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Bilateral Leg Stepping Coherence as a Predictor
of Freezing of Gait in Patients With Parkinson’s

Disease Walking With Wearable Sensors
Tal Krasovsky , Benedetta Heimler, Or Koren, Noam Galor,

Sharon Hassin-Baer, Gabi Zeilig, and Meir Plotnik

Abstract— Freezing of Gait (FOG) is among the most
debilitating symptoms of Parkinson’s Disease (PD), charac-
terized by a sudden inability to generate effective stepping.
In preparation for the development of a real-time FOG pre-
diction and intervention device, this work presents a novel
FOG prediction algorithm based on detection of altered
interlimb coordination of the legs, as measured using two
inertial movement sensors and analyzed using a wavelet
coherence algorithm. Methods: Fourteen participants with
PD (in OFF state) were asked to walk in challenging con-
ditions (e.g. with turning, dual-task walking, etc.) while
wearing inertial motion sensors (waist, 2 shanks) and being
videotaped. Occasionally, participants were asked to volun-
tarily stop (VOL). FOG and VOL events were identified by
trained researchers based on videos. Wavelet analysis was
performed on shank sagittal velocity signals and a synchro-
nization loss threshold (SLT) was defined and compared
between FOG and VOL. A proof-of-concept analysis was
performed for a subset of the data to obtain preliminary
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classificationcharacteristics of the novel measure. Results:
128 FOG and 42 VOL episodes were analyzed. SLT occurred
earlier for FOG (MED = 1.81 sec prior to stop, IQR =
1.57) than for VOL events (MED = 0.22 sec, IQR = 0.76)
(Z = −4.3, p < 0.001, ES = 1.15). These time differences were
not related with measures of disease severity. Preliminary
results demonstrate sensitivity of 98%, specificity of 42%
(mostly due to ‘turns’ detection) and balanced accuracy
of 70% for SLT-based prediction, with good differentiation
between FOG and VOL. Conclusions: Wavelet analysis pro-
vides a relatively simple, promising approach for prediction
of FOG in people with PD.

Index Terms— Gait, prediction, movement disorders,
wavelet analysis, interlimb coordination.

I. INTRODUCTION

THE study of the clinical benefit of the use of wearable
mobility sensors by persons with Parkinson’s disease

(PD) has rapidly grown in recent years [1]. The motivation
behind this line of research is to improve diagnostic power,
while capturing the behavioral performance during everyday
life rather than through subjective assessments by clinicians,
i.e., the current ‘gold standard’ procedure [2].

A. The Use of Wearable Mobility Sensors in the Context
of Freezing of Gait

One of the main PD-related symptoms that is proposed
to benefit from the use of wearable mobility sensors in free
living settings, is freezing of gait (FOG) [3]. FOG is among
the most debilitating symptoms of PD and is characterized
by a sudden inability to generate effective stepping, despite
the intention of the patient to keep walking [4]. Although
typically lasting only a few seconds [5], freezes can lead to
falls [6], thus making FOG-related fall risk an ever-present
concern, ultimately contributing to a reduced quality of life
for these patients [7]. Crucially, FOG events only partially
benefit from available medical PD-related treatments, therefore
strengthening the need for effective rehabilitation-oriented
coping strategies [8], [9].

Considerable effort has been devoted to utilize wearable
mobility sensors to automatically detect, and even predict
FOG events [7], to improve the ability to accurately diagnose
the existence, severity (e.g., frequency of occurrence) and the
impact of FOG on the sufferer [1], [7]. In addition, automatic
FOG detection (identification of a FOG while it is occurring)
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or prediction (identification of a FOG based on pre-FOG data)
can also be used within rehabilitative treatments aiming at
alleviating FOG symptomatology. Specifically, accumulating
evidence suggests that certain behavior modifying strategies,
such as external sensory cueing, can be effective in shortening
the duration of FOG events or even reducing their propensity
[3], [10]. Therefore, in recent years it has been suggested
that the ultimate solution for FOG effective treatment/coping
strategy should be a device pairing automatic FOG prediction
with behavioral strategies such as external sensory cueing,
aimed at reducing the likelihood of a freezing event [3].
However, such a device has not been developed yet, mainly
due to the difficulty in identifying an efficient approach to
FOG prediction, with the main issue being the high inter-
individuals and even intra-individuals variability among FOG
episodes that therefore requires high degrees of flexibility in
the proposed prediction algorithm [7]. This may suggest that
complex approaches based on machine-learning techniques for
instance, may solve this problem [11], [12], [13], [14], [15].
However, if the predictive algorithm requires too many stages
of calculations (e.g., when selecting many complex features),
it could induce unacceptable delays when computing power is
limited as it is the case for many wearable devices, thus ham-
pering real-time applications. To address this issue, we present
here a novel FOG predictive algorithm based on the mon-
itoring of the between-legs coordination during gait, which
we propose may allow to take the documented variability in
FOG occurrences into account, while also limiting necessary
computing power, and ultimately therefore establishing itself
as a viable solution for real-time FOG prediction.

B. Bilateral Coordination of Gait and Freezing

Several gait impairments are associated with FOG includ-
ing dysrhythmia [16], [17], [18], gait symmetry [19], [20],
dynamic postural control [21], [22], step scaling [23], [24], and
bilateral coordination of gait [25], [26], [27], [28]. We posit,
for example, that during turns, which are the most preva-
lent walking circumstance triggering freezing [e.g., [29]], the
left- right stepping-phase pattern is challenged due to the
asymmetrical stepping requirements (one leg needs to cover
longer distance), thus leading to a failure in the bilateral
coordination of gait which results in higher propensity for
FOG episodes [25], [30].

Building on these assumptions, in this work, we investigate
whether FOG episodes can be predicted based on changes in
interlimb coordination which are captured by mobility sensors
attached bilaterally to the shanks. Initial previous attempts to
use this approach, yielded conflicting results [31], [32], [33].
We propose here a novel solution based on a continuous mea-
sure of coherence between the signals simultaneously recorded
from the two legs. We hypothesize that a FOG episode will
be preceded by a drop in the coherence between the two
signals [32]. More specifically, we first extract the signal
of the shank sensors (i.e, gyroscope operating around the
medio-lateral axis) to obtain their spectral properties over time.
Then, we calculate the degree of coherence between these
signals, obtained from both legs, which is a representation

of the coordination between them in both time and frequency
domains.

In the present study we aim to evaluate the efficiency of
this FOG prediction approach by comparing it to the visual
detection of a FOG episode’s onset based on post-hoc video
inspection. Note that the latter approach relies solely on an
observer’s subjective evaluation and by definition can detect
freezing events only once they start (i.e., FOG detection rather
than prediction) and it is currently still considered as the ‘gold
standard’ procedure for FOG detection. We hypothesize as a
first step that our proposed approach based on the detection
of a drop in the coherence between the legs during gait as a
biomarker for un upcoming FOG event, will identify freezes
prior to the identification of the same episode via visual
inspection. Furthermore, we also aim to evaluate the extent to
which our proposed approach can differentiate a FOG episode
from a voluntary stop (VOL), namely, two events the output
of which is similar (i.e., a sudden interruption of gait) but that
completely differ in their significance, therefore representing
a crucial discriminative feature for efficient real-life FOG
prediction. Following these two steps, which characterize the
change in bilateral coordination of gait prior to FOG and VOL
events, we analyze as a proof of concept the algorithm’s ability
to predict FOG episodes without anchoring the analyses to the
video-based FOG annotations, thus obtaining the algorithm’s
confusion matrix characteristics.

II. MATERIALS AND METHODS

A. Participants

Experiments were conducted in the Research Center of
Advanced Technologies in Rehabilitation at Sheba Medical
Center. Participants (N = 14; mean age: 65.1 years, SD =
±9.9; 3 females) were recruited from the Movement Disorders
Institute, and from the rehabilitation hospital according to
the following criteria: people over the age of 50, diagnosed
with idiopathic PD, routinely treated with levodopa (L-dopa)
and able to walk unassisted for >100m with no pain. The
presence of FOG episodes was ascertained using the presence
of 2 conditions: (1) an answer of “more than once a day”
to the 2nd item of the New Freezing Of Gait Questionnaire
(NFOGQ [34]) – “How frequently do you experience freezing
episodes”, and (2) the treating neurologist’s report. Participants
were excluded if they presented significant psychiatric, neu-
rologic or orthopedic comorbidities (e.g., psychotic disorders;
depression; cognitive impairments; severe osteoarthritis). The
experimental protocol was approved by the institutional review
board (IRB) of the Sheba Medical center. All participants
signed an informed consent prior to entering the study. Data
gathered in these experiments were published in part [35],
[36], [37].

B. Instruments

Participants wore three Mobility Lab OpalTM motion sen-
sors (APDM Inc., Portland, OR), each weighing 22 grams,
48.5×36.5×13.5 mm. Sensors included 3 degrees-of-freedom
accelerometers, gyroscopes and magnetometer data. Two sen-
sors were placed on the shanks and one was located on
the waist of participants. Sampling rate was set at 128 Hz.
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In addition, walking trials were videotaped using a camera
with a 60Hz sampling rate. For post-hoc annotation, the onset
of the motion capture system was included in the video
in order to enable synchronization. Video-motion sensors’
synchronization was accomplished by performing three taps
on one of the sensors by the experimenter, taps which were
recorded on camera and identified from the sensor data in post-
processing. Video annotations were extracted using Windows
Movie Maker software on a desktop computer.

C. Experimental Protocol

All sessions were conducted in the morning and while
participants were in the OFF state (>12 hours from last
L-dopa medication intake). Participants were asked to fill a
demographics questionnaire, followed by an assessment of
PD motor severity (using part 3 of the Unified Parkinson’s
Disease Scale (MDS-UPDRS [38]) and an assessment of
FOG severity using the NFOGQ [34]. The amount of anti-
parkinsonian medications was evaluated by calculating the
L-dopa equivalent daily dose (LEDD) [39].

Participants were asked to perform a series of gait trials:
(1) walking with turns (WWT): continuously walking for
∼5 minutes between two cones set ∼ 12 meters apart. Addi-
tionally, another cone would be occasionally positioned 20 cm
from a wall (and between the two aforementioned cones),
creating a narrow passage. (2) WWT with dual-task (DT):
participants repeated the latter trial, but this time they were
required to perform a summing task of digits while walking.
Specifically, patients heard 10 digits presented sequentially
3 seconds apart, and were required to sum up the numbers
silently (i.e., without speaking), and provide the final answer
at the end of each list. 3) Figure Eight (FE): continuously
walking for ∼5 minutes in a figure eight pattern between
two cones set 2.5 meters apart. 4) FE with DT: participants
repeated the latter trial, this time walking while summing
digits, i.e., using the same protocol described above. During
some of the trials, participants were occasionally asked to
voluntarily stop for ∼8 seconds and then resume walking.
Please note that while all participants performed the WWT, not
all participants completed the whole gait protocol. This work is
part of a larger study, where 24 people with PD and FOG were
included. However, for the current analysis we included only
those participants who actually froze during the experiment
(N = 14). Furthermore, only gait trials during which FOG
episodes or voluntary stops (VOL) occurred were included in
the analysis.

D. Data Analysis

Data analysis was divided into 2 sections. First, the syn-
chronization loss threshold (SLT) was calculated for each
FOG/VOL event separately (i.e., identified from the videos’
annotations), and a comparison between SLT and FOG/VOL
timing is presented. We did this as a first step, to evaluate
when SLT occurs in FOG/VOL and whether SLT properties
differ between the two events. Then, as a proof of concept
for the feasibility of this approach, we evaluated SLT sensi-
tivity/specificity as predictor of FOG on a subset of the data.

1) Identification of the SLT: Timing of FOG and VOL events
was determined and annotated off-line based on the videos of
the gait trials by three expert researchers (BH, OK, MP), who
have relevant experience either as clinicians, or as researchers
trained for annotating videos by expert clinicians. Each trial
was manually annotated by 2 evaluators, and discrepancies
in identification of events were resolved by a third inde-
pendent evaluator. Data of timing of events was parsed and
synchronized with motion sensor data using custom-written
Matlab routines (The Mathworks inc., Natick, MA). Sensor
gyroscopic data were filtered using a second order low-pass
Butterworth filter (dual-pass, 70Hz cutoff). Timing of gait
events was identified according to changes in sagittal plane
angular velocity from the motion sensors at the shanks [40]
and step and stride lengths were determined using the law of
cosines and anthropometric information for each participant
[41]. Spatiotemporal gait parameters for periods without FOG
were extracted from walking periods prior to FOG and VOL
episodes (as described below).

To evaluate temporal changes in bilateral coordination of
the legs prior to FOG or VOL, sagittal plane angular velocity
signals from shank sensors were used. This signal is less
noisy than acceleration signals and is routinely used to identify
changes in leg movement (i.e. transitions between swing and
stance, etc.) [40]. For each FOG/VOL event identified through
the video, sagittal plane angular velocity signal was extracted
and examined. For this analysis, a period of 5 gait cycles prior
to the video identification of FOG/VOL onset was required,
which must have been free of prior FOG events. The sagittal
velocity signal was analyzed using wavelet analysis [42] which
enables the analysis of nonstationary time series signals in
which the spectral properties of the signal vary over time.
A signal is convolved with a wavelet function of a specific
shape scaled to different dimensions. By performing this
procedure N times (N being the length of the original signal),
time- and frequency-dependent power spectra can be obtained.
Using wavelet analysis, two time series can be inspected for
coherence (cross-wavelet spectrum) simultaneously in time
and frequency domains. The level of coherence between the
signals can be computed for every point in time and every
frequency within the signals’ power spectra.

Let VR and VL be the sagittal plane angular velocity
signals of the right and left leg, respectively. The cross-wavelet
spectrum is defined as the complex conjugate

W VR VL = W VR W VL ∗ (1)

where W VR and W VL are the wavelet transforms of VR and
VL , respectively.

For this dataset, a complex gaussian wavelet was selected
due to its similarity with the velocity signal [43]. Since the
cross-wavelet transform is complex, the cross-wavelet power
was defined as |W VR VL |, summed across all scaling factors
and divided by the maximum power to obtain a coherence
index (ranging from 0 to 1). The coherence was calculated
for the 5 gait cycles preceding a FOG/VOL event, since this
time period was assumed to include the deterioration of inter-
limb coordination associated with FOG [30]. The coherence
index was smoothed using a dual-pass, 2nd order Butterworth
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Fig. 1. Example of coherence calculation. The top panel describes
anteroposterior (sagittal plane) angular velocity profiles for the right
(red) and left (blue) shanks. Center panel describes the wavelet cross
spectrum values per sample and scale (a wavelet property, inversely
related to frequency). Hot colors denote better synchronization between
shank velocity signals. The bottom panel describes the coherence index,
identified as the normalized value of maximum coherence for each
sample. The drop in coherence is identified using a red vertical line.
The black line identifies the clinician’s identification of a FOG.

low-pass filter (5 Hz cutoff) and a sudden drop in coher-
ence index was identified as the point when the deriva-
tive of the coherence index dropped below negative 0.1 for
a period of >0.5s. This point was identified as the SLT.
SLT was computed automatically for each FOG or VOL event.
Figure 1 depicts the process of coherence calculation and
determining SLT timing. The time difference between SLT
and clinician-defined onset of FOG/VOL was calculated and
compared between FOG and VOL events.

2) SLT as a Predictor of FOG: In a secondary, proof-of-
concept analysis, a subset of the data containing only straight-
line walking (no figure-8 trials) was examined. The coherence
index was calculated across the entire walking trial similarly
to the above-described method. In order to increase the possi-
bility of differentiating between FOG and VOL, we modified
our algorithm incorporating in it the insights we gained from
the first analysis approach presented here: 1) we identified
transitions from coherence>0.5 to coherence < 0.3. 2) we
examined the derivative of the coherence, and in case it had
a local minimum < −0.75 (sharp drop), we classified the
event as a VOL. 3) we evaluated the decrease in coherence
by identifying local maxima in the coherence derivative, i.e.
to ascertain whether the coherence drop was smooth (Fig. 2,
Fig. 3). If there was at least one local maximum in the signal,
we classified the event as a FOG. Otherwise, it was not
reported at all.

E. Statistical Analysis

The normality of outcome variables was assessed using
the Shapiro-Wilk test. Since the timings of the events as
well as the difference between initiation of FOG/VOL and

Fig. 2. Coherence index computed for one patient prior to and following
FOG events (top panel) and Voluntary stops (bottom panel). Each trace
represents the coherence index calculated circa an event (FOG/VOL).
The black vertical line marks the point of SLT, the red vertical line marks
the point of initiation of FOG/VOL according to the researcher annotation
of the video. All traces are aligned according to the timing of the SLT.

the SLT were not normally distributed (Shapiro-Wilk test <
0.05), Wilcoxon signed rank tests were used to compare SLT
and onset of FOG, and Mann-Whitney U tests were used to
compare the time difference between SLT and event onset
across event types (FOG/VOL). Effect sizes for Mann-Whitney
U tests were calculated using the formula ES = Z/sqrt(n).
Spearman’s correlations were used to evaluate whether time
differences between SLT and clinician-defined onset of FOG
depend on clinical disease severity. For FOG prediction, sensi-
tivity, specificity, and balanced accuracy were computed using
standard formulae based on the confusion matrix. Statistical
analyses were performed in SPSS (IBM inc., version 25),
and using MedCalc online calculator for diagnostic tests
(https://www.medcalc.org/calc/diagnostic_test.php).

III. RESULTS

A. Identification of SLT Prior to FOG and VOL Events

In total, 128 FOG episodes and 42 voluntary stops were
analyzed from N = 14 patients. Patients’ characteristics are
described in Table I. The timing of the initiation of FOG
events (as defined by video analysis) was significantly later
than the SLT for both FOG events (Z = −7.04, p <
0.001, ES=1.88) and VOL events (Z = −2.89, p = 0.004,
ES = 0.77).

Furthermore, the time difference between SLT and initiation
of FOG/VOL events was significantly larger for FOG events
(MED = 1.81 sec, IQR = 1.57) than for VOL events (MED =
0.22 sec, IQR = 0.76) (Z = −4.3, p < 0.001, ES = 1.15).
Figure 2 demonstrates these findings by presenting data taken
from one example participant. In Figure 2, coherence traces
of one example patient are depicted. Here, the longer time
difference between the SLT and the clinician’s event initiation
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TABLE I
CHARACTERISTICS OF PATIENTS

TABLE II
CONFUSION MATRIX FOR SLT-BASED PREDICTION

can be clearly seen in the case of FOG-related coherence traces
(top) as compared to VOL-related coherences drops (bottom).
Note that all FOG and VOL coherence traces are aligned to
the SLT.

Time differences between SLT and onset of FOG/VOL
events did not correlate with measures of severity (i.e. MDS-
UPDRS, NFOGQ, LEDD) or with gait speed, stride length or
time prior to the FOG events (all p-values > 0.18).

B. SLT as a Predictor of FOG

The subset of the data (including straight-line walking trials
only) included 51 FOG and 20 VOL events in total. The
confusion matrix for the prediction algorithm is presented in
Table II. The SLT drop algorithm correctly identified 50/51
FOGs (98.04% sensitivity, CI [89.55% to 99.95%]). However,
specificity was low (42.42%, CI [30.34% to 55.21%] resulting
in balanced accuracy of 70.23%. Out of 38 False positives,
4 were voluntary stops and 34 were turns. In addition to
these 38 FPs, in 5 instances ‘false’ FOG events were identified
during straight line walking. These were cases where gait
deteriorated but did not result in video-based identification of
FOG (these were not entered to the confusion matrix since it
would be impossible to add all instances where straight line
walking was not identified as FOG to the true negative count).
Out of 28 True negatives, 16 were voluntary stops and 12 were
turns.

IV. DISCUSSION

Results of the current study found convincing evidence
that about 1.8 seconds prior to FOG episodes, the level of
left-right stepping coherence decreases. Importantly, this was
found to be significantly earlier than the drop observed prior
to voluntary stops (i.e., about 0.2 seconds prior to stopping).
This result adds to previous literature [33] and is in agreement
with previous evidence, that FOG is associated with impaired
bilateral coordination of stepping [25]. Based on this finding,
we developed an SLT-based algorithm for FOG prediction.

Our proof-of-concept analysis showed that this algorithm
correctly identified 98% of FOGs. The algorithm specificity
however was 42%, mainly due to identifying FOG episodes
falsely during turns while largely succeeding in differentiating
between FOG and VOL events.

A. Benefits of Using Bilateral Coordination of Stepping
for FOG Predictions

The current work is embedded within the emerging line of
works aiming at predicting FOG events based on data collected
from 3D inertial wearable sensors [14], [15], [33], [44]. These
works demonstrated that it is possible to identify precursor
signs of FOG (pre-FOG) by comparing pre-FOG and gait
periods and comparing various spatiotemporal gait parameters.
The common assumption is that before FOG occurs, a discern-
able change in the gait pattern can be detected (threshold-based
model [30]). Indeed, pre-FOG is characterized by a change in
stride length but not cadence [16], and different gait features,
derived from accelerometer and gyroscope data obtained dur-
ing gait, have shown variable degrees of sensitivity to pre-
FOG [14], [15], [33], [44]. The current work is in agreement
with previous studies, i.e., [33], which identified interlimb
coordination (specifically left-right cross-correlation) as a gait
feature which, together with other features, could potentially
differentiate pre-FOG from regular gait. Importantly, these
results were not compared with voluntary stops, in turn not
providing information regarding the extent to which the afore-
mentioned FOG-predictive measures could discern between
these two types of events. A different approach [14] used
machine learning algorithms and demonstrated that features
based on time and frequency domains of accelerometer data
(collected from lower back and one leg) can predict FOG
1.72 seconds prior to occurrence. However, it is difficult to
compare between the results of these previous studies since
they rely on sensor data from different body segments, with
the latter work relying on mobility information collected from
one leg only. Furthermore, the complexity of this highly
sensitive and specific machine learning algorithm is high [14],
ultimately increasing the required computational power. This
may be problematic given that the final aim of these algorithms
is to be deployed in real-time [3], and most wearable devices
have currently limited computational power.

In the current work we attempt to reduce the complexity of
the problem by using locomotor coordination as key for FOG
prediction [45]. This was done based on previous work [25],
[28] in an attempt to minimize the amount of computations that
are required to be carried out during walking, ultimately thus
aiming at maximizing the efficiency of FOG predictor systems.
Coordination is considered to be a higher-order property of
the locomotor system, and can be measured in several ways
[45]. In the current work, the measure of stepping coherence
was selected over the traditionally-used measure of cross-
correlation e.g. [33]. Cross-correlation calculates the correla-
tion in the time-domain between two vectors, and therefore it
is a computationally expensive process requiring to constantly
buffer an increasingly large amount of data. This may generate
a less temporally-sensitive identification of immediate changes
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Fig. 3. An example for use of coherence in longer time scales to predict
FOG. A representative trace from one subject is presented, containing
a voluntary stop, followed by a FOG episode and a turn. The top panel
shows the angular velocity signal. The middle and bottom panels rep-
resent the coherence and the derivative of the coherence, respectively.
Vertical lines mark video-based detection of events. Different patterns
of change in coherence are demonstrated for the three event types.
This type of observation preceded the proof-of-concept analysis for FOG
prediction.

in interlimb coordination. Thus cross-correlations are more
suitable to be performed off-line once the entire signal is
obtained (but see recent attempts to adapt it to real-time,
though using more complex algorithms than the one we
describe here [46]). In contrast, wavelet analysis (i.e., the ana-
lytical approach used here) involves both time and frequency
domains, and thus we believe that it will accurately detect
changes in coordination patterns in a timely manner, without
requiring a long buffer of data.

Finally, accumulating evidence aiming at investigating the
pathophysiology of FOG events in the human brain using
functional Magnetic Resonance Imagining (fMRI) suggests
that FOG is associated with paroxysmal functional decoupling
between cortical and subcortical (basal ganglia) gait-related
regions, namely, documenting cortical hyperactivity flanked
by decreased sub-cortical activity [47], [48]. In other words,
these works showed that when there is an alteration in the
footstep patterns leading to FOG, this is accompanied by a
drop in the coordination between large-scale brain networks.
Considering this evidence, therefore, it seemed appropriate to
rely on a drop in the interlimb coordination, operationalized
via a drop in the stepping coherence, as a measure for FOG
prediction as this might likely be the pre-FOG physiological
outcomes of a larger-scale coordination failure.

Our proof-of-concept analysis demonstrated that the current
approach allows FOG prediction with high sensitivity. The
value of 98% sensitivity is higher than that reported for
a prediction model based on machine learning and motion
sensors-based data [49], motion and plantar pressure sen-
sors [7] as well as that of an EEG-based prediction model [50].
However, we also demonstrated specificity of 42.4%. While
our algorithm largely successfully differentiated between FOG
and VOL events, it mistakenly classified a high rate of turns
as FOG (see example of coherence in both cases in Fig. 3).
First of all, the high success in differentiating between FOG
and VOL events is a strength of this work given that previous
FOG predictive algorithms often did not take VOL into con-
sideration and excluded VOL events from analyses [15], [51].

Nonetheless, it is crucial for FOG prediction algorithms to
take VOL into account and future studies may work towards
further improving the sensitivity of this differentiation. The
issue related to turns, however, is unfortunately embedded
within our approach of predicting FOG relying on alterations
in stepping coherence. Indeed, during turning interlimb coor-
dination dynamics is altered in general, and specifically in PD.
Turns are also frequently reported as a trigger for FOG [25],
[30] with one of the most influential proposals suggesting that
high FOG propensity during turns is due to the challenge
in bilateral coordination intrinsically characterizing turning
behavior (i.e., one leg needs to cover longer distance thus
requiring asymmetrical stepping) [25], [30]. Future studies
may work towards the improvement of turn/FOG differenti-
ation. It should be noted, for instance, that turn data based
on magnetometer was not incorporated in the current analysis,
and this may be a future focus of examination. However, given
that often FOG is triggered by turning, careful consideration
should be taken for identifying turn-related vs. non turn-related
FOG. It is finally also worth considering that, since the final
aim of FOG prediction algorithms is to be paired with FOG
coping strategies such as external sensory cueing [3], it might
be an advantage to alert the users prior to turns, given that, as
mentioned above, turning is often triggering FOG events.

B. Future Directions and Challenges

This work demonstrates the potential of using bilateral
coordination as a measure to sensitively predict upcoming
freezing events, i.e., anticipating of ∼2 seconds the actual FOG
episode. This strengthens and advances previous evidence by
providing a relatively simple solution crucially resulting in an
average “horizon” (i.e., how soon we can predict that a FOG
event will occur) which is larger than that identified in previous
work [14]. This is very relevant within the framework of the
research investigating potential solutions for FOG treatment.
It is believed that the most promising approach in this field
is the use of integrated systems that deploy FOG prediction
algorithms in real-time to alert of an upcoming FOG event,
and then enable the triggering of behavioral strategies to
alleviate or avert the freezing event, e.g., by delivering external
sensory cues [3]. Our novel measure to quantify bilateral
coordination, namely stepping coherence, is based on the
signal’s time and frequency domains and, crucially, requires
a minimal amount of gait cycles to be computed, therefore
being suited for real-time FOG prediction applications. While
there are previous works assessing the effectiveness of various
real-time algorithms for FOG prediction [3], an integrated
system incorporating also behavioral FOG-averting strategies
is yet to be developed. One of the main reasons slowing down
progresses in this direction, it is the fact that a satisfactory
algorithm for real-time FOG prediction has not yet been
identified. We propose that bilateral coordination quantified
through stepping coherence measurements holds potential to
become a crucial measure for real-time FOG prediction algo-
rithms relying on mobility sensors. This suggestion stems from
various considerations: first the fact that, as stated above, the
drop in bilateral coordination between the legs has a solid
neuro-physiological hypothesis supporting its crucial role in
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pre-FOG periods, i.e., the fact that it could be the outcome of
the functional decoupling documented before and during FOG
between large-scale cortical and sub-cortical brain networks
[47], [48]. This is supported also by the fact that our algorithm
was able to successfully differentiate pre-FOG from voluntary
stops, thus highlighting differences between these two types
of drop in interlimb coherence. Second, recording the data
requires a relatively simple set-up, facilitating and encouraging
usability. Third, calculating stepping coherence is an easy
computational task, thus allowing real-time computations with
minimal delays. By combining these advantages, we believe
that future work can utilize the current approach in the devel-
opment of real-time algorithms for detection and prediction of
FOG.

Accumulating evidence has demonstrated accurate FOG
detection and, in some cases prediction, based on different
signals, including EEG [50], [52], [53] as well as other
physiological signals such as heart-rate [54], [55], suggesting
that incorporating neural and physiological dynamics can
improve FOG prediction [56], [57]. While the current work
did not incorporate additional sensors, future work should
evaluate if/the extent to which additional sensors (i.e. neural,
physiological) further improve FOG predictivity. We believe
that the simplicity of our data reduction approach where a
single criterion signal is generated (i.e., stepping coherence)
from two sensors positioned on the shanks, is a strength of this
work as it provides a powerful means to integrate data from
multiple mobility sensors. It should be noted, however, that a
balance may exist between the benefits of adding sensors to
improve FOG predictability, and the potential problems that
the use of multimodal sensors can cause, e.g., decreasing both
users’ usability and computational power. Future works may
therefore address this important issue and identify the most
efficient multimodal sensors’ combination to maximize FOG
prediction.

C. Limitations

The current work did not adapt the FOG prediction algo-
rithm to individual participants. For instance, we documented
variability in the 2 seconds “horizon” for FOG prediction,
which may stem from individual differences in the underlying
FOG-triggering mechanisms. Given the documented variabil-
ity in FOG manifestations e.g. [58] and [59] as well as
the variability exhibited in the current study, future studies
will need to explore the possibility that an optimal FOG
prediction algorithm would need to be adapted to individual
gait characteristics and/or to the specific multi-modal neuro-
physiological profile of each patient. This study contains a
relatively small sample of people with PD and FOG, who
were heterogeneous in their manifestation of FOG events.
In addition, we collected and thus analyzed fewer voluntary
stops than FOG episodes (see Table I). However, stop-related
signals showed less variability than FOG-related ones and the
difference between the two event types had a large effect
size. A final limitation is associated with our proof-of-concept
analysis, which was based on a subset of the dataset involving
straight-line walking only. This analysis highlighted the fact
that interlimb coordination varies during turns and inevitably

lowers the value of coherence, which results in a high rate
of false positives. To this end, a closer investigation of turn-
related FOG and their differentiating characteristics from other
FOG episodes is warranted.
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