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Improving Muscle Force Distribution Model
Using Reflex Excitation: Toward a Model-Based

Exoskeleton Torque Optimization Approach
Mojtaba Rayati , Rezvan Nasiri , and Majid Nili Ahmadabadi

Abstract— In this study, we improve the existing model
for force distribution over the muscles by considering
reflex excitation as a nonvoluntary mechanism of our
neuromuscular system. The improved model can explain
the large difference between biological torque and exper-
imentally optimized assistive torque profiles. Accordingly,
we hypothesize that the “nonvoluntary nature of reflex-
ive excitation highly restricts biological torque compensa-
tion”. The proposed model can also potentially characterize
co-activation behavior in antagonistic muscles. Using our
improved model, we introduce a well-posed framework to
optimize the exoskeleton torque profile by metabolic rate
minimization. Methods: To support our hypothesis and the
proposed method, we utilize two experimental datasets for
exoskeleton torque optimization; passive and active ankle
exoskeletons. First, we use the passive exoskeleton dataset
to identify the parameters of our model; i.e., reflex gains.
Then, to validate the proposed model, the identified parame-
ters are used to optimize the exoskeleton torque profile for
the second experimental study. Limitations: It is assumed
that joint kinematic and reflex gains are fixed with and
without exoskeleton. Results: 74% of biological torque at
the ankle joint cannot be experimentally compensated and
the existing models can only explain that 17% of the bio-
logical torque is uncompensable. Our improved model can
explain that 58% of biological torque is uncompensable (but
still 16% remains unexplained). This achievement provides
support for our hypothesis and shows undeniable contri-
bution of reflex excitation for exoskeleton torque profile
optimization.

Index Terms— Reflex excitation, lower limb exoskeleton,
assistive torque optimization, cyclic task, metabolic cost.

I. INTRODUCTION

WHICH“ torque profile can minimize the metabolic
rate?” is one of the main open questions in exoskele-

ton design, and many studies attempted to answer this ques-
tion; see [1], [2], [3], [4], [5], [6], [7], and [8] as a recent
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review paper. Nevertheless, despite of many efforts still no
systematic method for exoskeleton torque optimization is
presented.

In early exoskeletons, the torque profile was designed based
on inverse dynamics solution, which was a failure approach
to reduce the metabolic rate [9]. Recent experimental studies
have shown that only a portion of inverse dynamics torque
can be assisted by exoskeletons. In other words, the inverse
dynamics torque can be divided into two parts: (1) com-
pensable and (2) uncompensable torques. Unfortunately, the
existing biomechanical models cannot explain the uncompens-
able torque. Nevertheless, there are a variety of researches
that target specifying the compensable portion of the joint
torque by extensive case-by-case trial and error; see [1],
[2], [3], [10], [11], and [12]. However, there is still a wide
gap between the simulated optimized assistive torques and
the experimentally optimal ones; see [13] and [14]. In addi-
tion, hand tuning of exoskeletons is very cumbersome in
practice. Hence, to expedite and facilitate development of
effective exoskeletons having a general, reliable, and realistic
model-based design approach is a must [15], [16], [17], [18].

The uncompensable portion of inverse dynamics torque
profile can be modeled by considering nonvoluntary behavior
of neuromuscular system. Many experimental studies tried
to identify the dynamical effects of passive elements (e.g.,
ligaments and tendons); [19], [20], [21]. However, the models
developed based on these identifications are unsuccessful
for justifying the uncompensable torque; see [14] and [22].
Besides, by comparing the huge portion of uncompensable
torque (74% of ankle net torque cannot be compensated [10]),
it is very unlikely that this term is caused by soft tissues as
ligaments or tendons.

Reflexive excitation is a nonvoluntary behavior of neuro-
muscular system which is widely addressed in the literature
of motor control to explain lower limb neuromechanical
behaviors. For instance, [23] discussed that reflex excitation
has a remarkable effect on the walking stability. [24] explained
that stretch reflex is the main source of joint impedance.
And, [25] presented that the reason behind hemiparetic abnor-
mal gaits comes from their stretch reflex pathway hyperex-
citability. In addition, the reflex excitation is already used
in some of the bio-inspired walking models; e.g., [26], [27],
and [28].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9845-3005
https://orcid.org/0000-0002-7772-5371
https://orcid.org/0000-0002-6370-6057


RAYATI et al.: IMPROVING MUSCLE FORCE DISTRIBUTION MODEL USING REFLEX EXCITATION 721

Fig. 1. Neural command chain from a biological (A) to a control (C) perspectives. (B) Biological schematics for neural command chain in the spinal
cord. The exoskeleton interacts with body by applying force to the ankle joint. The central nervous system (CNS) provides excitation signal for
alpha motor neurons to control muscle contraction. Besides CNS, reflexive excitations from interneural circuitry play an important role for muscle
contraction control. (B,C) illustrate the neural command chain as control block diagrams; CNS is high level controller, muscle tendon complexes
(MTC) are actuators, and sensory neurons are feedback block and low level controllers; they apply reflex excitation to alpha motor neurons.

Despite of undeniable contribution of reflex excitation in
human neuromechanics and its nonvoluntary behavior, this
parameter still is not employed for exoskeleton torque opti-
mization. Therefore, we include the reflex excitation as the
uncompensable muscle activity into the computed muscle
control algorithm (CMC [29] utilized by OpenSim [15]) for
force distribution over muscles, and check if this model can
explain the experimental results (e.g., [1], [10]) in terms
of optimal exoskeleton torque profile, muscle activity, and
metabolic rate reduction. We also check if the proposed model
can explain co-activation of antagonistic muscles.

The paper is organized as follows. In Section II, we state
the problem and define the basic concepts. The optimization
strategy for force distribution over the muscles is presented
in Section III where we formulate the reflex excitation and
rewrite the static optimization problem by considering the
reflex excitation. In Section IV, using the data base of a
well-known passive exoskeleton [1], we identify parameters of
our model; i.e., reflex gains. The identified parameters (without
change) are used for validation where we compare our opti-
mized exoskeleton torque profile with the experimental results
reported in [10]. Finally, some further possible extensions are
discussed in the last section.

II. PROBLEM STATEMENT

Consider Fig.1-A as a biological overview of the motor
control command chain for performing a walking task in which
the ankle is augmented with an exoskeleton device. During
locomotion, biomechanical properties of each muscle (i.e.,
length, velocity, and force) change, which creates an excitatory
signal inside the sensory receptors. These excitation signals
act as muscles biomechanical state-feedbacks for CNS. CNS
uses these feedbacks to adjust the muscles’ contraction by
sending excitatory signals to the alpha motor neurons. Besides
CNS, the local neural feedbacks (sensory neurons at spinal
cord) are also exciting MTCs to perform contraction; this
nonvoluntary behavior is called reflex excitation. The reflex
excitations are generated by enclosed circuitry of sensory and

muscle motor neurons in the spinal cord; see [30] for more
details.

In a functional illustration, the neural command chain can
be described as a control diagram; see Fig.1-B and Fig.1-C.
In this perspective, the receptors and sensory nerves are
sensor and feedback blocks. CNS is a high-level controller
which adjusts the control parameters (e.g., target speed and
gait) to perform walking. In a lower control level, the reflex
feedback is also responsible for exciting the alpha motor
neurons. Hence, the excitatory signal for MTC contraction
(i.e., total excitation) is a summation of CNS command and
reflex excitation from the spinal cord [25].

MTC contraction at the joint level generates the muscle
forces ( �F) and consequently the muscles’ net torque (�τm). The
summation of muscles’ net torque and exoskeleton assistive
torque (�τa) apply at the joints to perform walking. For a certain
motion, when �τa = 0, �τm is unique and equivalent to the
required torque �τr = �τm ; i.e., �τa �= 0 → �τr = �τm + �τa .
Accordingly, one may conclude that the best assistive torque
profile is inverse dynamics solution (�τa = �τr ) which yields
in �τm = 0. Nevertheless, in practice neuromuscular system
utilizes a nonvoluntary mechanism as reflex excitation to limit
muscles’ activity reduction and prevent full muscle torque
compensation; i.e., during walking �τm �= 0.

Thanks to the large number of muscles and their complex
combination, our neuromuscular system can satisfy different
objectives at the same time by force distribution over the
muscles. (1) Minimizing the muscles’ effort, (2) providing the
sufficient muscles’ net torque to perform a cyclic motion, and
(3) guaranteeing the joint safety and perturbation rejection by
modulating the joint impedance are the main objectives of
neuromuscular system for force distribution over the muscles;
see [24] and [31]. The euromuscular system can minimize the
muscles’ effort using the function of bi-articular muscles [32],
[33], and it also controls both net torque and joint impedance
at the same time benefiting from co-activation of antagonistic
muscles [24]. It is observed that stretch reflex has a direct
effect on muscles co-activating [34] which plays an important
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role in the joints’ safety [35] by rejecting the external per-
turbations [36]. It can be inferred that our neuromuscular
system employs a nonvoluntary mechanism as reflex to secure
the joint by enforcing the co-activation and consequently
regulating the joint impedance.

This paper hypothesizes that “nonvoluntary nature of reflex-
ive excitation highly restricts biological torque compensation”.
To support this hypothesis, we include the reflex excitation
in muscle force distribution (e.g., CMC [29]) algorithm, and
study if the extended model can shed light on the experimen-
tally optimal assistive torque profiles reported in the literature;
e.g., [1] and [10].

III. MODEL DEVELOPMENT

1) Dynamics: Consider a body with n joints. For each joint,
the biological(required) torque (�τr ∈ R

n)1 to perform a certain
T -periodic task2 is a summation of muscles’ torque (�τm ∈ R

n)
and assistive torque (�τa ∈ R

n); i.e., �τm + �τa = �τr . It is
assumed that the joints’ kinematics are fixed with and without
exoskeleton, hence the required torque is always unique and
remains unchanged and �τm + �τa = �τr should always be
satisfied. The goal is to design the assistive torque profile (�τa)
to minimize the metabolic cost.

The muscles’ torque at j th joint is a summation of m j

individual muscles’ force (m = ∑n
j=1 m j ). It is computed

as τ
j

m = ∑m j
i=1 fi ri (q j , q ′

j ) where fi ≥ 0 and ri ≥ 0 are
force and moment-arm of the i th muscle. Since the muscles
are either mono- or bi-articular, ri is a function of j th joint
(q j ) and its adjacent joint (q ′

j ) angles.
2) Hill Model: The i th muscle force is computed based on

Hill model suggested in [37] where muscle-tendon-complex
(MTC) model is a series combination of a contractile-element
(CE) and a serial-elastic-element (SEE). The force of i th
muscle is equivalent to CE and SEE forces; fi = f i

C E = f i
S E E .

Also, we have fi = αi f i
max fv (v i

C E ) fl (li
C E ) where f i

max is
maximum isometric force, αi is muscle activation, and v i

C E
and li

C E are the velocity and length of contractile-element.
fv and fl are force-velocity and force-length relationships;
see [37] for more details. In this model, MTC length (lMT C )
is computed as lMT C = lC E +lS E E = lopt +lslack +�lMT C (q)
where lopt , lslack , and �lMT C are muscle fiber optimum length,
tendon’s resting length, and variations in MTC length which
is a function of joint kinematic. In Hill model, the excitation
level of each muscle (�u) can be computed using a function
(H ) which maps the total excitation to muscles’ activation (�α)
as:

�α = H (�u) → �u = H −1(�α) , H (.) : R
m → R

m (1)

where �α ∈ R
m is the vector of all muscles’ activation, �u ∈ R

m

is the vector of total excitations. H is activation dynamic and
can be estimated by a first-ordered dynamical equation [37]
as ωi α̇i = −αi + ui where ωi is a time constant.

1In the rest of the paper, xi and xi are both the i th element of �x vector.
In addition, we may forbear specifying the argument of functions; i.e., x(t)
might be referred as x .

2In a T -periodic task, the joints’ positions, velocities, accelerations, and
torques all are periodic functions with period of T second.

3) Reflex and CNS Excitations: As discussed in Section II,
the total excitation at i th muscle is a summation of CNS and
reflex excitations [25]; ui = ui

re f +ui
C N S . The reflex excitation

(ui
re f ) is also a summation of length reflex (ui

l ), velocity reflex
(ui

v ), and force reflex (ui
f ) excitations; ui

re f = ui
l + ui

v + ui
f .

Each term of reflex excitation is computed with a first-order
dynamical equation ([25], [38]) as:

ωl u̇
i
l = −ui

l + Gi
l (t)l̃

i
C E max(v i

C E , 0),

ωv u̇i
v = −ui

v + Gi
v (t)ṽ

i
C E max(v i

C E , 0),

ω f u̇i
f = −ui

f + Gi
f (t) f̃ i (2)

where ωl , ωv , and ω f are time constants. This first-ordered
dynamics can explain the reflex excitation delay during stretch-
ing phase where ω is the response-time(delay) such that the
lower(higher) ω the faster(slower) reaction-time. And, Gi

l , Gi
v ,

and Gi
f are the length, velocity, and force feedback gains

which are functions of time. l̃ i
C E , ṽ i

C E , and f̃ i are muscle
length, velocity, and force normalized by li

opt , v i
max , and f i

max ,
respectively.

The CNS excitation cannot be directly computed. It is calcu-
lated by subtracting the reflex excitation from total excitation;
ui

C N S = ui − ui
re f . By definition, all types of excitations are

positive, and total excitation cannot exceed from 1. Hence,
having an inequality constraint as follows guarantees the
existence of reflex, CNS, and total excitations.

ui
C N S = ui − ui

re f ≥ 0 → 1 ≥ H −1(αi ) = ui ≥ ui
re f ≥ 0

(3)

According to this equation, the reflex excitation is a lower
bound for the total excitation, so the total excitation cannot fall
below a certain level. Based on this inequality, if the provided
reflex excitation profiles for two antagonistic muscles overlap,
an unavoidable co-activation pattern occurs. Therefore, consid-
ering reflex excitation can potentially model the co-activation
of antagonistic muscles.

4) Reflex Gain: Reciprocal inhibition pathway in plantar-
flexor (PF) muscles (i.e., Soleus (SOL) and Gastrocnemius
(GAS)) and dorsi-flexor (DF) muscles (i.e., Tibalias Anterior
(TA)) plays an important role in reflex excitation [39]. Hence,
in different situations, antagonistic muscles have different
inhibition effects on each other; e.g., during swing phase of
the walking, ankle muscles strongly inhibit each other. Due
to this fact, muscle feedback gains should be time variant as
Gi

x(t) = gi
xkm(t) where gi

x is reflex gain and km(t) is the reflex
modulation factor; x is either l, v, or f . To make the effect
of different reflex gains comparable on total reflex excitation,
we utilize the normalized ĝi

x instead of gi
x such that ĝi

l =
gi

l max(l̃ i
C E max(v i

C E , 0)), ĝi
v = gi

v max(ṽ i
C E max(v i

C E , 0)),

and ĝi
f = gi

f max( f̃ i ). Hence, Eq.2 is rewritten as follows.

ωl u̇
i
l = −ui

l + ĝi
l

l̃ i
C E max(v i

C E , 0)

max(l̃ i
C E max(v i

C E , 0))
,

ωv u̇i
v = −ui

v + ĝi
v

ṽ i
C E max(v i

C E , 0)

max(ṽ i
C E max(v i

C E , 0))
,

ω f u̇i
f = −ui

f + ĝi
f

f̃ i

max( f̃ i )
(4)
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For each muscle reflex modulation factor (km(t)) and three
reflex gains (ĝx) should be determined. km(t) is already
reported in the literature, but reflex gains (ĝx) are unknown
due to a large ambiguity in the literature for contribution of
these parameters in the total excitation. In sum, for ankle
joint with three muscles, nine reflex gains (ĝx) should be
identified.

The reflex modulation factor (km(t)) models the variation of
reflexive excitation during each stride which causes reciprocal
inhibition. The H-reflex size of the calf muscle is a good
indicator of reciprocal inhibition [39]. Therefore, the calf
muscle normalized H-reflex size during walking can be used
as PF reflex modulation factor [25]. Due to the reciprocating
nature of this inhibitory system, the same reflex modulation
factor is also used for DF muscle; in sum, kS O L

m (t) =
kG AS

m (t) = kT A
m (t).

Regarding the shape of km(t), the requirements are: (1) 0 ≤
km(t) ≤ 1 and (2) the average of km(t) during swing
(65%-100% of gait cycle) should be about 10% of the
average of km(t) during stance (0%-65% of gait cycle); see
[40], [41], and [42]. Therefore, a simple step function is
sufficient to model km(t) behavior such that it starts with
one during stance and diminishes to 0.1 during swing. This
wide acceptable range for km(t) shows the low sensitiv-
ity of our model to variations in km(t) profiles. In our
simulations, we use the km(t) suggested in [25] and also
check the sensitivity of the results for other acceptable km(t)
profiles.

In some studies, contribution of PF muscles (SOL and GAS)
velocity feedback ranges from 0 up to 60% of total excitation;
see [42], [43], and [44]. An unloading experiment provided
by Sinkjaer et al. suggested about 50% contribution of length
and force feedback to SOL activity during walking [42].
Another study suggested that there is no contribution of
length feedback, and only force feedback contributes to muscle
activity in PF during walking [45]. Nevertheless, Mazarro et
al. showed that both length and velocity feedback contribute to
SOL activity during normal walking [46], [47]. Therefore, due
to the large variations between suggested reflex gains for PF
excitation, we compel to calculate PF (SOL and GAS) reflex
gains through an identification process.

Similar to PF, the contribution of reflex excitation in DF
muscle (TA) is also unclear. However, the experimental studies
show that the excitation level of DF muscle is much lower than
PF; see [48] and [49]. Based on [50], we set DF reflex gains
as ĝT A

x � 0.2ĝS O L
x . In addition, the reflex gains of PF muscles

are assumed to be ĝG AS
x � ĝS O L

x . Therefore, for all three ankle
muscles with nine unknown reflex gains only three SOL reflex
gains are left for identification.

5) Muscle Force Distribution: There is a redundancy between
muscles’ forces and joint’s net torque, consequently the mus-
cles’ forces should be computed through an optimization
problem. Here, the fatigue is the criteria [51] for redundancy
resolution as J = 1

T

∫
T

∑
i ( fi/ f i

max)
2, however, to have a

well-posed optimization problem we replace αi = fi/ f i
max

similar to [29]. By minimizing this cost function, considering
the equality constraint on the torques (�τm+�τa = �τr ), and reflex
excitation inequality constraint (Eq.3), the muscles’ forces and

Fig. 2. The schematics of exoskeleton torque optimization process and
its outputs. (I) is dynamical equation resolution block which computes
the vector of required torque (�τr) for a certain joints’ trajectory (�q, �̇q, �̈q);
we can skip this process, if the required torques are known using inverse
dynamics. (II) is the exoskeleton torque (�τa) block which computes the
assistive torque as a function of joints’ positions (�q), its first and second
time derivatives (�̇q, �̈q), and time (t). (III) is the muscle parameters block
which provides muscle (CE) and tendon (SEE) parameters using Hill
model with taking MTU’s force and length as inputs. (IV) is musculoskele-
tal geometry block which interprets muscles’ force in terms of their contri-
bution in joints torque. (V) is reflex excitation block which computes reflex
excitation (�ut) from MTU parameters. The computed reflex excitation is a
summation of length, velocity, and force reflex excitations (�ul, �uv, �uf). (VI)
is force distribution block which computes each individual muscles’ force
based on fatigue minimization scenario. There are two constraints which
should be considered in this minimization process: (1) reflex excitation
existence inequality (0 ≤ ui

ref ≤ ui = H−1(αi ) ≤ 1) and (2) summation
of torques equality (�τm + �τa = �τr). In (VII) block all of model parameters
are stored for further analysis. In (VIII) total mechanical power of all
contributor muscles are calculated as P = �τT

m �̇q. Metabolism cost is
computed in (IX) block based on [52] model. Finally, (X) block computes
muscle activation ( �α) for comparison with experimentally recorded EMG
signals.

activations ( �f , �α) can be calculated as:
�α∗ = arg min

�α
J, �α = {α1, . . . , αm}, �f = { f1, . . . , fm}

J =
m∑

i=1

1

T

∫
T

α2
i (t)dt s.t., ∀i ∈ {1, .., m}, 0 ≤ αi (t) ≤ 1

∀i ∈ {1, .., m}, fi = αi f i
max fv (v

i
C E ) fl(l

i
C E )

∀ j ∈ {1, .., n}, τ
j

m =
m j∑
i=1

fi r
j

i (q j , q ′
j ) = τ

j
r − τ

j
a

∀i ∈ {1, .., m}, H −1(αi ) = ui ≥ ui
re f ≥ 0 (5)

where j, i refer to j th joint and i th muscle. Our main
contribution is to model the reflex excitation as an inequality
constraint for muscle force distribution.

6) Assistive Torque Optimization: To optimize the assistive
torque profile, we target the metabolic cost (Wmet ) reduction.
For computing Wmet , the model presented in [52] is utilized.
In this model, Wmet is a function of muscles’ force, activation,
length, and velocity; these parameters are computed using
Eq.5 for a given �τa . To compute �τa which minimizes Wmet ,
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Fig. 3. Full leg model parameters in the sagittal plane with three degrees-
of-freedom (ankle, knee, and hip), and seven muscles; Soleus (SOL),
Gastrocnemius (GAS), Tibalias Anterior (TA), Vasti group muscles (VAS),
biarticular Hamstring muscle group (HAM), Gluteus muscle group (GLU),
and hip flexor muscle group (HFL). A, K, and H refer to ankle, knee, and
hip joints, respectively. All model parameters are adopted from [26].

we parameterize it for j th joint as:
τ

j
a = �K T

j
�� j (t, �β j )

t ∈ R
+, �K ∈ R

p, �β j ∈ R
s, �� j (.) : R

1×s → R
p (6)

where t , �� j , β j , �K j are time, the vector of basis functions,
vector of bases parameters, and the vector of bases coefficients
at j th joint. The bases are sufficiently smooth, bounded,
periodic, persistently excitable, and fixed functions of time and
( �K j , �β j ) are left to optimization. Using this parametrization,
optimization of �τa is converted to optimization of bases
coefficients and parameters as:
∀ j ∈ [1 . . . n], ( �K ∗

j , �β∗
j ) = arg min

�K j , �β j

Wmet ( �f , �lC E , �vC E , �α)

(7)

where �f , �lC E , �vC E , �α are computed using Eq.5 for a given
τ

j
a = �K T

j
�� j (t, �β j ). In addition, due to nonlinear and complex

structure of Wmet w.r.t. the muscle parameters, ( �K ∗
j ,

�β∗
j )

cannot be computed directly; they can be computed using a
heuristic search in parametric space. The whole process of
computing muscles’ force ( �f ), length (�lC E ), velocity (�lC E ),
EMG signal (�α), metabolic cost (Wmet ), and so on using a
given assistive torque (�τa), joint trajectory (�q), and required
torque (�τr ) is illustrated in Fig.2.

IV. SIMULATION

In this section, we study the effects of considering reflex
excitation in the muscle force distribution model (Eq.5) and

Fig. 4. Comparison between three different objective functions v.s.
different stiffness values. The reflex gains are tuned to have optimal
stiffness equal to the experimentally optimized one. However, for the MTC
model without reflex, the optimal stiffness value shifted by 220%. This
drastic variation from the experimentally optimal stiffness values shows
the significant role of reflex excitation in the muscle force distribution
model and its undeniable impact on optimal assistive torque computation.
In the case without muscle model, the optimal stiffness value shifted by
460% from the experimentally optimal stiffness value.

assistive torque optimization (Eq.7). In doing so, we optimize
the assistive torque profile for the ankle joint during walking
gait for a three-degrees-of-freedom model (hip, knee, and
ankle joints) with seven main muscles (SOL, GAS, TA, VAS,
HAM, GLU, and HFL) in the sagittal plane; all model parame-
ters are reported in Fig.3. In all cases, the exoskeleton weight
is assumed to be negligible which does not affect the joint
dynamics. It is also assumed that the joint angles and reflex
gains are fixed and remained unchanged with and without
exoskeleton assistive torque. Due to the lack of information,
the reflex excitation is only considered for the ankle muscles
(SOL, GAS, and TA) and the rest of the muscles are modeled
without reflex excitation.

In Section IV-A, we identify the reflex gains using the
experimental results of an unpowered exoskeleton [1]. The
metabolic cost variation and muscle activation patterns are
studied also for the identified model in Section IV-B.
To study the generality of identified parameters and to
prevent risk of overfitting, the reflex gains computed in
Section IV-A are used for exoskeleton torque optimization
in Section IV-C. In Section IV-C, the simulation results
are compared with experimental results reported in [10].
Therefore, using the first experimental study [1] we identify
the reflex gains and using the second one [10] we validate
our identification, hypothesis, and exoskeleton optimization
approach.

A. Reflex Gain Identification

To identify the reflex gains, we utilize the experimental
results presented in [1]. [1] presents an unpowered exoskeleton
for ankle joint assistance during normal walking. This device
consists of a passive clutch mechanism and series spring
act in parallel with the calf muscles and Achilles tendon.
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Fig. 5. (A) Muscles’ activation patterns with and without reflex excitation in no stiffness condition (k = 0). Having reflex excitation slightly changes
the activation patterns in GAS and TA muscles, and interestingly, creates a co-activation area between ankle antagonistic muscles; this behavior
cannot be seen in without reflex case. (B) This figure illustrates how reflex excitation restricts net torque minimization by increasing assistive torque.
In this figure, total excitation, reflex excitation, and co-activation areas are shown for three ankle muscles for stiffness values lower and higher than
the optimal stiffness (k = 1). For stiffness values lower than the optimal one (k < 1), SOL and GAS muscles activations reduces both at peak and
co-activation area. For stiffness values higher than the optimal one (k > 1), the SOL total activation reduction is limited by the reflex activation lower
bound, as a result of increasing the assistive torque. Also, TA muscle is forced to be over activated and satisfy the required torque equality constraint.
This results in metabolic rate increment.

The clutch mechanism engages the spring at the beginning
of heel-strike until the end of push-off phase. During this
interval, spring length changes with the ankle rotation and
consequently applies the assistive torque. The assistive torque
profile is proportional to spring stiffness and can be optimized
by altering this parameter. Accordingly, the assistive torque
is formulated as τa = k�(t) where �(t) ∈ R is the
experimentally optimized torque profile and k ∈ R is the
normalized spring stiffness; i.e., k = 1 is experimentally
optimized stiffness. The simulated optimized stiffness (k∗)
is k that minimizes the cost function as in Eq.7. In this
formulation, if k∗ = 1, the experimental and simulation
results are equivalent. Accordingly, the deviations of simulated
optimized stiffness from the experimentally optimized one is
defined as �k = k∗ − 1.

To find the acceptable reflex gains, we choose all feasible
reflex gains (0 < ĝS O L

x < 1) for SOL muscle; note that

ĝS O L
x = ĝG AS

x = 5ĝT A
x . Then among the feasible reflex gains

those which lead to |�k| < 0.2 are accepted. Interestingly,
the distribution of acceptable reflex gains in 3D-space can be

estimated by a plane (5.64ĝS O L
l + 0.22ĝS O L

v + 1.02ĝS O L
f =

1 with R2 = 0.86) where the reflex gains on this plane
lead to k∗

� 1. The effects of adding reflex excitation on
metabolic cost reduction and muscles activations are plotted
in Fig.4 and Fig.5 for ĝS O L

l = 0.12, ĝS O L
v = 0.04, and

ĝS O L
f = 0.31. Note that similar results are also achieved

by selecting other acceptable set of reflex gains on the fitted
plane.

B. Metabolic Cost and Muscles’ Activations Analysis
In this section, the metabolic cost and muscle activation

patterns are studied in face of variation in stiffness values.
Fig.4 illustrates the variation of three different cost functions
v.s. different stiffness values; (1) the muscles’ net torque
(a joint level cost function), (2) metabolic cost without reflex
excitation, and (3) metabolic cost with reflex excitation.
Interestingly, by improving the neuromechanical model, the
optimal stiffness approaches to the experimentally computed
result presented in [1]. This observation also provides another
support for the hypothesis presented in [7] as “blind full-torque
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Fig. 6. (A,B,C) Comparison between ankle required torque profile (black curve), the experimentally optimized assistive torque profile (orange curve),
the simulated optimized assistive torque profile with MTC model (red curve), and the simulated optimized assistive torque profile with MTC+reflex
model (blue curve). Orange area shows the portion of required torque which is experimentally compensable. Gray area shows the portion of required
torque which is experimentally uncompensable and model cannot explain it; this is unexplained. (B) Pink area shows the portion of required torque
which is uncompensable and can be explained by MTC model. (C) The optimal torque profile computed by MTC+reflex model suggests a torque
profile close to the experimentally optimized one. The light-blue-highlighted area indicates the optimized torque profile variations (blue curve) for all
acceptable reflex gains and different reflex modulation factor profiles. The narrow variations of optimized torque profile in MTC+reflex model shows
the low sensitivity of our result to variations in reflex parameters. Purple area shows the portion of required torque which is uncompensable and can
be explained by MTC+reflex model. Comparing the three pie charts in (A,B,C) shows that MTC+reflex model can properly reduce the unexplained
area from 57% to 16%.

minimization at joint level cannot reduce the muscles’ effort
and metabolic rate”.

Fig.5-A shows seven muscles’ activation patterns in no
exoskeleton condition (k = 0) for with and without reflex
excitation. Having reflex excitation slightly changes the activa-
tion patterns in GAS and TA muscles. Interestingly, this minor
change adds a co-activation area similar to human normal
walking (see [1]) between ankle antagonistic muscles (SOL
and GAS as PF muscles and TA as DF muscle). As it is
discussed in Section III-.3, this co-activation is a byproduct
of adding reflex excitation constraint into MTC model and
cannot be achieved by simple MTC models. In addition,
the activation patterns of all muscles are similar to human
electromyography (EMG) signals during normal walking; see
[1] and [26]. Fig.5-B compares the resultant total and reflex
excitations with different stiffness values. For k < 1, the total
excitation is higher than reflex excitation and by approaching
k = k∗ = 1 the SOL and GAS muscle activations are
reduced. For k > 1, in co-activation area, due to presence
of reflex excitation lower bound, SOL total excitation cannot
be further reduced. However, TA muscle activation increases
to compensate for over assistance and satisfy the ankle net
torque equality constraint (�τm + �τa = �τr ). Hence, for k > 1,
TA activation and force increase drastically which results in
metabolic cost increment.

C. Powered Exoskeleton Torque Optimization

In this section, we optimize the assistive torque profile for a
powered ankle exoskeleton during normal walking. To validate
our method, the reflex gains identified in Section IV-A are also
used in this section. The goal is to achieve an optimized torque
profile similar to the experimental results reported in [10]
where [10] optimizes the assistive torque profile for a powered
ankle-exoskeleton using an exhaustive search. [10] claims that

the proposed assistive torque profile is global optimum which
minimizes the metabolic rate.

To optimize the assistive torque profile, similar to [10],
we define τa as a single-peak-RBF trajectory parameterized
as τa = k�(t, �β) where k is profile coefficient and �β =
[tr tp t f ]T is the vector of parameters left for optimization;
tr , tp, t f are rise, peak, and fall times of torque profile. The
results for this optimization are illustrated in Fig.6.

Fig.6 compares four different torque profiles: (1) biological/
required torque (black curve), (2) experimentally optimized
assistive torque reported in [10] (orange curve), (3) simulated
optimized assistive torque with MTC model (red curve), and
(4) simulated optimized assistive torque with MTC+reflex
model (blue curve). Light-blue-highlighted area in Fig.6-C
shows the variations of optimal assistive torque for different
acceptable reflex gains and reflex modulation factors profiles;
the simulated optimized assistive torque has a low sensitivity
to variations in reflex parameters. According to Fig.6-B, sim-
ulated optimized assistive torque using MTC model is close
to the required torque and significantly different from the
experimentally optimized one. Nevertheless, by considering
reflex excitation (Fig.6-C), the simulated optimized assis-
tive torque approaches to the experimentally optimized one
reported in [10]. This interesting achievement verifies the
applicability of the proposed method for exoskeleton torque
optimization.

Comparing the assistive torque profiles with and without
considering reflex excitation shows that nonvoluntary nature
of reflex can properly explains the source of uncompensable
portion of required torque. This observation supports our
hypothesis “nonvoluntary nature of reflexive excitation highly
restricts biological torque compensation”. The Orange area
refers to the portion of required torque which is experimentally
compensable; it is 26% of the required torque. The gray area
refers to the portion of required torque which is experimentally



RAYATI et al.: IMPROVING MUSCLE FORCE DISTRIBUTION MODEL USING REFLEX EXCITATION 727

uncompensable and the model cannot explain it; it is unex-
plained. In Fig.6-B, pink area shows the portion of required
torque which is uncompensable and can be explained by MTC
model; it is 17% of the required torque. Finally, in Fig.6-C,
the Purple area shows the portion of required torque which
is uncompensable and can be explained by MTC+reflex
model; it is 58% of the required torque. By moving from
Fig.6-A (no model with 74% unexplained) to model-based
illustrations in Fig.6-B (MTC model with 57% unexplained)
and Fig.6-C (MTC+reflex model with 16% unexplained), it is
concluded that the MTC+reflex model better (but still cannot
fully) explains the uncompensable portion of required torque.
Using MTC+reflex model still 16% of the required torque is
unexplained, which might be the effects of other biological
contributors. For instance, we can refer to our assumptions on
the fix kinematics and reflex gains which might be the missing
puzzles of this interesting problem and can be considered as
a future study.

V. DISCUSSION & FUTURE WORK

In this paper, we extended the existing model for force
distribution over the muscles by considering the reflex excita-
tion as a nonvoluntary behavior of our neuromuscular system.
The developed model is capable of justifying the uncompens-
able portion of inverse dynamics torque and can be used
to optimize the exoskeleton torque profiles. The achieved
results in our simulations for exoskeleton torque optimization
is comparable with experimentally optimal ones, which shows
the applicability of the developed model to be used as a
toolbox for exoskeleton torque optimization. Moreover, the
proposed model can characterize the co-activation behavior of
antagonistic muscles without adding any further modification.
However, similar to the other works [14], [53], we assumed
that the joint trajectories are the same with and without
exoskeleton; it is not the case in practice [54], [55]. Now the
question is “is our model valid if the exoskeleton augmentation
changes the human body dynamics and consequently the joint
trajectories?”

To address this issue, we can take one step further and
consider both muscles’ force and joint trajectories as opti-
mization parameters. To consider the joint trajectory as a free
optimization parameter, the dynamical equations, joint limita-
tions, and trajectory restrictions should also be considered as
constraints for Eq.5. In this case, the required torque is not a
contributor anymore. Therefore, the optimization for muscle
force distribution and joint trajectory prediction is:
( �f ∗, �q∗) = arg min

F,Q
J, �f = { f1, . . . , fm }, �q = {q1, . . . , qn}

J =
m∑

i=1

1

T

∫
T
α2

i (t)dt s.t., ∀i ∈{1, .., m}, 0≤αi (t)≤1

∀ j ∈ {1, .., n}, τ
j

m + τ
j

a = � j (�q, �̇q, �̈q),

τ
j

m =
m j∑
i=1

fir
j

i (q j , q ′
j )

∀ j ∈ {1, .., n}, SC j (�q, �̇q, �̈q) = 0, DC j (�q, �̇q, �̈q) ≤ 0

∀i ∈ {1, .., m}, αi = fi

(
f i
max fv (v

i
C E ) fl(l

i
C E )

)−1

∀i ∈ {1, .., m}, 0 ≤ ui
re f ≤ ui = H −1(αi ) ≤ 1 (8)

where �q is the vector of joint positions and � j is the
dynamical equation of the body. Moreover, SC j (.) and DC j (.)
indicate static and dynamic constraints of j th joint trajectory
to perform a cyclic gait; SC j (.) can also cover the desired gait
speed. Unlike Eq.5, in Eq.8, the required torque at each joint
is not given, and it is computed using the dynamical equations
of the human body and joint trajectory. Using this new static
optimization structure, for a given assistive torque (�τa), we can
compute(predict) muscles’ force, length, velocity, activation,
excitation, joint trajectories, and so on. Accordingly, in an
optimization process, we can optimize �τa by considering the
possible changes in the joint trajectories. �τa can also be
designed to ensure minimum possible variations from the joint
natural trajectories.
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