position.
(1) In the beginning of each MRS control trial, five mobile
robots appear in the same initial position as shown in Fig. 1(a);
(2) A command for achieving a triangle formation should
be issued, and the converged MRS formation is shown in
Fig. 1(b); (3) A command for achieving a dense formation
should be issued for avoiding collisions with the gate, and
the resulting dense MRS is shown in Fig. 1(c); (4) The
subject drives the MRS forward to pass the gate, by inputting
velocity commands with the hand-controller (Fig. 1(d)) using
the dominant hand; (5) A command for changing into the
vertical line shape is issued before passing through the narrow
passage ahead, Fig. 1(e) shows the MRS with the vertical
line formation; (6) The subject drives the MRS forward to
pass the narrow passage, using the hand-controller to input
the velocity command (Fig. 1(f)); (7) The MRS is further
driven to the target position by the subject with the hand-
controller (Fig. 1(g)); (8) A command for achieving a pen-
tagon formation should be issued, and the result is shown in
Fig. 1(h); (9) A command for achieving a sparse formation
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Fig. 2. The GUI for the system monitoring task.

is then issued, and the task ends (Fig. 1(i)). In particular, the
velocity command and the formation command are required to
be inputted asynchronously to ensure a safe passing through
the gate and the narrow passage, and five different formation
commands should be issued throughout the MRS control task
without any cue.

2) Secondary Task: The system monitoring task is designed
to simulate the practical scenario where the MRS operator
has to consistently bind his/her attention on system health and
function issues such as the fuel status, payload status, datalink
status and etc. We implemented the off-the-shelf System
Monitoring Task (SMT) from the NASA's Multi Attribute
Test Battery (MATB) [38]. The GUI program for SMT was
developed using Tkinter toolbox with Python, and it was
displayed overlying the Gazebo simulator (Fig. 2). In this
task, the subject is required to press a key on a keyboard
with the non-dominant hand in response to an abnormal event.
The abnormal events and responses are defined as follows:
(1) The alarm lamp on the left turns from green to white
(pressing F1); (2) The alarm lamp on the right turns from
white to red (pressing F2); (3) The value for the item being
monitored falls out of the normal range, i.e., the red bar
is out of the blue zone in each slider (pressing F3, F4 or
F5 for the corresponding slider). Concerning the rationale of
the adopted SMT, three remarks are given below. First, the
SMT is simple enough that it can be executed using the non-
dominant hand simultaneously with the primary task without
suppressing it. Second, both the primary and secondary tasks
require participant’s visual-motor integration and thus draw
upon the same cognitive resources. Third, the SMT is suitable
to assess cognitive load since key-pressing movements are
less precise and reaction times become slower with increasing
cognitive load [39].

B. Input Interfaces for Primary and Secondary Tasks
Fig. 3 provides an overview of the interfaces utilized in the

dual-task paradigm. A multimodal input (MMI) is designated
for the primary task (i.e., MRS control), where the operator’s
dominant hand manipulates the haptic hand-controller (Geo-
magic Touch by 3D Systems, Inc.) to produce the velocity
control inputs for MRS, and he/she utilizes a hybrid gaze-
BCI for providing formation control inputs for MRS. For
the secondary task, to react to abnormal event visual alarms
appearing on the system monitoring GUI, the operator uses
the non-dominant hand to press corresponding keys (system
monitoring inputs) on the keyboard.

Fig. 3. Overview of the interfaces for primary and secondary tasks.

Fig. 4. The overall MRS control architecture.

Fig. 5. The formation command items and associated flickering
frequencies.

IV. METHODS

In this section, the details for MRS teleoperation control
with hand-controller and hybrid gaze-BCI will be provided.
Fig. 4 depicts the overall MRS control architecture, consisting
of stimulation program, EEG and gaze acquisition, hybrid
gaze-BCI and MRS teleoperation controller that are illustrated
below.

A. Stimulation Program
In our study, we defined altogether K = 5 commands for

MRS formation control, including 3 commands for formation
shapes (vertical line, pentagon, triangle) and 2 commands
for formation densities (dense, sparse). Such five commands
were displayed with image icons overlying the Gazebo sim-
ulator (see Fig. 5), displaying on the LCD screen (24.5 inch,
1920 × 1080 pixels, refresh rate of 60 Hz).

Regarding the icon size for gaze-based interaction, a too
large command icon would occlude the display of the scene
and the MRS, while a too small one would probably require
great user efforts in placing gaze points precisely within
a small region. In this study, the icon size was designed
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following the rule suggested in [11]. Specifically, assuming
that the captured gaze points were normally distributed in the x
and y directions around a mean with offset ox/y (gaze tracking
accuracy) from the target center and a standard deviation σx/y
(gaze tracking precision), the target width and height were
derived as: Tw/h = 2(ox/y+2σx/y), where σx/y was multiplied
with 2 in order to make about 95% of values lie in two
standard deviations of the mean for normally distributed data,
i.e., 95% of gaze points were supposed to fall inside the target
region. According to [40], the eye-tracker adopted in our study
(eyeTracker 5, Tobii, Stockholm, Sweden) strays on average
35 pixels (ox/y) from the target and has a standard deviation
of 18 pixels (σx/y). Ultimately, the size for each icon was
designed to be 140 × 140 pixels with a 50-pixel gap between
nearby ones.

To evoke SSVEP, each command icon was associated with a
visual stimulation flickering at different frequencies (6.66 Hz,
7.5 Hz, 8.57 Hz, 10 Hz, 12 Hz) suggested by [41]. The
flickering stimulus program was developed using OpenGL.

B. EEG and Gaze Acquisition
EEG Signals were acquired with a 10-20 montage active

electrode cap (ActiCap, BrainAmp, BrainProducts, Munich,
Germany) and an EEG amplifier (SynAmps II, Neuroscan,
Compumedics, Victoria, Australia), with a sampling rate
of 1000 Hz. Signals collected from 9 electrodes (O1, O2,
OZ, PO5, PO3, POZ, PO4, PO6 and PZ) of interest above
the visual cortex were referenced to the left mastoid and
the ground electrode was placed on the forehead. All the
electrodes impedance was kept below 10 k� during the
experiments. The EEG amplifier applied a band-pass filter
between 0.15 and 200 Hz as well as a 50 Hz notch filter
on the signals, before sending them to the recording PC. The
event triggers generated by the stimulation program on host
PC were sent to the Neuroscan amplifier with the parallel port.
To enable further processing on host PC, the EEG data and the
event triggers in recording PC were transmitted to the host PC
with LAN cable (Ethernet) TCP/IP in real-time (transmission
delay <1ms) and then down-sampled to 250 Hz.

The Tobii eye-tracker 5 was attached to the bottom of the
monitor of host PC, allowing moderate head movements. The
eye-tracker provided the 2D gaze positions on the screen of
host PC via USB at at 33 Hz. For facilitating the subse-
quent synchronization with EEG signals whose sampling rate
was 250 Hz, the gaze data were then resampled to 30 Hz.
Subjects were seated at 65 cm from the screen. Before
the experiments, the eye-tracker’s in-built 6-point calibration
procedure was applied for each subject, lasting about 30 s.

C. Hybrid Gaze-BCI
This section illustrates the scheme for the collaborative gaze

and BCI input, featuring simultaneous processing and fusion.
Firstly, for each input modality, a probabilistic model is built
to estimate the probability for each target that the user is trying
to select. Nextly, these two evidences are fused at the decision
level for inferring the target command.

1) Evidence of Selected Command by BCI: To facilitate
the practical usage of hybrid gaze-BCI in MRS operation,
we have realized a plug-and-play SSVEP-based BCI which
does not require calibrations in advance for each user. In spe-
cific, we apply the Filter bank canonical correlation analysis
(FBCCA) [42] to recognize the frequency of SSVEP.

Let X ∈ RNc×Nt denote an L s-long EEG epoch beginning
with the stimulus onset, where Nc is the number of channels
and Nt represents the number of instances within an epoch.
The FBCCA approach involves three steps. The first step is to
decompose the original EEG signals X into sub-band compo-
nents XSBn ∈ RNc×Nt (n = 1, 2, . . . , N ), by applying N filters
with different pass-bands. Previous study [42] has validated
that sub-bands containing multiple harmonic bands with a high
cut-off frequency at the upperbound frequency of SSVEP is an
effective design for FBCCA. Thus in this work, N = 5 band-
pass filters are utilized, whose bands are 6−80 Hz, 12−80 Hz,
18 − 80 Hz, 24 − 80 Hz and 30 − 80 Hz, respectively. The
second step of FBCCA is to calculate the canonical correlation
values (ρn

k , k = 1, 2, . . . , K ) between the nth SSVEP sub-
band components XSBn and the kth reference signal of sine-
cosine waves. The final step of FBCCA is to compute the
evidence for the kth target stimulus Tk with the weighted
square sum of the N correlation values corresponding to N
sub-band components:

PBC I (Tk) =

∑N
n=1 wSB(n)(ρn

k )2∑K
k=1

∑N
n=1 wSB(n)(ρn

k )2
, (1)

where weights for the sub-band components are wSB(n) =

n−1.25
+ 0.25, suggested by [42]. Considering the SSVEP-

BCI modality only, the target which maximizes PBC I (Tk) is
selected as its output.

2) Evidence of Selected Command by Gaze: Each gaze
sample gt = [gx

t , gy
t ]

⊤
∈ R2 is concatenated to form an L

s-long gaze epoch G = [g1, g2, . . . , gMt ] ∈ R2×Mt beginning
with the same time instance as the SSVEP flickering stimulus
onset. Note that t is the index of gaze samples within an epoch
and Mt is the total number of gaze samples of an epoch.
We employ the Kalman filter to track the gaze position (gt )
and gaze velocity (ġt ) for denoising the eye tracking signal,
as well as to build a probabilistic distribution of the user’s
focus on screen at t . The process and measurement equations
of the Kalman filter are:

ξ t+1 =


gx

t+1

gy
t+1

ġx
t+1

ġy
t+1

 =


1 0 1/30 0
0 1 0 1/30
0 0 1 0
0 0 0 1

 ξ t + ωt (2)

gt =

[
1 0 0 0
0 1 0 0

]
ξ t + ηt , (3)

where ξ t is the state vector, ωt and ηt are assumed to be white,
mutually independent Gaussian noise processes, the posterior
state mean and covariance are ξ̂ t |t , Qt |t = E{[ξ t − ξ̂ t |t ]

[ξ t − ξ̂ t |t ]
H
}, respectively. It is rational to assume that the

user’s gaze does not deviate far from the target, and thus the
evidence, i.e., the posterior probability of the kth target given
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the gaze epoch G could be calculated by:

Pgaze(Tk) = E
{∫
Ak

N (ξ t ; ξ̂ t |t , Qt |t )dξ t

}
, (4)

where Ak represents the zone on screen where target k
appears, and the mean (E) is over t . As for the gaze modality
alone, the target which maximizes Pgaze(Tk) is selected as the
output.

3) Gaze and BCI Fused Command Selection: The synchro-
nized EEG and gaze epochs of length L s are then fused at the
decision level by applying the Dempster’s rule of combination.

P f usion(Tk) =
1
M

PBC I (Tk) ∗ Pgaze(Tk), (5)

where M =
∑K

k=1 PBC I (Tk) ∗ Pgaze(Tk) is the normalization
constant. The target that maximizes P f usion(Tk) is the con-
sensus decision from the EEG and gaze input modalities.

D. MRS Teleoperation Controller

This section presents the teleoperation architecture with a
distributed multi-robot control algorithm. The hand-controller
and the hybrid gaze-BCI reside on the master side, simulated
multiple mobile robots are slaves.

1) Kinematic Model of Mobile Robot: We consider 5 simu-
lated two-wheeled differentially driven mobile robots whose
coordinates are denoted by Pi = [xi , yi ]

⊤
∈ R2, i =

1, 2, . . . , 5, where (xi , yi ) is the coordinate of i-th robot in
the world coordinate frame XW OW YW . vi = [vxi , vyi ]

⊤
∈ R2

and ṽi = [ṽxi , ṽyi ]
⊤

∈ R2 represent the velocity vectors of
the robot in the world frame XW OW YW and the robot frame
X R ORYR , respectively. Assuming no wheel slipping occurs,
the kinematic model of the nonholonomic wheeled robot can
be written as:

ṖR
i = [cos θi , sin θi , 0]

⊤vi + [0, 0, 1]
⊤wi (6)

where PR
i = [P⊤

i , θi ]
⊤, θi denotes robot’s orientation angle

with respect to the x-axis (−π < θi ≤ π), vi and wi
denote the wheel’s linear velocity and its angular velocity,
respectively. vi , wi could be derived from vi and ṽi as follows:

vi =

√
(vxi )2 + (vyi )2

ṽi = R(θi )vi

wi = atan2(ṽyi , ṽxi )

θ̇i = wi

(7)

where R(θi ) is the rotation matrix from XW OW YW to
X R ORYR , as shown in Fig. 6.

2) Formation Library: The multiple robots may need to form
appropriate formations according to the situations. For each
formation shape, the desired relative distances between robots
are predefined. For example, the matrix storing the relative
distances between robots with the triangle formation (Fig. 3)

Fig. 6. The world frame and robot frame.

is given by:

D = [di j ]5×5 =


0 d 2d d 2d
d 0 d

√
2d

√
5d

2d d 0
√

5d 2
√

2d
d

√
2d

√
5d 0 d

2d
√

5d 2
√

2d d 0

 ,

(8)

where di j denotes the desired relative distance between robot i
and j . d is the minimal distance between robots, determining
the density of the formation (two positive values for d are
used in our study to represent a dense formation and a sparse
formation, respectively). The participant could use the hybrid
gaze-BCI to select the intended formation command icon
appearing on the screen.

3) Distributed Multi-Robot Control: We have adopted the
distributed MRS control algorithm presented in [43] to imple-
ment the MRS control. The distributed multi-robot control
consists of the following three possible control items: (1) a
velocity control of the robot using a hand-controller device
vh

i = [vh
xi , v

h
yi ]

⊤
∈ R2, (2) a formation control to form the

desired formation v f
i = [v

f
xi , v

f
yi ]

⊤
∈ R2, (3) a collision

avoidance control to avoid obstacles vo
i = [vo

xi , v
o
yi ]

⊤
∈ R2.

Subsequently, we implement the following distributed control
on each robot, for the i th robot

Ṗi = vh
i + v f

i + vo
i . (9)

a) Velocity control: vh
i . The desired velocity input of the

robot is given by vh
xi = Khx I (qx , qx0), v

h
yi = Khy I (qy, qy0),

where qx and qy denote the end-effector positions of the
hand-controller along x axis and y axis (Fig. 3), respectively.
I (q, q0) is a function defined by:

I (q, q0) =


1 q > q0,

−1 q < −q0,

0 otherwise,
(10)

where q0 is a positive threshold constant. Khx and Khy are
constant speed values.

b) Formation control: v f
i . It implies the control item to

avoid collisions among robots and to preserve the desired
relative distance di j between robot i and robot j , for achieving
a desired formation, as defined by:

v f
i = −

N∑
j=1

∂φ
f

i j (∥Pi − P j∥
2)⊤

∂Pi
, (11)
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Fig. 7. Overview of the three experiments.

where φ
f

i j is an artificial potential function to generate an
attractive action if ∥Pi − P j∥ > di j , a repulsive action if
∥Pi − P j∥ < di j and a null action if ∥Pi − P j∥ = di j as
in [43].

c) Collision avoidance control: vo
i . Such a control item is

again defined by an artificial potential field that prevent MRS
to collide with obstacles under a distance threshold d0 ∈ R+:

vo
i = −

∑
j∈Oi

∂φo
i j (∥Pi − Po

j∥)
⊤

∂Pi
, (12)

where Oi represents the set of obstacles of the i th robot with
Po

j being the position of the j th obstacle in Oi . The artificial
potential field function φo

i j as in [43] produces a repulsive
action if ∥Pi − Po

j∥ < d0 and a null action otherwise.
In summary, each robot is controlled by the distributed MRS

control (equation (9)), and it corresponds to the summation of
the three control items. Then the linear velocity and the angular
velocity of each wheeled robot could be derived according to
equation (7), for driving the robot via equation (6) in Gazebo.

V. EXPERIMENTS

A. Subjects
Eight healthy subjects (2 females, 6 males, aged

22-26 years, all right-handed, with normal or corrected-to-
normal vision) were recruited. All of them were naive to
SSVEP experiments, two of them had eye tracking experi-
ence. The study was approved by the Southeast University
Ethics Committee (2019ZDSYLL001-P01) and carried out
in accordance with Declaration of Helsinki. Fig. 7 provides
an overview of the experiments. Each subject participated in
Experiment I, II and III (illustrated in following sub-sections)
after another subject. After all the eight subjects had took part
in Experiment I, the subject came back to our lab again on
another day to conduct Experiment II and III in sequence with
a 5-min break between them. Experiment I and II focused
on the guided command selection task with MRS remained
still, while Experiment III involved the concurrent MRS con-
trol and monitoring tasks. All the subjects had a good rest
(e.g., a whole-night sleep or a nap after lunch) before the
experiments.

B. Experiment I: Offline Guided Command Selection
The purpose of Experiment I was to fine-tune the epoch

length of synchronized EEG and gaze for the hybrid gaze-
BCI in a guided command selection task.

1) Experimental Procedure: Experiment I was separated
into 30 blocks. Each block consisted of 5 trials, which
contained the five formation control commands presented
in a random order, resulting in altogether 150 trials. Each
trial began with a visual cue indicating a target command
(i.e., highlighted with white square frame) and the cue lasted
for 1 s. Subjects were asked to shift their gaze to the target
as soon as possible within the cue duration. Upon the cue
offset, all the stimuli flickered simultaneously for 3 s. Subjects
were asked to avoid eye blinks during the stimulation period.
Following the stimulus offset, subjects had a short break for
2 s. To avoid visual fatigue, there was a 10-second rest between
two consecutive blocks.

2) Performance Metrics and Statistical Analysis: The clas-
sification accuracy (ACCRY) and information transfer rate
(ITR) were utilized for the performance evaluation. The ITR
in bits/min was defined as Wolpaw et al. [44]:

I T R =
(

log2 K + p log2 p + (1 − p) log2
[ 1 − p

K − 1

])
∗

60
T

,

(13)

where K is the number of targets (K = 5 in our study),
p is the classification accuracy and T is the duration per
selection (including the epoch length for identifying the target
and the 1-sec cue duration for gaze shifting). In experiment I,
these performance metrics were estimated for different epoch
lengths (from 0.3 s to 2.9 s with a step of 0.2 s), so as to
determine the optimal epoch length for hybrid gaze-BCI. The
Friedman test was conducted to assess the effect of gaze-based,
BCI-based and hybrid gaze-BCI based approaches on ACCRY
and ITR, post-hoc analysis was conducted with the Bonferroni
correction.

C. Experiment II: Online Guided Command Selection
The experiment II was to evaluate the optimized hybrid

gaze-BCI for online guided command selection.
1) Experimental Procedure: Experiment II consisted of five

blocks, each block included also 5 trials corresponding to five
commands in random order. The trial timing in Experiment I
and II were identical except for the length of the stimulation
flickering duration (determining the epoch length for synchro-
nized EEG and gaze), which was optimized according to the
results of Experiment I on all the subjects.

2) Performance Metrics and Statistical Analysis: The same
performance metrics (ACCRY and ITR) were adopted in
Experiment II as those of Experiment I, but calculated with
optimized constant epoch length for all the subjects. The
statistical analysis means and procedure were also the same
as in Experiment I.

D. Experiment III: Online Validation in Hands-Occupied
Dual-Task Paradigm

The purpose of Experiment III was to validate the effec-
tiveness of the proposed hybrid gaze-BCI supplementing to
the manual hand-controller with a dual-task paradigm, where
both hands of the operator were occupied.
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Fig. 8. The “Hand-CTR + HGBCI” experimental setup for dual-task
paradigm experiment.

1) Experimental Conditions and Procedure: Experimental
conditions. The primary task (MRS control) is conducted with
the following two conditions:

(1) Hand-CTR + HGBCI, where a subject inputs the veloc-
ity commands for MRS with the hand-controller (Hand-
CTR) by the dominant hand and issues the formation
commands with the supplementary hands-free hybrid
gaze-BCI (HGBCI).

(2) Hand-CTR, where a subject issues both the forma-
tion and velocity commands for MRS with the hand-
controller only, using the dominant hand.

In the meanwhile, for both the two conditions, the secondary
task (system monitoring) is handled with keyboard by the non-
dominant hand. Such two concurrent tasks leave both hands
busy.

2) Experimental Setup for “Hand-CTR + HGBCI” Condition:
Fig. 8 shows the experimental setup. When inputting the
velocity with the hand-controller, it is confined to the end-
effector’s XOY frame (see Fig. 3). The target formation is
selected with the hybrid gaze-BCI, when it has detected the
user intended formation command icon.

Moreover, since it is not necessary to display the forma-
tion command menu throughout the task, we designed an
appearing and flickering scheme for the formation command
menu. Specifically, whenever the subjects intended to issue
the formation commands, they had to gaze the top menu
icon in the upper right corner (see Fig. 8) for at least 1 s,
in order to trigger the display of the formation command
menu (it is analogous to click the “start” menu residing on
the bottom left corner on a Windows PC with a mouse). The
top menu icon then disappeared, followed by the intermediate
appearance and flickering of the formation command menu
(Fig. 5), the subject was then required to promptly orient
the visual attention onto the desired command icon and keep
focusing on it. At the same time, the gaze and the EEG data
were acquired simultaneously. Once the epoch length of the
synchronized gaze and EEG data reached a predefined value,
the subject’s intended command was inferred and then issued.
Meanwhile, the formation command menu disappeared and
the top menu icon reappeared in the upper right corner.

3) Experimental Setup for “Hand-CTR” Condition: In such
an experimental setup, the inputting for the velocity control
was also achieved by the dominant hand with the hand-
controller. To input the formation control commands, a widely
adopted approach [45], [46] was implemented. Specifically,
as shown in Fig. 9, the formation command was constrained
to be inputted with the dominant hand from the YOZ frame

Fig. 9. The scheme for selecting formation commands in the
“Hand-CTR” condition.

Fig. 10. The trial timing diagram for the dual-task paradigm.

TABLE I
OVERVIEW OF MEASUREMENTS FOR EXPERIMENT III

of the hand-controller, where five non-overlapping zones were
divided and a 1.5 s-long stay of the end-effector in each zone
would trigger a formation command.

4) Experimental Procedure: Fig. 10 shows the trial timing
diagram for the dual-task paradigm. The concurrent system
monitoring and MRS control tasks began at the same time for
each trial. There was no time limit for accomplishing the MRS
control task in each trial, but there was a random abnormal
event every 5 s for the system monitoring task. A trial ended
when the MRS control task was finished. Each subject carried
out 30 trials under the two conditions (15 trials per condition)
in a counterbalanced order, and had a short rest between
two trials. Before the formal experiments, the subjects took
a practice session to get familiar with the interface usage and
the task workflow (lasting about 5 minutes). Since there was
no time limit for accomplishing the MRS control task and
the formation command could be re-issued when the subject
found that the command issued was not the desired one, all
the subjects finished the MRS control task successfully.

5) Performance Metrics and Statistical Analysis: Table I pro-
vides an overview of all measurements for assessing the two
conditions, which we explain in detail below.

Objective Primary Task Metrics. The performance of the
MRS control task was assessed with the following two met-
rics. (1) The accuracy for inputting the formation commands
(ACCin =

75
75+Nerr

), where 75 = 15 trials × 5 formation
commands/trial required to issue, and Nerr represents total
number of formation commands re-issued in all the trials.
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Fig. 11. Offline guided command selection experimental results.
(a) ACCRY and (b) ITR for gaze only, BCI only and fusion based hybrid
gaze-BCI approaches using different epoch lengths. When the perfor-
mance of hybrid gaze-BCI is better than the other two approaches and
the post-hoc analysis shows the performance difference is of statistical
significance (p < 0.05), such a difference is marked by “*”.

This metric was defined following [32]. The true online
classification accuracy for hybrid gaze-BCI may be higher
than this estimate because subjects possibly did not follow
the optimal strategy for completing the task. (2) The time
spent for finishing the task (T I M E f i ) in a trial. The initial
and ending positions were fixed for the MRS control task,
and the movement speeds of MRS with converged formations
were the same across trials. Thereby, the completion time was
dominated by the time spent on obtaining the required MRS
formations.

Objective Cognitive Load. The objective measurement for
cognitive load was the performance in the secondary task.
It was assessed by the following two metrics that are well-
identified in previous work, similar to physiological activity
measurements [31]. (1) The response accuracy (ACCresp): the
percentage of correctly pressed keys in response to the random
abnormal events out of all the trials. (2) The response time
(T I M Eresp): the time taken from the abnormal event onset to
the key press.

Subjective Workload. At the end of experiments, subjects
were asked to report their subjective mental workload rat-
ing scale score (0 ∼ 100) with the NASA Task Load
Index (NASA-TLX) tool, including mental demand, physical
demand, temporal demand, effort, performance and frustration
level (the average score was reported for such six scale
factors).

The Wilcoxon signed rank test was utilized for the statistical
analysis of the difference in measurements above between two
conditions.

VI. RESULTS

A. Results for Offline Guided Command Selection
The offline performance of approaches based on BCI only,

gaze only and hybrid gaze-BCI are reported, respectively.
Fig. 11 depicts the performance as a function of EEG and
gaze epoch length (from 0.3 s to 2.9 s with a step of 0.2 s)
across trials and subjects.

From Fig. 11(a), it can be observed that the gaze alone
results in higher ACCRY than other two approaches with short
epochs (< 0.9 s), which is explained as follows. First, for the
menu layout in our study, gaze could reach a specified area in

a very short time (generally less than 1 s, the length of cue
duration), i.e., the subject’s gaze generally had successfully
switched to the target before the SSVEP flickering stimulus
onset (the beginning of the gaze epoch to be processed latter).
Second, since it takes a certain time for the brain to activate
the SSVEP response to the flickering stimuli, the BCI fails
to provide satisfactory ACCRY with such short epochs. As a
consequence, the hybrid gaze-BCI based on fusion is inferior
to the gaze alone based approaches in this case. With epochs
longer than 0.9 s, ACCRY of gaze-based approaches barely
increases as shown in Fig. 11(a), since gaze points are unable
keep still but oscillate around or off the target. By contrast,
as the epoch length increases, ACCRY of BCI continues to
rise until the length reaches to 2.1 s (ACCRY: around 95%)
and then stops increasing with longer epoch lengths. Moreover,
the evidence fusion of BCI and gaze input modalities indeed
improves over the single modality alone after the epoch length
reaches to 1.1 s, as it has always obtained higher ACCRY than
the other two since then. Moreover, when the epoch length
is greater than 1.5 s, the post-hoc analysis shows that the
ACCRY differences between hybrid gaze-BCI and gaze/BCI
are all statistically different (p < 0.05).

From Fig. 11(b), it can be seen that although the gaze-based
approach could reaches to the highest ITR among these three
ones with 0.7-s long epochs, its ACCRY is less than 90%
and the ITR has kept decreasing with longer epochs. On the
contrary, with a longer epoch (1.3 − 1.5 s), the fusion based
hybrid gaze-BCI has attained the highest ITR (1.3 s: 47.98 ±

6.70, 1.5s: 47.52 ± 6.41 bits/min) among the three ones. The
post-hoc analysis with Bonferroni correction demonstrates that
epoch length 1.3 s and 1.5 s lead to statistically different ITR
between hybrid-BCI and gaze/BCI alone (p < 0.05).

Based on the results for the offline experiment, to obtain
a high ACCRY and a high ITR simultaneously, the epoch
lengths in the latter online guided command selection experi-
ment and dual-task paradigm one were both set to 1.5 s.

B. Results for Online Guided Command Selection
Friedman test showed that different approaches have effects

on both ACCRY and ITR, and post-hoc analysis with Bonfer-
roni correction reveals that differences in ACCRY and ITR
between hybrid gaze-BCI (ACCRY: 96.00 ± 2.57%, ITR:
47.35 ± 6.82 bits/min) and gaze only technique (ACCRY:
89.41 ± 3.51%, ITR: 38.95 ± 7.41 bits/min), as well as those
between hybrid gaze-BCI and BCI only one (ACCRY: 90.83±

3.04%, ITR: 40.72±8.53 bits/min), are statistically significant
(hybrid vs. gaze: p < 0.05, hybrid vs. BCI: p < 0.05). Such
results indicate that the hybrid gaze-BCI with 1.5-second long
gaze and EEG epochs is more accurate and efficient to infer the
target than the gaze alone and the BCI alone, leaving reliable
and efficient selection of commands feasible.

C. Results for Hands-Occupied Dual-Task Paradigm
The measurements across subjects and trials under two

conditions are shown in Fig. 12.
As for the performance of the MRS control task demon-

strated in Fig. 12 (a) and Fig. 12 (b), both ACCin and
T I M E f i under the “Hand-CTR + HGBCI” setup outperform
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Fig. 12. Hands-occupied dual-task paradigm experimental results under two conditions. (a) the accuracy of inputting the formation commands
(b) the time spent on finishing the MRS control task (c) the accuracy of pressed keys responding to abnormal events in the system monitoring
task (d) the response time in the system monitoring task (e) the workload ratings for carrying out the dual tasks. The performance differences with
statistical significance p < 0.001, p < 0.01 and p < 0.05 are marked by “***”, “**” and “*”, respectively, while non-significant difference is marked
by “ns”.

those under the “Hand-CTR” one (ACCin :92.66 ± 2.26% vs.
89.60 ± 2.21%, T I M E f i :61.93 ± 2.33 s vs. 66.93 ± 2.20 s).
Moreover, both performance differences between such two
conditions are statistically significant (ACCin :p = 0.0313 and
T I M E f i : p = 0.0019). These results indicate that the
inputting manner for formation commands with the hand-
controller is inferior to that with the hybrid gaze-BCI, which
is explained as follows. It may be difficult for the subject to
directly move the end-effector of the hand-controller into the
precise zone for issuing a desired formation command, the
“trial and error” strategy was likely to be adopted. Namely,
the subject randomly moved the end-effector to a zone to
trigger a formation command, and then made a decision on the
correctness of such a command with the visual feedback of the
on-going MRS formation transforms; once the command was
found to be the undesired one, the subject continued to move
the end-effector into another zone, and such process repeated
until the desired formation was obtained. By contrast, under
the “Hand-CTR + HGBCI” setup, the “trial and error” strategy
was avoided by displaying the candidate formation command
icons. In other words, the selection of formation command
through the hybrid gaze-BCI may be much more intuitive,
accurate and easier than that through the hand-controller.

Regarding the performance of the system monitoring task
shown in Fig. 12 (c) and Fig. 12 (d), both conditions lead to
satisfying ACCresp (average ACCresp > 90%), and there is no
statistical significance between the two experimental setups for
ACCresp (p = 0.38). Nevertheless, the T I M Eresp of “Hand-
CTR + HGBCI” is superior to that of “Hand-CTR” with
statistical significance (2.08±0.03 vs. 2.40±0.05, p = 0.01).
The longer response time under “Hand-CTR + HGBCI” may
be attributed to the following reason. The only difference
between the two conditions was in the formation command
selection phase. When inputting the formation command via
the hand-controller, the subject was prone to pay close atten-
tions on the end-effector of the hand-controller so as to ensure
it was moved to the correct zone for the MRS control task.
Consequently, it is inevitable to divide more visual resources
for the system monitoring task on the host PC display with
“Hand-CTR” than with “HGBCI” that naturally requires the
subject to keep visual attentions on the display. In other

words, the maintained amount of available visual resources
by “HGBCI” may have allowed subjects to react faster for
the secondary task than by “Hand-CTR”. The phenomenon of
reaction times becoming slower with increasing cognitive load
has been described by a large body of research (see [39] for
an overview).

As can be seen from Fig. 12 (e), the subjective workload
rating scores for completing the two tasks in parallel are
significantly lower under “Hand-CTR + HGBCI” (48.33 ±

4.80) than those under “Hand-CTR” (64.17± 3.00) for all the
subjects (p = 0.00091). Such results are possibly due to the
following reasons. First, it generally took less time to finish
the MRS control task under “Hand-CTR + HGBCI” than
under “Hand-CTR”. Consequently, “Hand-CTR + HGBCI”
resulted in a less heavier mental demand. Second, under the
“Hand-CTR” setup, the subject had to move the arm up and
down to place the end-effector of the hand-controller into the
pre-specified zones in YOZ frame for issuing the formation
commands, leading to physical demands to a certain extent.
On the contrary, under “Hand-CTR + HGBCI”, the formation
commands was inputted by the hand-free hybrid gaze-BCI,
without physical activities of limbs. Third, as being reported
above, under “Hand-CTR”, the system monitoring task suf-
fered from loss in attentions when inputting the formation
commands with the hand-controller, which slowed down the
reactions in response to abnormal monitoring events, leaving
a frantic task pace. In addition, other advantages of the hybrid
gaze-BCI for inputting formation commands with occupied
both hands, such as being intuitive, easy-to-use and less prone
to error, also may contribute to the less frustration and higher
satisfaction on the overall performance reported by the subjects
under “Hand-CTR + HGBCI” than “Hand-CTR”.

VII. DISCUSSIONS

A. Multimodal Input Design for MRS Control
The haptic hand-controller is a commonly-adopted device

for MRS teleoperation [43], [45], [46], with which the operator
could input manipulation commands for realizing supervisory
control of MRS and receive haptic feedback on the MRS
status for supporting situational awareness. However, such
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a manual unimodal input (UMI) device would be inadequate
for all the control functions required in our inspection applica-
tion under the hands-occupied dual-tasking scene. In specific,
it is elegantly appropriate for velocity control by mapping
end-effector positions to continuous MRS’s velocity, but less
natural for formation control by mapping the positions to
MRS’s discrete formation shapes. To create a more operator-
friendly interface for MRS control in our considered scenario,
this study has presented an MMI design, which outperformed
UMI hand-controller according to the experimental results.
The highlights for the design are detailed below.

First, the velocity control function is still designated to the
hand-controller that excels at inputting continuous velocity
commands for MRS, while we propose to realize the formation
control function with a hybrid gaze-BCI. It intuitively maps
the operator’s naturally attended spatial-frequency stimuli,
decoded collaboratively from gaze and SSVEP signals, to dis-
crete formation shape commands. Under the hands-occupied
dual-tasking scene, such a hands-free input modality is more
appropriate than other hands-on alternatives [6]. Moreover,
this mapping provides advantages in terms of intuitiveness and
ease of interaction, with respect to the previous less natural
mapping using the hand-controller.

Second, the proposed design of simultaneous processing
and evidence fusion for gaze and SSVEP contributes to the
effectiveness of the hybrid gaze-BCI as a modality in the
MMI. As have been verified in section VI-B, the hybrid gaze-
BCI is found to be able to provide both higher ACCRY
and higher ITR than gaze alone and BCI alone for online
command selection, suggesting that it enables reliable and
efficient selection of on-screen commands to control MRS.
Besides, compared to the inputting accuracy of the hybrid
gaze-BCI (96.00 ± 2.57%) in the online single-task paradigm,
its inputting accuracy in the dual-task paradigm (ACCin =

92.66±2.26%) has not deteriorated severely, indicating that the
hybrid gaze-BCI built in the single-task paradigm maintained
the applicability in the dual-task one.

B. Multimodal Input in Dual-Task Paradigm
Although the feasibility of hands-free MRS control with

EEG or gaze as inputs has been confirmed in previous
studies [7], [33], [35], all these existing works have only
examined their performance in a single-task paradigm (the
MRS control task only) and without the involvement of hands.
By contrast, we have especially investigated the inputs in a
dual-task paradigm that closely simulates a real-world MRS
teleoperation scenario, where a healthy operator carries out
the MRS control task and system monitoring task concur-
rently. In particular, it is remarkably to point out that such a
dual-task paradigm is more challenging than the single-task
one, since the concurrent two tasks compete for cognitive
resources, interfering with each other. Moreover, these two
tasks always keep the subject’s both hands busy. Toward
enhancing the operator-MRS interaction in real-world appli-
cations, the present study is to our knowledge, the first to
investigate the superiority of MMI built by extending the hand-
controller with hands-free hybrid gaze-BCI over the unimodal
hand-controller under dual-tasking.

In particular, the superiority of the MMI is disclosed from
the following three aspects. 1) The performance of the MRS
control task: subjects complete the primary task (MRS control)
with significantly better performance with the MMI than
the hand-controller alone (see Fig. 12 (a) and Fig. 12 (b)).
2) The objective cognitive load: the significantly shorter reac-
tion time for the secondary task (system monitoring) implies
that the MMI leads to lower cognitive load for subjects than
the hand-controller alone (see Fig. 12 (d)). 3) The subjective
workload: all the subjects have reported lower perceived work-
load with the MMI than those with the hand-controller only
(see Fig. 12 (e)).

C. Limitations and Future Work
Featuring an effective hands-free input channel alternative

to previous unnatural hands-on one, this study has presented a
novel MMI for MRS control under dual-tasking. Results show
that it improves the MRS control performance and reduces
the operator’s cognitive load over UMI. Nevertheless, the
proposed method does not exclude the possibility that some
type of well-designed, optimized manual or other hands-free
interface could enable better performance than the hybrid gaze-
BCI. Moreover, there are also several limitations of current
work. We have designated the hybrid gaze-BCI to input for-
mation shape commands only, other control functions that are
also inappropriate to be realized with hand-controller, could
be used to assess superiority of the new MMI to prior UMI.
For example, the hybrid gaze-BCI could be further designed
to select one of the robots and issue discrete commands
to change its camera’s view angle for better inspection of
environment, etc. Moreover, the uniform epoch length was
used across subjects, effective and efficient methods for finding
the optimal epoch length for each subject will be explored
in future work. In addition, this study did not use physical
robots controlled remotely in real time and the haptic feedback
of MRS statuses was not implemented, both of which may
limit the generalizability of the results found here. Experiments
involving interactions with physical MRS will be carried out
in future work to assess the adequacy and efficiency of the
interface developed.

VIII. CONCLUSION

For the concurrent MRS control and system monitoring
tasks where both hands are busy, to overcome the limitation
of previous less natural hands-on input for discrete formation
commands via the hand-controller, this work has presented
a hands-free alternative, i.e., the hybrid gaze-BCI. Moreover,
we have assessed the effectiveness of the MMI consisting of
the proposed hybrid gaze-BCI and the manual hand-controller
in a hands-occupied dual-task paradigm with simulated MRS.
Experimental results demonstrate that the proposed sensor-
processing solutions for the hybrid gaze-BCI enable more
reliable and efficient target selection than gaze/BCI alone.
Furthermore, results show that the MMI leads to improved
MRS control performance, reduced user cognitive load
and perceived workload over the unimodal hand-controller.
As such, the findings from this study reinforce the great poten-
tial of the hands-free hybrid gaze-BCI that extends traditional
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manual MRS control input devices, for augmenting the hands-
occupied healthy operator under dual-tasking.
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[25] Z. Işcan and V. V. Nikulin, “Steady state visual evoked potential
(SSVEP) based brain-computer interface (BCI) performance under
different perturbations,” PLoS ONE, vol. 13, no. 1, Jan. 2018,
Art. no. e0191673.

[26] Y.-P. Lin, Y. Wang, and T.-P. Jung, “A mobile SSVEP-based brain-
computer interface for freely moving humans: The robustness of
canonical correlation analysis to motion artifacts,” in Proc. 35th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2013,
pp. 1350–1353.

[27] S. Kanoga, M. Nakanishi, A. Murai, M. Tada, and A. Kanemura,
“Robustness analysis of decoding SSVEPs in humans with head move-
ments using a moving visual flicker,” J. Neural Eng., vol. 17, no. 1,
Feb. 2020, Art. no. 016009.

[28] S. Li and X. Zhang, “Implicit intention communication in human–robot
interaction through visual behavior studies,” IEEE Trans. Human-Mach.
Syst., vol. 47, no. 4, pp. 437–448, Aug. 2017.

[29] B. Park and R. Brünken, “The rhythm method: A new method for
measuring cognitive load—An experimental dual-task study,” Appl.
Cognit. Psychol., vol. 29, no. 2, pp. 232–243, Mar. 2015.

[30] R. Brunken, J. L. Plass, and D. Leutner, “Direct measurement of
cognitive load in multimedia learning,” Educ. Psychol., vol. 38, no. 1,
pp. 53–61, Jan. 2003.

[31] C. D. Wickens, “Processing resources and attention,” in Multiple-
Task Performance. Boca Raton, FL, USA: CRC Press, 2020,
pp. 3–34.

[32] Y. Ke, P. Liu, X. An, X. Song, and D. Ming, “An online
SSVEP-BCI system in an optical see-through augmented real-
ity environment,” J. Neural Eng., vol. 17, no. 1, Feb. 2020,
Art. no. 016066.

[33] S. Zhao, Z. Li, R. Cui, Y. Kang, F. Sun, and R. Song, “Brain–
machine interfacing-based teleoperation of multiple coordinated mobile
robots,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5161–5170,
Jun. 2016.

[34] G. K. Karavas, D. T. Larsson, and P. Artemiadis, “A hybrid BMI for
control of robotic swarms: Preliminary results,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 5065–5075.

[35] J.-H. Jeong, D.-H. Lee, H.-J. Ahn, and S.-W. Lee, “Towards brain-
computer interfaces for drone swarm control,” in Proc. 8th Int. Winter
Conf. Brain-Comput. Interface (BCI), Feb. 2020, pp. 1–4.

[36] C. I. Penaloza and S. Nishio, “BMI control of a third arm for multi-
tasking,” Sci. Robot., vol. 3, no. 20, Jul. 2018, Art. no. eaat1228.

[37] K. J. Miller, G. Schalk, E. E. Fetz, M. den Nijs, J. G. Ojemann,
and R. P. N. Rao, “Cortical activity during motor execution, motor
imagery, and imagery-based online feedback,” Proc. Nat. Acad. Sci.
USA, vol. 107, pp. 4430–4435, Mar. 2010.

[38] Y. Santiago-Espada, R. Myer, K. Latorella, and J. Comstock, “The multi-
attribute task battery II (MATB-II) software for human performance
and workload research: A user’s guide (NASA/TM-2011–217164),” Nat.
Aeronaut. Space Admin., Langley Res. Center, Hampton, VA, USA,
Tech. Rep. L-20031, 2011.

[39] G. M. Grimes and J. S. Valacich, “Mind over mouse: The effect of
cognitive load on mouse movement behavior,” in Proc. Int. Conf. Inf.
Syst. Fort Worth, TX, USA: Association for Information Systems, 2015,
pp. 1–13.

[40] A. Housholder, J. Reaban, A. Peregrino, G. Votta, and T. K. Mohd,
“Evaluating accuracy of the Tobii eye tracker 5,” in Proc. Int. Conf.
Intell. Hum. Comput. Interact. Cham, Switzerland: Springer, 2021,
pp. 379–390.

[41] V. P. Oikonomou et al., “Comparative evaluation of state-of-the-art
algorithms for SSVEP-based BCIs,” 2016, arXiv:1602.00904.

[42] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter bank canon-
ical correlation analysis for implementing a high-speed SSVEP-based
brain–computer interface,” J. Neural Eng., vol. 12, no. 4, Aug. 2015,
Art. no. 046008.

[43] C. Ju and H. I. Son, “A distributed swarm control for an agricultural
multiple unmanned aerial vehicle system,” Proc. Inst. Mech. Eng., I,
J. Syst. Control Eng., vol. 233, no. 10, pp. 1298–1308, 2019.

[44] J. R. Wolpaw, “Brain-computer interfaces (BCIs) for communication and
control,” in Proc. 9th Int. ACM SIGACCESS Conf. Comput. Accessibility,
2007, pp. 1–2.

[45] C. Masone, P. R. Giordano, H. H. Bulthoff, and A. Franchi, “Semi-
autonomous trajectory generation for mobile robots with integral hap-
tic shared control,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2014, pp. 6468–6475.

[46] Y. Zhang, G. Song, Z. Wei, H. Sun, and Y. Zhang, “Bilateral teleoper-
ation of a group of mobile robots for cooperative tasks,” Intell. Service
Robot., vol. 9, no. 4, pp. 311–321, Oct. 2016.


