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Cluster Embedding Joint-Probability-Discrepancy
Transfer for Cross-Subject Seizure Detection
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Tiejia Jiang, and Feng Gao

Abstract— Transfer learning (TL) has been applied in
seizure detection to deal with differences between different
subjects or tasks. In this paper, we consider cross-subject
seizure detection that does not rely on patient history
records, that is, acquiring knowledge from other subjects
through TL to improve seizure detection performance.
We propose a novel domain adaptation method, named the
Cluster Embedding Joint-Probability-Discrepancy Transfer
(CEJT), for data distribution structure learning. Specifically,
1) The joint probability distribution discrepancy is mini-
mized to reduce the distribution shift in the source and
target domains, and strengthen the discriminative knowl-
edge of classes. 2) A clustering is performed on the target
domain, and the class centroids of sources is used as the
clustering prototype of the target domain to enhance data
structure. It is worth noting that the manifold regularization
is used to improve the quality of clustering prototypes.
In addition, a correlation-alignment-based source selection
metric (SSC) is designed for most favorable subject selec-
tion, reducing the computational cost as well as avoiding
some negative transfer. Experiments on 15 patients with
focal epilepsy from the Children’s Hospital, Zhejiang Univer-
sity School of Medicine (CHZU) database shown that CEJT
outperforms several state-of-the-art approaches, and can
promote the application of seizure detection.

Index Terms— Seizure detection, domain adaptation,
transfer learning, correlation-alignment-based source
selection.

I. INTRODUCTION

EPILEPSY is a common neurological syndrome caused
by abnormal discharge of brain neurons. Seizures are the
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most important clinical manifestations of epilepsy. Patients
have unusual behaviors and sensations during seizures, and
sometimes lead to loss of consciousness. Driven by data,
researchers have begun to build epileptic seizure detection
models through machine learning, correlation analysis, and
time-frequency analysis [1] in recent years. By automatically
identifying seizure on electroencephalography (EEG), it can
provide an objective reference to neurologists for epilepsy
diagnosis, treatment and evaluation [2], [3], [4], [5].

Most of the existing EEG-based seizure detection methods
focus on patient-dependent scenarios, including training and
testing data originating from the same patient, or mixing the
collected data together for model training and testing [6],
[7], [8]. The patient-dependent forms strongly rely on the
patient history records. Patient-dependent algorithms have
been extensively studied in the past. The high accuracy of
seizure detection methods in this scenario can be attributed
to a basic assumption that training and testing data fol-
low the same distribution. However, in real scenarios, it is
shown that there are differences in the onset and propagation
of abnormal electrical activity in the brain [9]. Moreover,
EEG is greatly affected by age and individual differences,
especially in children, with the increase of age, the fre-
quency, amplitude and rhythm of EEG background activity
are significantly different [10]. Faced with a more diverse
data distribution from different subjects, patient-dependent
seizure detection methods become insufficient for new
patients.

Due to the significant individual differences in EEG signals,
the training data and the actual testing data do not obey
the assumption of independent identical distribution. How to
establish a cross-subject seizure detection model that can
overcome individual differences is a long-standing issue?
Domain adaptation naturally comes to mind, which offers the
possibility to generalize a classifier learned from well-labeled
source domains to an unlabeled target domain, where obser-
vations from source and target domains are often derived
from different distributions. In cross-subject seizure detection,
the domain consisting of multiple subjects with sufficient
labeled data is called the source domain, and the domain
consisting of subjects with unlabeled data is named the target
domain. In this paper, we propose a domain adaptation-based
learning framework to develop a robust cross-subject seizure
detection algorithm, which can eliminate the influence of
distribution differences between patients. There are two key
contributions in the paper: 1) We design a simple but effec-
tive evaluation metric for source-domain transferability, the
correlation-alignment-based source selection (SSC), to select
the most favorable subjects in multi-source transfer learning.
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2) We propose a new domain adaptation algorithm, the Clus-
ter Embedding Joint-Probability-Discrepancy Transfer (CEJT),
which unifies the cluster learning and joint probability distrib-
ution discrepancy. Minimizing the joint probability distribution
discrepancy can reduce the difference between domains and
strengthen the discriminative knowledge of categories, and the
clustering learning can deeply explore the data distribution
structure of the target domain. In this study, we validate
the proposed cross-subject seizure detection model consist-
ing of the transferability evaluation metric SSC and domain
adaptation algorithm CEJT on the dataset collected from the
Children’s Hospital, Zhejiang University School of Medi-
cine (CHZU).

The remainder of this paper is organized as follows:
Section II introduces related work on domain adaptation and
transfer learning based seizure detection. Section III describes
the details of the seizure detection framework composed of
CEJT and SSC. Section IV presents the experimental studies
to compare the performance of CEJT with several state-of-
the-art (SOTA) domain adaptation methods and to verify the
effectiveness of the proposed framework. Finally, Section V
draws the conclusions.

II. RELATED WORK

A. Domain Adaptation

The most commonly used domain adaptation approaches
include instance-based adaptation and feature representation
adaptation [11]. It is generally believed that distribution dif-
ferences can be compensated by the instance-based adaptation
approaches, such as weighting the samples from the source
domain to better match the target-domain distribution; or
adopting feature transformation-based methods to project the
features of the two domains to another subspace with small
distribution shift.

Feature-based approaches seek a unified/respective trans-
formation that projects data from two domains into a
domain-invariant space to reduce distribution differences
between domains while preserving data properties in the
original space. Such methods often rely on a distance metric,
the maximum mean discrepancy (MMD). MMD measures the
distance between two distributions in the reproducing kernel
Hilbert space (RKHS). Pan et al. [12] propose the transfer
component analysis (TCA) using MMD to learn the transport
components across domains in RKHS. TCA assumes that
there is a feature map such that the marginal distributions of
the two domains are close after the mapping. Joint distribu-
tion analysis (JDA) [13] improves the disadvantage in TCA
which only considers the marginal distribution shift, and JDA
takes the conditional distribution shift into account using the
pseudo-label of the target domain. Adaptation regularization
based transfer learning (ARTL) [14] builds a domain-invariant
classifier by introducing the structural risk loss. Domain-
invariant classifiers tend to have better performance than sin-
gle feature transformations. Manifold embedded distribution
alignment (MEDA) [15] is the first to quantitatively evaluate
the importance of marginal and conditional distributions when

performing distribution alignment. Joint geometrical and sta-
tistical alignment (JGSA) [16] breaks the strong assumption
that the source and target domains need to be transformed
uniformly, learning two coupled projections while reducing
the geometric and distributional shifts.

Instance-based adaptation is often not considered separately,
but is usually combined with feature matching to achieve
domain adaptation. Long et al. [17] state that there are
some source-domain samples unrelated to the target domain
in feature matching, and propose a transfer joint matching
(TJM) by introducing the l2,1-norm regularization term to
achieve instance weighting. Locality preserving joint transfer
(LPJT) [18] explicitly weights samples from the source and
target domains, and reduces the influence of outliers through
landmark selection.

Deep domain adaptation utilizes deep networks to enhance
domain adaptation performance, where discrepancy-based
methods have been extensively studied. The deep domain
confusion network (DDC) by Tzeng et al. [19] adds an adap-
tation layer with MMD metric to the convolutional network,
and the domain discrepancy loss of the adaptation layer is
used to improve the original objective function. Rather than
using a single layer and linear MMD, the Deep Adapta-
tion Network (DAN) [20] measures domain discrepancy by
considering all task-specific layers and designs an optimal
multi-kernel selection strategy to improve the effectiveness of
embedding matching. The joint adaptation network (JAN) [21]
aligns the joint distribution of features and labels in multiple
domain-specific layers based on joint MMD. CORrelation
ALignment (CORAL), which learns a linear transforma-
tion to align second-order statistics between domains, has
been extended to deep networks [22]. Adversarial-based
methods encourage domain confusion through adversarial
objectives, resulting in domain-invariant representations. The
domain-adversarial neural network (DANN) adds an adver-
sarial mechanism to the deep transfer network. Yu et al. [23]
prove that the adversarial network also suffers from probability
distribution mismatch, and propose a dynamic adversarial
adaptation network (DAAN) to dynamically learn domain-
invariant representations.

The above findings for shallow methods, most feature
matching algorithms consider a linear combination of aligned
marginal and conditional distributions, that is not equivalent
to a joint distribution. Meanwhile, existing domain-invariant
classifiers often use the squared loss and hinge loss, and the
learned classifier generally labels the target samples separately,
failing to make full use of the target-domain data structure
information.

B. Transfer Learning Based Seizure Detection
Domain adaptation has been applied in seizure detection in

the past. Yang et al. [24] use the large-margin projected trans-
ductive SVM to reduce the distribution difference between
training and testing data, and realize the adaptive recognition
of EEGs. In [25], the TSK fuzzy system and distribution align-
ment are jointly optimized, and the proposed TL-SSL-TSK
has strong interpretability and adaptability in epilepsy recog-
nition. Jiang et al. [26] introduce a semi-supervised learning
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Fig. 1. Flowchart of our proposed cross-subject seizure detection framework, including data preprocessing, feature extraction, source selection
and domain adaptation classification. The collected raw EEG signals are first filtered and segmented to extract wavelet packet features. Then, SSC
is used to evaluate the discriminability of the source subject and the correlation with the target domain. Finally, CEJT unifies feature matching and
projection clustering to build a classification model for seizure detection.

method based on [25] to exploit the unlabeled testing data.
In [27], the feedforward neural networks, fuzzy systems, and
transductive transfer learning are successfully unified into a
generalized hidden-mapping model for seizure recognition.
Recently, a cross-domain epilepsy EEG signal classification
model with knowledge utilization maximization [28] has been
proposed, which makes full use of the data global structure
of source and target domain. And a pairwise constraint regu-
larization term is added to utilize the association information
between the labeled samples. In [29], from the perspective of
error consistency, a regularization used for knowledge transfer
is proposed to unify the TSK fuzzy classifier to achieve
online calibration. The effectiveness of these algorithms for
EEG differences in different states has been proved, but the
performance on individual differences is not well studied.

Deep transfer learning has also been used for seizure
detection. Zhang et al. [30] convert EEG signals into the
time-frequency maps and three fine-tuned deep networks,
VGG16, VGG19 and ResNet50, are adopted for classification.
In [31], a unified adversarial learning framework is proposed
to extract the epilepsy-specific representations while removing
inter-patient noises. Cao et al. [32] perform quadratic feature
extraction on the mean amplitudes of sub-band spectrum
representing brain activity rhythms through a deep pre-trained
network and develop a deep network for epileptic state classifi-
cation. Most of these studies initialize the network parameters
or carry out secondary feature extraction through pre-training
models, which realize model transfer and cannot effectively
solve the problem of individual differences in EEG signals.

III. DATASET AND METHODS

The proposed cross-subject seizure detection framework,
which aims to use data from multiple source subjects to
help target subject build domain adaptation classification
models, is introduced in this section. Shown in Fig. 1, the
multi-channel EEG signal are first filtered and segmented, and
then wavelet packet decomposition (WPD) is performed to
extract statistical features of EEGs. The correlation-alignment-
based source selection (SSC) is then used to evaluate the
transferability of subjects in the source domain. Finally, the
selected source subjects are used together with the target
subjects to build the Cluster Embedding Joint-Probability-
Discrepancy Transfer learning (CEJT) classification model.

A. CHZU Dataset and Feature Extraction
The EEG signals used in this study are obtained from the

Children’s Hospital, Zhejiang University School of Medicine
(CHZU). The recording time of EEG signals for each subject
is 2 hours or 16 hours, respectively. The EEG signals are
collected by the international 10-20 lead system, each record
contains 21 scalp EEG channels, and the sampling frequency
is 1000 Hz. In the study, 15 children with focal epilepsy are
analyzed. We first divide the EEG signal into interictal and
ictal states, where the interictal state refers to signal from
one hour and more before a seizure onset but one hour after
the previous seizure. The EEG signals are further segmented
into 2-second frames, and the overlap rate between the two
adjacent samples is 50% for ictal state. While for interictal
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TABLE I
DATASET SPECIFICATIONS: THE DATA ARE FROM PATIENTS IN CHZU, WHICH INCLUDE 7 FEMALES AND 8 MALES. THE EEG RECORDING TIME

OF EACH SUBJECT IS EITHER 2 HOURS OR 16 HOURS. THE SHORTEST SEIZURE DURATION IS 29 SECONDS

AND THE LONGEST IS 347 SECONDS

state, there has no overlap between EEG frames. Table I lists
the specifications of CHZU dataset.

In order to utilize both the time and frequency domain
EEG knowledge, the wavelet packet decomposition (WPD) is
adopted for feature extraction. In the experiment, we perform
a 7-layer WPD on the pre-processed EEG signal, and the first
11 sub-bands covering 0-40 Hz are selected. Then, 5 statistical
features, including the mean amplitude, standard deviation,
median, kurtosis and skewness, are extracted on each sub-
band. A 55-dimensional feature vector is generated on each
EEG channel. Finally, for all 21 channels, each EEG frame is
represented by a feature vector of 21 × 55.1155.

B. Cluster Embedding Joint-Probability-
Discrepancy Transfer

1) Problem Settings and Notations: A domain D contains
three parts: feature space X , probability distribution P (X)
and label space Y , where X ∈ X . For simplicity, We use
subscripts s and t to indicate the source domain and the target
domain, respectively. The key notations used in this paper and
the corresponding descriptions are shown in Table II.

Let Ds = ��
xs,i , ys,i

��ns

i=1 = {Xs , Ys} denote
source-domain EEG samples data, where xs,i ∈ R

d is
the feature vector with label ys,i ∈ R

C . Similarly, we let

TABLE II
SYMBOL NOTATIONS AND DESCRIPTIONS

Dt = �
xt, j

�nt

j=1 = {Xt } as unlabeled target-domain data with

xt, j ∈ R
d . We assume the feature spaces and label spaces

between domains are the same: Xs = Xt and Ys = Yt . Due to
the domain shift Ps (xs, ys) �= Pt (xt , yt ), we devote to seek a
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latent common space shared across source and target domains
through a projection P ∈ R

d×m , where the domain shifts
are minimized and the discriminative knowledge is transferred
from Ds and Dt . On this basis, we aim to design a adaptive
classifier by exploring two learning strategies: distribution
adaptation and label propagation. Thus, we adopt the projected
clustering to regard the samples within the same cluster in
target domain as a whole to emphasize the data distribution
structure of target domain. CEJT is formulated by finding
a projection to obtain new representations of the respective
domains and labels of the target domain, such that 1) in the
projected space, the clustering of the target domain is achieved
through the class centroids of the source domain, 2) the
distribution matching of the same class and distinguishability
of different classes in source and target domains are jointly
explored, 3) the local manifold is introduced to improve the
quality of cluster centroids.

2) Projected Clustering: Projected clustering aims to jointly
optimize cluster centroids and labels in the embedding space
so that samples within the same cluster can share the same
label. In the case that all the source-domain labels are avail-
able, the class centroids of the source data can be obtained by
calculating the mean of sample features in the identical class
after projection. Based on the discriminative structure of the
source data and the sample distribution structure information
of target data, the pseudo-labels are assigned to the target
samples under the guidance of the class centroids. Then, the
projected clustering can be expressed as:

L pc =
���PT XsEs − F

���2

F
+ α

���PT Xt − FOY
T
t

���2

F
, (1)

where α > 0 is a tradeoff parameter, P ∈ R
d×m is the

projection matrix, F ∈ R
m×C is the cluster centroids. Es ∈

R
ns×C is a constant matrix used to calculate the class centroids

of source data in the projected space with each element
Ei j = 1

�
n j

s if ys,i = j , and Ei j = 0 otherwise. Ŷt ∈ R
nt ×C

is the one-hot encoded matrix of the predicted labels of the
target domain.

3) Joint Probability Distribution Discrepancy: The core goal
of domain adaptation is to match the different distributions in
the source and target domains. The maximum mean discrep-
ancy (MMD) criterion of marginal distribution and conditional
distribution and their linear combination are commonly used
for distribution alignment. Here, we use a more natural metric
MMD criterion based on the joint probability distribution to
measure the distribution difference between the source and
target domains. The objective is to increase the discriminability
between different classes while align the joint distributions of
the source and target domains. Therefore, the joint probability
distribution discrepancy is adopted and expressed as:

L j pd = MT − μMD (2)

with

MT =
C�

c=1

d
�
Ps

�
xs, yc

s

�
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t

�
Pt



yĉ
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(4)

where Ps
�
xs

		yc
s

�
represents the conditional probability, and

Ps
�
yc

s

�
is the prior probability of class c in the source

domain. According to the marginal distribution discrepancy
d (Ps (xs) , Pt (xt )) = ��E

�
PT xs

 − E
�
PT xt

��2
F and condi-

tional distribution discrepancy d (Ps (xs |ys ) , Pt (xt |yt )) =�C
c=1

��E
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s

 − E
�
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		yc
t
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F based on MMD, MT

and MD are further expressed as:
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=
���PT XsMs − PT Xt M̂t

���2

F
, (6)

where C is the number of categories, μ > 0 is a trade-off
parameter, and E [·] denotes the mathematical expectation
operation. Besides, Ns = Ys/ns and N̂t = Ŷt/nt ,
in which Ys = �

ys,1; . . . ; ys,ns

 ∈ R
ns×C and Ŷt =�

ŷt,1; . . . ; ŷt,nt

 ∈ R
nt ×C are the one-hot coding matrices

of the true labels of the source samples and the predicted
labels of the target samples, respectively. Ms = Fs/ns with
Fs = [Ys (:, 1) , . . . , Ys (:, C)] ⊗ 1C−1 (the symbol ⊗ denotes
the Kronecker product operation, and 1C−1 is the all-one
vector of dimension C − 1), and M̂t = F̂t/nt with F̂t =�
Ŷt (:, 2 : C) , . . . , Ŷt (:, [1 : C] \ {c}) , . . . , Ŷt (:, 1 : C − 1)

�
(Ŷt (:, [1 : C] \ {c}) represents all but the c-th column of Ŷt ).
MT measures the distribution difference between the same
classes of the source and target domains, and MD measures
the distribution difference between different classes of the two
domains. Converted to the trace form, the joint probability
distribution discrepancy can be rewritten as:

L j pd = tr



PT X (RT − μRD) XT P
�

, (7)

where

RT =
�

NsNs
T − NsN̂T

t

−N̂t Ns
T N̂t N̂T

t

�
, (8)
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Fig. 2. Ljpd values in clustering and without clustering.

RD =
�

MsMs
T − MsM̂T

t

−M̂t Ms
T M̂t M̂T

t

�
. (9)

To verify the effectiveness of the proposed method, the
clustering based joint probability distribution discrepancy L j pd

obtained from the EEGs of 15 subjects in CHZU dataset
(Table I) is derived. Meanwhile, comparisons to L j pd obtained
on without using the clustering method are also presented.
As shown in Fig. 2, a smaller L j pd value on almost all subjects
can be derived in our proposed method than not adopting
clustering. The comparison indicates that applying clustering
can bring a positive effect to the joint probability distribution
difference, thus enhancing the seizure detection performance.

4) Structure Consistency: The quality of cluster centroids
plays an important role in whether the algorithm can accurately
classify samples in the target domain. In real applications,
many high-dimensional data are generally considered to reside
in low-dimensional manifolds space with nonlinear geometric
structures. Relevant studies [33] have shown that introduc-
ing the local manifold structure can improve the clustering
performance of non-linear characteristic data. As one trivial
but effective trick, we add a Laplacian regularization term to
exploit the similar geometrical property of nearest points as:

Lsc = 1

2

ns+nt�
i, j=1

Wi j

���PT xi − PT x j

���2 = tr



PT XLXT P
�

,

(10)

where X = [Xs, Xt ], W is the affinity matrix, defined as:

Wi j =

⎧⎪⎨
⎪⎩

�
xi , x j

�
�xi� · ��x j

�� , xi ∈ Np
�
x j

�
or x j ∈ Np (xi )

0, otherwise

(11)

where
�
xi , x j

�
represents the inner product of xi and x j ,

Np (xi ) denotes the set of p-nearest neighbors of point xi .
The Laplacian matrix is L = D − W, where D is a diagonal
matrix with diagonal entries Dii = �ns+nt

j=1 Wi j .
5) Regularization: In the knowledge transfer and manifold

regularization, the structure of the data is constrained, but we
do not want to lose the data attributes of the target domain.
To avoid information loss, we introduce a regularization term
to preserve the energy of the original signal:���Xt − PPT Xt

���2

F
. (12)

After performing several algebraic steps and constant term
removal, the minimization problem of (12) can be written as:

Lr = −tr



PT XÎXT P
�

(13)

where Î is a diagonal matrix defined as Îii = 1 if xi ∈ Xt ,
otherwise Îii = 0.

6) Overall Formulation and Optimization Procedure: Then,
by combining (1), (7), (10) and (13), we arrive at the final
CEJT formulation:

min
P,F

���PT XE − F
���2

F
+ α

���PT XV − FYT
���2

F

+β �P�2
F + λtr



PT X (RT − μRD) XT P

�
+ρtr



PT XLXT P

�
− tr



PT XÎXT P

�
s.t.PT XHXT P = Im (14)

where β > 0, λ > 0 and ρ > 0 are penalty parameters, E =�
Es; 0nt×C


, V = diag

�
0ns×ns , Int

�
and Y =

�
0ns×C ; Ŷt

�
. H

is a centering matrix defined as H = In −(1/n)1n, n = ns +nt .
The constraint PT XHXT P = Im is introduced to avoid trivial
solutions.

In (14), the labels of the target domain are needed for the
projection clustering and the calculation of joint probability
discrepancy. It is very difficult to obtain the best Ŷt by
optimizing (14), so we solve it by assigning the label of each
target sample to the nearest class centroid in optimization.
Then:


Ŷt

�
ik

=
�

1, if k = arg min j
��PT xt,i − F (:, j)

��2
2

0, otherwise.
(15)

In addition, there are two variables P and F to optimize.
We update each of them alternately while keeping the other
variables fixed. When other variables are fixed, the optimiza-
tion problem of F becomes:

min
F

���PT XE − F
���2

F
+ α

���PT XV − FYT
���2

F
(16)

Then, by taking the derivative of (16) with respect to F, and
setting the derivative to zero, we get:

F =



PT XE + αPT XVY
� 


αYT Y + I
�−1

(17)

Next, substituting (17) into (14) to replace F, the optimization
of P can be written as:

min
P

tr

�
PT

�
XMXT + λX (RT − μRD) XT

+ρXLXT − XÎXT + βId

�
P

�

s.t. PT XHXT P = Im (18)

where Z = (E + αVY)
�
αYT Y + I

�−1
and M =

(E − Z) (E − Z)T +α
�
V − ZYT

� �
V − ZYT

�T
. According to

the constrained optimization theory, the Lagrange multiplier
� is introduced for optimization and the Lagrange function
of (18) is:�

XMXT + λX (RT − μRD) XT

+ρXLXT − XÎXT + βId

�
P = XHXT P� (19)

where � = diag (σ1, . . . , σm). Then the optimal solution is
obtained by calculating the eigenvectors of (19) corresponding
to the m-smallest eigenvalues. The proposed CEJT is sum-
marised in Algorithm 1.
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Fig. 3. The process of source selection: For P15, we first calculate the ssc scores of each source subject and P15 according to equation (20).
Based on the results of different number of source subjects, the top 5 source subjects are finally selected.

Algorithm 1 CEJT
Input: Source data {Xs, Ys}, target Xt , penalty parameters
α, β, λ and ρ, subspace dimensionality m = 50, maximum
iteration T = 10
Output: Target label matrix Ŷt .

1) Train the weak classifier to initialize the target label
Ŷt .

2) Compute the graph Laplacian matrix L.
3) repeat

a) Construct RD and RT by (8) and (9).
b) Update P by solving the generalized eigenvalue

problem in (19).
c) Update F by Equation (17).
d) Update Ŷt by Equation (15).

4) until Convergence or max iteration

C. Correlation-Alignment-Based Source Selection

Correlation alignment (CORAL) [34] minimizes the domain
shift by the second-order statistics of source and target distri-
butions. Inspired by the correlation alignment, we design an
evaluation metric for source selection to find subjects that have
a high correlation with the target domain. It thus can reduce
the computational cost while avoide some negative transfer.

Assume there is a target domain T with unlabeled fea-
ture matrix Xt , there have z labeled source domains Si =�
Xs,i , Ys,i

�z
i=1, where Xs,i is the feature matrix of the i -th

source domain, the SSC between the i -th source domain and
the target domain is defined as:

ssc (Si , T) = dis (Si )

di f (Si , T)
=

C−1�
c=1

C�
ĉ=c+1

���CS
c
i
− C

S
ĉ
i

���2

F��CSi − CT

��2
F

, (20)

where CSi is the covariance of Xs,i , CT is the covariance of
Xt , and CS

c
i

represents the covariance of the c-th category in
the source domain. The di f (Si , T) measures the distribution
difference between the i -th source domain and the target
domain, and dis (Si ) measures the inter-class discriminability
of the i -th source domain. For the target domain T, a larger
ssc (Si , T) indicates a higher transferability of the i -th source
domain. Therefore, we select ẑ ∈ (1, z) source subjects with
the highest ssc (Si , T).

We take the subject P15 as an target domain example to
show the process of source selection in Fig. 3, where in the
testing, all the rest subjects are taken as the source domain
data. First, the ssc scores of P15 and each source subject are
calculated, and the top ẑ are selected. Then we test the effect
of different number of source subjects on the classification
results. Obviously, ẑ = 5 performs the best, also slightly better
than using all subjects as the source (ALL). Similar results can
be obtained for other patients when tested independently as the
target domain.

IV. RESULTS AND DISCUSSIONS

A. Experimental Settings

To show the effectiveness of the proposed transfer learning
algorithm, experimental studies on the CHZU focal epilepsy
dataset are carried out in this section. The accuracy, G-mean,
sensitivity and F1 score are used as the performance measure:

Accuracy = TP + TN

TP + TN + FP + FN
(21)

G − mean =
�

TP

TP + FN
· TN

TN + FP
(22)

Sensitivity = TP

TP + FN
(23)

F1 = 2 · P · R

P + R
(24)

where TP, TN, FP and FN denote the true positive, true neg-
ative, false positive and false negative detection, respectively.
P and R are precision and recall rate, calculated by

P = TP

TP + FP
, R = TP

TP + FN
. (25)

On the one hand, the proposed domain adaptation algorithm
is compared with 2 classical intelligent methods without
transfer learning abilities, i.e., SVM and KNN. On the other
hand, the proposed CEJT algorithm is also compared with
7 classical domain adaptation approaches, i.e., TCA [12],
JDA [13], TJM [17], ARTL [14], MEDA [15], JGSA [16]
and our previous work Joint-Probability-Discrepancy-Based
Domain Adaptation (JPDDA). By the way, JPDDA learns
a domain-invariant classifier with structural risk minimiza-
tion, while performing joint probability distribution discrep-
ancy minimization, and manifold consistency maximization.
Domain adaptation algorithms TCA, JDA, TJM and JGSA
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learn through a transformation on all data in Xs and Xt for a
common feature space across the source and target domains.
Then the classification model is trained on the mapped source
data using SVM. In our experiments, the parameters of the
learning algorithms are optimized on the given search grids.
For KNN, the optimal number of nearest neighbors is selected
from {1, 2, . . . , 10}. The best value of the trade-off parameter
in SVM is searched on

�
2−6, 2−4, 2−2, 20, 22, 24

�
. Besides

TCA, other domain adaptation algorithms need to iteratively
update the target-domain labels during the feature matching,
where the iteration number is set to be T = 10. For TCA, JDA,
TJM, JGSA and CEJT, the dimension of the common feature
space is set to 50, and the manifold feature dimension of
MEDA is also set to be 50. The optimal distribution adaptation
parameters in all transfer learning algorithms (e.g., λ in our
CEJT) are searched in the range of

�
2−6, 2−4, 2−2, 20, 22, 24

�
.

For the domain invariant classifiers ARTL, MEDA, JPDDA
and CEJT, we obtain the optimal manifold regularization
parameters by searching within

�
2−6, 2−4, 2−2, 20, 22, 24

�
.

Finally, the tradeoff parameter μ in CEJT is set to be 1, and
the tradeoff parameter α is set to be 0.25. Specifically, in the
proposed SSC method, we selected 5 source subjects with the
highest ssc (Si , T) for each subject to compose the source
domain.

B. Comparisons Among Different Learning Methods

The detailed results of different algorithms for each subject
are listed in the Table III. To be more clarity, the highest
accuracy, G-mean, sensitivity and F1 score are highlighted in
bold font in the table. The results show that CEJT has the
best classification performance. Obviously, domain adaptation
algorithms are generally better than non-transfer learning algo-
rithms, and the reason is that domain adaptation methods take
into account the distribution differences between the source
and target domains. It is worth noting that compared with the
combination of feature transformation and classifier (e.g. TCA,
JDA, TJM and JGSA), domain-invariant classifier (e.g. ARTL,
MEDA, JPDDA and CEJT) perform better in jointing feature
matching and classification. JPDDA and CEJT are superior to
the state-of-the-art domain adaptation algorithms, thanks to the
fact that the joint probability distribution difference strength-
ens the discriminative knowledge of classes while aligning the
source and target domains. This is also confirmed by the tSNE
visualization shown in Fig. 4, the EEG features extracted by
JPDDA and CEJT are more distinguishable between different
categories after the feature transformation. The clustering
learning in CEJT further improves the performance by utilizing
the data distribution structure of the target domain.

Further, we perform the statistical tests on the performance
of the proposed algorithm and existing methods. The nonpara-
metric Friedman test is used to evaluate whether the differ-
ence in performance among different methods is statistically
significant. The rank of each algorithm is determined. The
post-hoc test is then performed to verify that the difference
between the top-ranked algorithm and the others is significant.
Table IV shows the results of the Friedman test. In the table,
if the p-value is less than the significance level α = 0.05,

it indicates the null hypothesis that all methods have the
same classification performance is rejected. The proposed
CEJT ranks first, outperforming other algorithms. Based on
the results of the Friedman test, the post-hoc test is further
performed to compare CEJT with other algorithms. The results
in Table V show that the proposed algorithm significantly
outperforms ARTL as well as algorithms ranked lower than
ARTL. Meanwhile, it can be seen from Tables III and IV
that the proposed algorithm outperforms MEDA and JPDDA
to some extent although the improvement is not statistically
significant.

Further, we visualize the decision boundary obtained by the
JPDDA and the proposed CEJT for comparisons in Fig. 5,
where in the figure, the data of the subject P06 is used as the
target domain. The squared loss as a structural risk function
of JPDDA, making it possible to classify the target domain by
labeling the samples individually. While CEJT introduces the
clustering to take advantage of the data structure of the target
domain, which can adjust the labels of the target domain by
clusters. Obviously, Fig. 5 confirms our assumption.

C. Ablation Study

We conduct the ablation experiments and analyze the
significance of each loss in CEJT. The joint probability
distribution discrepancy, structure consistency, and regular-
ization are removed sequentially, and the average accuracy
and G-mean are shown in Table VI. When the weight of the
joint probability distribution discrepancy λ is set to 0, our
method degenerates to a traditional clustering algorithm. With
Table III, it is found that the overall performance is better than
some transfer learning algorithms. A possible explanation is
that in projection clustering, the class centroid of the source
domain guides the clustering of the target domain, playing
the role of aligning the distribution. When the weight of
structural consistency ρ is set to be 0, the average accuracy
and G-mean drops severely. It confirms that the structural
consistency affects the quality of cluster centroids. In addition,
it can be observed that the overall performance decreases
slightly after removing the regularization term, indicating that
focusing on the preservation of the original information can
appropriately improve the performance.

D. Comparison Among Different Source
Selection Strategies

This subsection validates the effectiveness of the proposed
source selection strategy in finding the most beneficial source
subjects. Fig. 6 shows the classification results when using
different source selection methods: Euclidean distance (L2),
Earth Mover’s distance (EMD), A-distance and CORAL dis-
tance of source and target domains, Domain Transferability
Estimation (DTE) [35]. ALL sources without selection is also
included for comparison. As observed, the proposed SSC
algorithm is superior to other selection strategies in both
classification accuracy and G-mean score, even slightly higher
than the unused selection strategy, which greatly reduces the
computational cost and avoids the negative transfer caused by
unrelated subjects to some extent. Specifically, compared with
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON CHZU DATASET

the CORAL distance, SSC not only considers the distribution
difference between the source domain and the target domain,
but also measures the discriminability of the source domain,
making it more robust.

E. Comparison Among Different Seizure
Detection Methods

We compare the proposed approach with a set of com-
petitive state-of-the-art (SOTA) seizure detection algorithms.
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Fig. 4. t-SNE visualization of the data distributions with different domain adaptation approaches, when transferring P7 (source) to P16 (target).
Compared with ARTL and MEDA, JPDDA and CEJT consider the MMD distance information between classes, and the inter-class discriminability
is more obvious. Thanks to projection clustering, the source and target domains are better aligned and the samples are more compact after CEJT
domain adaptation.

TABLE IV
FRIEDMAN TEST ON CLASSIFICATION PERFORMANCE

OF COMPETITIVE ALGORITHMS

Moreover, we try to compare with the simplest deep domain
adaptation methods. The SOTA algorithms included for com-
parisons are:

• Cao et al. [32] adopt a stacked generalization model built
on multiple CNNs with diverse activation functions and

TABLE V
HOLM POST-HOC TEST BETWEEN CEJT AND OTHER METHODS

learning strategies for probability feature learning, and
propose a novel adaptive weighting for fusion.

• Jiang et al. [36] extract regional multi-channel cross
correlation EEG features combined with the convolutional
autoencoder model based EEG feature dimensionality
reduction method and ensemble classification model to
achieve early seizure detection.

• Zhang et al. [31] improve the seizure-specific repre-
sentations by eliminating inter-subject noise through
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Fig. 5. Decision boundaries visualization of JPDDA and CEJT on
P06. Compared to JPDDA which uses squared loss, CEJT introduces
clustering learning that, as hypothetically, utilizes the data structure of
the target domain to adjust its labels.

TABLE VI
ABLATION STUDY ON THE PROPOSED ALGORITHM

Fig. 6. Comparison of the selection methods of different source subjects.

adversarial training, resulting in a better cross-subject
seizure detection model.

The compared deep domain adaptation methods with the mean
amplitudes of sub-band spectrum (MAS) [32] as input include:

• Deep Domain Confusion (DDC) [19], which is a
single-layer deep adaptation method with the MMD loss.

• Deep CORAL (DCORAL) [22], which is a deep neural
network with the CORAL loss.

TABLE VII
CLASSIFICATION ACCURACY AND G-MEAN (%) OF DIFFERENT

SEIZURE DETECTION MODEL

• Domain adversarial neural network (DANN) [37], which
is a deep network that achieves the efficient domain
transfer being indistinguishable between source and target
data.

The overall performance of all the compared methods is
reported in the Table VII. It is clearly observed that our
method outperforms some state-of-the-art seizure detection
models and simple deep domain adaptation methods, validat-
ing the effectiveness of our method in cross-subject seizure
detection. The superiority of our method can be found on
11 subjects. It is worth noting that the model in [31] performs
poorly, and one possible explanation is that the validation of
the algorithm is in an ideal situation where the number of
interictal and ictal samples is the same. In this study, most
subjects has more interictal samples than ictal samples, which
is more consistent with the actual situation. In addition, for
the subject P08, the performance of the compared algorithms
is much better than the proposed algorithm. The reason may
be due to that the extracted wavelet packet features are not
strong enough for EEG representation for this case, which
also reminds us not only to pay attention to the establishment
of classification models in the future, more attention needs to
be paid to the attributes of the features themselves.
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TABLE VIII
ACCURACY (%) OF DIFFERENT AMOUNTS OF TARGET DATA FOR TRANSFER

F. Analysis of Varying Number of Transferred Target Data

In above experiments, all unlabeled target data are used for
transfer learning. In this section, we show the performance
with varying amount of target data in transfer learning. First,
the unlabeled target data (denoted as All) is divided into two
parts, one part is used to measure the distribution difference
with the source domain in the training model (denoted as
Transfer), and the other is used for testing which is not visible
during training (denoted as Test). One-third, one-half, and
two-thirds of the target data are used to measure distribution
differences, respectively, as shown in Table VIII. There is
no doubt that in any case the average accuracy of Transfer
learning is better than that for Test. When one-third of the
target data is used for transfer learning, the average accuracy
of the Test is the lowest (84.0%). When more data is used
in transfer learning, the average accuracy of Test is improved,
reaching a maximum of 85.0%. The average accuracy of All
reaches the highest 85.9% when half of the data is used for
transfer learning, only 0.4% lower than that recorded in the
Table III. Therefore, it is sufficiently feasible to use partial data
to measure the distribution of the target domain for transfer
learning. This also shows that the proposed framework has
low data constraints for practical applications.

V. CONCLUSION

The effectiveness of domain adaptation has been demon-
strated in seizure detection to cope with variations among
different subjects or tasks. In the proposed cross-subject
seizure detection framework, when the number of source
subjects is large, the source selection evaluation metric SSC
can reduce the computational cost and reduce the impact of
irrelevant subjects on the subsequent classification modeling.
CEJT organically unifies clustering learning, feature matching
and discriminative structure, and performs well in solving
individual differences in EEG signals. However, the number
of source subjects selected is obtained through simple exper-
iments, which lacks the individual adaptability, and we will
make new explorations on this issue in the future.
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