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Abstract— The accurate recognition of hand motion
intentions is an essential prerequisite for efficient
human-machine interaction (HMI) systems such as
multifunctional prostheses and rehabilitation robots.
Surface electromyography (sEMG) signals and muscle
shape change (MSC) signals which are usually detected
with different types of sensors have been used for human
hand motion intention recognition. However, using different
sensors to measure sEMG and MSC respectively, it would
be inconvenient and add deploying difficulty for human-
machine interaction systems. In this study, a novel flexible
and stretchable sensor was fabricated with a nano gold
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conductive material, which could simultaneously sense
both sEMG and MSC signals. Accordingly, a wireless
signal acquisition device was developed to record both
sEMG and MSC signals with the fabricated hybrid sensors.
The performance of the proposed in-situ dual-mode
signal measurement (IDSM) system was evaluated by the
recording signal quality and the accuracy of hand gesture
recognition. The results demonstrated that by using two
pairs of the hybrid sensors, the proposed IDSM system
could obtain two-channel sEMG at a noise level of about
0.89 μVrms and four-channel MSC with a resolution of
about 0.1 �. For a recognition task of 11 classes of hand
gestures, the results showed that only with two pairs of the
hybrid sensors, the average accuracy over all the subjects
was 95.6 ± 2.9%, which was about 7% higher than that with
two-channel sEMG and six-channel accelerometer signals.
These results suggest that the proposed IDSM method
would be an efficient way to simplify the human-machine
interaction system with fewer sensors for high recognition
accuracy of hand motions.

Index Terms— Human–machine interaction, hand gesture
recognition, flexible and stretchable sensor, muscle shape
change, surface electromyography.

I. INTRODUCTION

HAND gesture is a commonly used means to operate
service and rehabilitation robots. The accurate recog-

nition of hand gestures is essential to realize an efficient
human-machine interaction for users who interact with those
robots, but it is still a challenge. Different signals related
to the arm and hand movements have been used for limb
motion recognition [1], [2], [3], [4], [5]. Accordingly, a variety
of sensors and systems have been developed to quantify
the muscle morphological and electrical changes [6], [7],
[8], including stiffness [9], [10], hardness [11], density [12],
pressure distribution [13], [14], electromyography (EMG),
circumference [15] and electrical impedance [16], and more.
Among these signals, sEMG has been studied for decades
and has become the most commonly used signal due to its
noninvasive and easily-accessible nature. Traditionally, a few
electrodes are placed on the limb skin to record sEMG
signals for recognition of limb movement intentions. Generally
speaking, it is more convenient to record fewer channels of
sEMG, but the motion recognition accuracy of the EMG
is limited by the number of the electrodes. Using a high-
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density sEMG sensing system to acquire more channels of
signals is an efficient way to promote the accuracy of limb
motion recognition. For example, Lizhi Pan et al. used 192
channels of sEMG to improve the robustness [1]; Radmand
et al. used high-density force myography (FMG) and achieved
a very high classification accuracy for eight movements [14].
However, too many sensors would make the system very
complex and hard to deploy, limiting its practical applications.

Another way to improve the performance of limb motion
recognition is to combine two or more kinds of signals that
relate to the limb movements for a limb motion recognition
with a relatively simple recording system. Generally, sEMG,
force, and inertial signals generated during muscle activities
are combined with each other [17], [18], [19], [20], [21],
[22], [23], [24], or one of the three signals is combined with
other signals, such as electroencephalogram (EEG) [25], [26],
[27], [28], [29], [30], to promote the accuracy of hand gesture
recognition. Usually, different signals are collected by corre-
sponding types of front-end sensors (For example, electrodes
are used for collecting EMG, strain sensor for force, and
IMU (Inertial Measurement Unit) for acceleration). However,
if the different types of sensors are placed at different arm
sites and multiple acquisition devices are required, the whole
system would be complicated in structure and cumbersome in
size. Some systems achieve their goals through miniaturized
circuits. For example, the Trigno sensor integrates electrodes
and IMU sensors on the circuit board, can collect EMG and
IM (Inertial Measurement) signals at the same time, and is
widely used in the field of HMI. However, due to the sensor
with such a separate design structure, it is difficult to make
the acquisition system small and light enough.

Fortunately, modern materials and fabricating techniques
have made it feasible to integrate multi-signal sensors. Several
previous studies reported different types of hybrid signal sen-
sors that can record multiple signals simultaneously [31], [32],
[33], [34], [35]. And the portable and integrated data acqui-
sition systems have demonstrated their advantages in various
applications. For example, an accelerometer and a microphone
were used to capture the mechanomyogram (MMG) signal
in one sensor [34], and a hybrid sensor with a piezo-electric
and a piezo-resistive was proposed [35]. While these previous
efforts make important progress toward practical applications
of hybrid sensors, these rigid sensors still are limited in
their practicability. We know that the human body surface is
soft, curved, and changeable when muscle contracting. These
factors would restrict the practical use of rigid signal sensors.
In an effort to overcome the limitation of the conventional rigid
sensors, flexible and stretchable sensors have been developed
to adapt to arbitrary and dynamically changing body surfaces,
which are soft and conformal to the human body [36], [37].
Among them, strain sensors (measure the change in dimension
of a body under an external load) are a very important class,
which are often used to collect human signals [50], [51], [52].
Researchers around the world have successfully made various
soft strain sensors for wearable physiological or motion mon-
itoring [53], while achieving integrated multimodal sensing
with simple structures remains challenging, especially for ges-
ture recognition. Previously, we have developed different types

of flexible and stretchable sensors to measure the bioelectrical
signals [39] and MSC for monitoring limb movement [38],
respectively. Besides sEMG signals, our previous study shows
that as a morphological signal to monitor the movements of
the limb, the MSC should be an additional signal in movement
identifications for human-machine interaction.

In this study, we fabricated a hybrid sensor using a new
flexible and stretchable conductive material, which could sense
both sEMG and MSC signals simultaneously. Compared to the
widely used sensor Trigno, the newly proposed sEMG-MSC
hybrid sensor (sMHS) is flexible, stretchable, less complicated
in structure, and light in weight. Accordingly, an IDSM
system was developed to collect sEMG and MSC signals
with the sMHS. The performance of the proposed sMHS and
IDSM system was first evaluated by examining the elongation-
resistance characteristics of the sensor and the quality of
recording signals. And then the accuracy of recognizing dif-
ferent hand gestures was investigated based on the sEMG and
MSC signal recordings with the sensors and IDSM system.

II. SEMG/MSC HYBRID SIGNAL SENSOR

A. Sensor Fabrication

A new flexible and stretchable material was used to build
the sMHS sensor [39]. As shown in Fig. 1(b), the top layer
of the material is a nanogold film, and the bottom layer is
polydimethylsiloxane (PDMS). Fig. 2 (a) shows the process
of packaging the stripes, which is fast and simple. Firstly,
the material was cut into strips of 6 cm by 6 mm. Then,
a piece of conductive copper foil tape of 3 cm by 6 mm was
attached to the flexible strip. On the conductive copper foil
tape, a soldering point was built to connect the wire from the
data acquisition system.

B. Working Principle of the Sensor

Because the sensor’s material is stretchable, the conductivity
of the sensor changes with its surface area. When the sensor
is placed on the arm, the shape change of the muscles causes
the sensor’s shape to change along its length (Fig. 2 (b)),
and the sensor’s resistance changes accordingly. Since the
length of the sensor is far greater than the width, its width
can be viewed as a constant when it is relatively slightly
stretched. The sensor can then be viewed as a variable resistor
whose resistance varies with its length. Therefore, the shape
change of the muscle can be detected through monitoring
the change of resistance. By applying a current (AC or DC)
to the sensor through the leads and measuring the voltage
(Fig. 2 (c)), resistance can be easily calculated using Ohm’s
Law. Following this, a data acquisition system can be devel-
oped. Besides, the top layer is a conductive gold film and
can be used as an electrode for detecting biopotential signals.
Therefore, the sensor can be used to detect MSC and sEMG
signals simultaneously.

C. Impedance Model of the Sensor-Body

The impedance of the skin-electrode can be modeled as
a resistance-capacitance (RC) model, which can be found
in [40]. The impedance between a pair of electrodes includes
two parts: the impedance between the electrodes and the skin,
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Fig. 1. Basic principle and structure of the IDSM system. (a) The muscle contraction produces sEMG and muscle shape change signals (MSC).
(b) Using a sensor made of a nano gold flexible material, (c) the IDSM system can acquiring the sEMG signal and MSC signal simultaneously on
the same layer of the sensor.

Fig. 2. Basic principle and structure of the sMHS sensor. (a) The sMHS sensor is fabricated in a simple and fast way. (b) When the sensor is
attached to the skin, it is deformed by tension along its length, and its resistance changes with the length. (c) So the sensor works like a variable
resistor. (d) On the skin, the model of the sensor-body (e) can be simplified due to the low resistance of the sensor.

and the impedance of the body. For convenience, these two
parts of impedance can be regarded as one. When a pair
of hybrid electrodes are placed on the forearm, it can be
modeled as Fig. 2(d). Rsen1 and Rsen2 represent the end-to-
end resistance of the two sensors, which is approximately
100 �. Z AB , Z AC , ZC D, and Z D B represent the resistances
between two of the four points of A, B, C, and D in the
arm, respectively. According to [40], the resistance of these

four impedances is about two to three K� in the frequency of
32 kHz, which is much greater than the end-to-end resistance
of the sensor (about 100 �). The impedance between A and B:

Rsen1//[Z AB//(Z AC + ZC D//Rsen2 + Z D B)] (1)

For Z AB ≈ Z AC ≈ ZC D ≈ Z D B

Z AB//(Z AC + Z D B ) ≈ 2
3

Z
AB

(2)
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Fig. 3. Implementation of the FDM technology. (a) The IDSM system can acquire two channels of sEMG signal and four channels of MSC signal.
(b) Using the FDM technology, the system moves the MSC signal to another a frequency band of 32K Hz. (c) Then the modulated signal carrying
the sMHS is filtered, demodulated and the sEMG signal and the MSC signal are separated.

Then, The impedance between A and B:
Rsen1//

2
3

Z
AB

≈ Rsen1 (3)

Similarly, the impedance between C and D:
Rsen2//[ZC D//(Z AC + Z AB + Z D B)] ≈ Rsen2 (4)

Finally, the model can be simplified as shown in Fig. 2 (e).
This means that the resistance of each sensor can be measured
separately without mutual interference when it is placed on the
arm.

III. IDSM ACQUISITION SYSTEM

The sMHS sensor needs an IDSM data acquisition system
adopting a technology named frequency division multiplexing
(FDM) to obtain the sEMG and MSC signals. In this section,
the structure of the IDSM system and the principle of FDM
technology are introduced.

A. Data Acquisition System

The structural diagrams of the IDSM system for the sMHS
sensor are shown in Fig. 3(a). This system can acquire four
channels of MSC signals and two channels of sEMG signals
simultaneously with two pairs of electrodes. It has four parts,
including an analog-front-end module, a central control mod-
ule that has a WIFI transceiver unit, a power supply module,
and a graphical user interface (GUI) program running on a
computer.

1) Analog-Front-EndModule: This module is responsible for
acquiring the sEMG signal and MSC signal. Its core consists
of four analog-front-end ADS1292R chips (Texas Instruments,
USA), which include bioelectrical signal (ECG, EMG, and
EEG) amplifiers, a respiration measuring unit, two 24-bit
delta-sigma analog-to-digital converters (ADC), and a right-leg
drive unit. The acquisition of the sEMG signal is as follows:

firstly, all the right-leg drive units of the four ADS1292R
chips are connected by a daisy chain and output to the right-
leg drive electrode; then, the sEMG signals detected by the
sensors are filtered, amplified, and digitalized by ADS1292R.
The acquisition of the MSC signal is as follows: the modulator
of ADS1292R outputs a 32 kHz excitation signal which is
applied to the sensors through an RC net and produces a
voltage that contains the MSC signal of the sensor; then the
voltage is amplified, demodulated, and finally digitalized. All
these are performed by ADS1292R.

2) Main Control Module: This module is a microcontroller
unit (MCU) CC3200 (Texas Instrument, USA) which has
a 2.4 GHz WIFI transceiver. The MCU controls the four
ADS1292R chips through the SPI interface, reading the digi-
talized sEMG and MSC signals and sending them to the PC
through WIFI.

3) Power Supply Module: This module includes a charging
circuit for the battery and low dropout regulators for the whole
system.

4) Graphical User Interface (GUI) Program: This program
connects the low-level hardware through WIFI, controls the
MCU CC3200 to acquire data, and then displays and stores
the data on the PC.

B. Frequency Division Multiplexing (FDM)
Measuring Technology

Frequency division multiplexing is a widely used technol-
ogy in the modern communication and measurement field [41].
It divides the total bandwidth into a series of non-overlapping
sub-bands, each of which can be used to carry a different
signal. sEMG signal and MSC signal are both below 2 kHz,
and part of their spectra overlap (Fig. 3 (b), left). To measure
them simultaneously, one type of signal must be transferred to
another band by the FDM technology. When a high-frequency
current signal, such as the 32 kHz sinusoidal signal in this



HUANG et al.: IN-SITU MEASURING sEMG AND MSC WITH A FLEXIBLE AND STRETCHABLE HYBRID SENSOR 585

Fig. 4. Testing of the MSC signal. (a) Firstly, the sensor was tested in a tensile machine for 100 circles (partial data). (b) The relationship between
the resistance and the elongation shows a hysteresis characteristic. (c) But the relationship between the force and the elongation shows better
linearity. (d) Secondly, the error of the MSC module was tested by measuring a standard resistor box. The relative error is less than 1%. (e) The
MSC module can distinguish 0.1 Ω change caused by deformation. (f) The absolute error is 0.7 Ω.

study, is applied to the sensor, it will be modulated by the
resistance of the sensor that works as a multiplier; finally,
a voltage vo carrying the resistance signal will be produced,
which is a mixed signal with a central frequency of 32 kHz.

vo = i × sinωt × r (5)

Thus, the MSC signal is transferred to the band of 32 kHz.
The spectrum allocation of the mixed signal is shown on the
right of Fig. 3 (b).

To separate the sEMG signal and the MSC signal in the
mixed signal, a low-pass filter, and a high-pass filter are
utilized. When the mixed signal passes through the low pass
filter, the sEMG signal is extracted. When the mixed signal
passes through the high pass filter, the modulated MSC signal
is extracted, and the original MSC signal is obtained by
demodulation. The demodulator is composed of a multiplier
and a low-pass filter. The multiplier uses the carrier to multiply
the received signal, and a signal with twice the frequency of
the received signal is produced. When this double-frequency
signal passes through the low pass filter, it (the right item in
formula (6)) is removed, and only the MSC signal is left. This
process is shown in Fig. 3 (c).

vo × sinωt = ir×sin2ωt= ir

2
− ir

2
cos2ωt (6)

The FDM is realized through the chip ADS1292R which is
a high-integrated analog-front-end chip used to acquire biopo-
tential signals (including EEG, ECG, EMG) and respiration
impedance. ADS1292R includes two channels of PGA and
ADC, a respiration modulating module, a respiration demodu-
lating module, an RLD (right keg drive) module, and some
auxiliary circuits. The respiration modulating module and

respiration demodulating module realize the FDM measuring
technology in the IDSM system.

IV. EVALUATION OF THE IDSM ACQUISITION SYSTEM

In this section, the performance of the developed IDSM
system was tested. The characteristics of the sensor and the
quality of the sMHS acquired by the system were studied.

A. MSC Signal Acquisition

1) The Characteristics of the Sensor: The sensor was tested
in a tensile machine to find the relationship between the length,
the force, and the resistance. The protocol was as follows:
firstly, the sensor was pulled (loading) at the speed of 1 mm/s
along the direction of the sensors; when it was stretched to
20% of its length, it was relaxed (unloading) at the same
speed. This process was repeated 100 times to make the sensor
stable, and then the data of 5 circles were recorded (Fig. 4(a)).
Fig. 4(b) shows the relationship between the resistance and the
length. The loading and unloading processes do not coincide
with each other, and they form a large hysteresis curve. This
means that the sensor is not very precise. The relationship
between the force and the length is shown in Fig. 5(c), which
has better linearity and less hysteresis, compared with the
relationship between the resistance and the length.

2) MSC Signal: The measurement of the MSC signal is
conducted by measuring the resistance of the sensor (with
a sampling rate of 1K Hz). To validate the performance,
a standard resistance box (KREVOR, China) was used as a
reference. Because the sensors’ resistance is about 100 �, this
system focuses on the range of resistance less than 2000 �.
Fig. 4 (d)/(e)/(f) show the results of the system measuring the
resistance box, where a quadratic function was used to describe
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Fig. 5. Noise of the system was measured and compared with the data of
TI’s chip. (a) Ten seconds of noise (from TI’s manual). (b) Ten seconds of
noise from our system. (c) The histogram of the noise (from TI’s manual).
(d) The histogram of the noise from our IDSM system.

the relationship between the voltage obtained on the sensor and
the resistance.

r= 0.01296v2+15.44v−39.95 (7)

v (unit: mV) is the sensor’s voltage measured by the system,
r is the resistance (unit: �) of the sensor. Fig. 4(d) shows the
error that is within ±1%. Fig. 4(e) is an example of measuring
the resistance from 200 to 209 �. The left part of the curve
shows the resistance increased from 200 � to 200.9 � with
a step of 0.1 �, while the right part shows the resistance
increased from 200 � to 209 � with a step of 1 �. The system
can distinguish the change of 0.1 � of the sensor (Fig. 4(e)).
Fig. 4(f) is the absolute error curve of Fig. 4(e) relative to the
standard resistance box, which has a mean value of 0.7 � and
a standard deviation of 0.05 �.

B. sEMG Signal Acquisition

1) Input Reference Voltage Noise: Input reference noise is
often used to evaluate the intrinsic noise level of the system,
which is a very important performance criterion. The protocol
is as follows: the gain of the acquisition system (the PGA)
was set to 6; the sampling rate was 500 Hz; the inputs of
each channel were short-circuited and connected to the RLD
through a resistor of 10 K�. Then, the output data of the
system were recorded.

Fig. 5 (b)/(d) shows that the peak-to-peak value of the input
reference voltage noise over 10 seconds was less than 8 uVpp,
with the corresponding RMS value of 0.89 uVrms. According
to [42], the RMS of the input reference voltage noise should
be less than 1 uVrms. This indicates that the input reference
voltage noise of this system meets the requirements of sEMG
measurement. As a comparison, these data were similar to the
data provided by ADS1292R’s user manual Fig. 5 (a)/(c)).

2) Bandwidth: The bandwidth of ADS1292R depends on
the sampling rate of ADC (for there is a decimation filter in

Fig. 6. Bandwidths of the IDSM system were 435 Hz and 650 Hz in
different sampling rates.

Fig. 7. IDSM system and the Trigno device of Delsys simultaneously
collected sEMG signal, and compared with each other. (a) The locations
of the electrodes. (b) The sEMG signal (red is IDSM, blue is Trigno).
(c) The spectrums of the sEMG signals. (d) The signal of the rest state
(noise).

the chip, the bandwidth is determined by this filter), which is
about 1/4 of the sampling rate according to the datasheet of
ADS1292R. To test the real bandwidth, we fed a sinusoidal
signal of 10 mV with its frequency varying from 10 to 900 Hz
(a function waveform generator was used, DG 4062, RIGOL,
China). The sampling rate of the sMHS acquisition system was
set to 2000 and 4000 samples per second (SPS) respectively.
The results are shown in Fig. 6. When the system used the
sampling rates of 2000 SPS and 4000 SPS, the 3dB bandwidth
was 435 Hz and 650 Hz, respectively. The bandwidth was
narrower than 1/4 of the sampling rate. This was caused by
the front-end anti-aliasing filter.

3) Signal Noise Ratio (SNR): For comparison purposes,
a commercial device, the Trigno system (Delsys, USA), was
used as a reference. The experiment was conducted on one
male subject (41 years old). The electrodes were placed on
the brachial and radial muscles of the forearm, as shown
in Fig. 7(a). The IDSM system’s sampling rate was set
to 2000 SPS, and the Trigno’s was set to 1926 SPS. The
subject was asked to close his hand with about 50% maximum
voluntary contraction (MVC) for about five seconds and then
relax for about five seconds.
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Fig. 8. IDSM system and the Trigno device of Delsys were used to recognize 11 hand gestures. (a) Setup of the experiment. (b) Ten active gestures
and the rest state. (c) The waveforms of the sMHS. (d) Repeatability testing.

The sEMG signals are shown in Fig. 7(b). The waveforms
of our device are very similar to the waveforms of Trigno.
Fig. 7(c) is the spectra of the two devices, which are also very
similar. SNR, as defined in formula (8), is used as an indicator
to further quantify the differences between these two systems.
Fig. 7(d) shows the signals of the rest state for 4 seconds.
Our device and Trigno almost have the same noise (12 uVpp).
Finally, the SNR of our device is 36.95 dB, which is 3.62 dB
higher than that of Trigno (33.33 dB). The reason for this
difference is that the electrode of Trigno is small and the
distance between electrodes is close, while the electrode of
our equipment is larger with more inter-electrode distance.

SN R = 20log10
RM Sactive

RM Srest
(8)

V. APPLICATION FOR HAND GESTURE RECOGNITION

To validate the recognition performance of the sMHS sensor
and the IDSM system, experiments on a hand gesture recog-
nition task were conducted with our IDSM system and the
Trigno system (Delsys, USA). The protocol of the experiment
was approved by the Institutional Review Board of Shen-
zhen Institutes of Advanced Technology, Chinese Academy
of Sciences. All subjects gave written informed consent and
provided permission for the publication of their photographs
for scientific and educational purposes. The experimental
protocol is as follows.

A. Experimental Protocols
Eleven young students were recruited for this study, includ-

ing six males and five females, whose average age was
26.63±4.92 years. The setup of the IDSM system was as
follows. Before the sensors were attached, the skin of each

subject was cleared with alcohol swabs. Four sensors were
smeared with conductive gel and attached to the forearm to
collect two channels of sEMG and four channels of MSC
signals. The sampling frequency of the sMHS acquisition
system was set to 2000 SPS, and the PGA to 12. As shown
in Fig. 8(a), the sensors are located on the two ends of the
brachial and the radial muscles of the forearm. For the Trigno
system, two sensor units were used, including two channels
of sEMG signals and six channels of IM signals. The sensors
were placed on the bulks of the same muscles as the IDSM
system (as shown in Fig. 8(a)). The sampling rate of EMG
was set to 1926 SPS, and that of IM was 149 SPS.

Data of eleven hand gestures (the RS was included) were
collected from eleven subjects, including ten active movements
and one rest (RS) state. The active movements were hand
close (HC), hand open (HO), wrist pronation (WP), wrist
supination (WS), thumb up (TM), wrist extension (WE), wrist
flexion (WF), index (ID), victory (VT), and OK (as shown in
Fig. 8 (b)). Before the data collection sessions, the subjects
were properly instructed about the experimental procedures.
Each subject was allowed to perform several pre-experimental
trials to get familiar with the experimental protocol. Following
these procedures, the subjects performed each gesture based
on an animate prompt for 5 seconds, and each gesture was
followed by a rest session of five seconds before observing
the next gesture. In each trial, the order of gestures was
as follows: HC, HO, WP, WS, TM, WE, WF, ID, VT, and
OK. Each subject was asked to repeat the process three
times.

B. Data Processing and Classification
All the data were processed offline, according to the fol-

lowing four stages, as shown in Fig. 9.
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Fig. 9. Detailed process of data processing and classification for EMG and MSC.

1) Data Preparation: Firstly, the sEMG and IM data of the
Trigno system were resampled to 2000. Secondly, to suppress
the noise, a five-point moving average filter was applied to
the MSC and IM data. For all the sEMG data (including the
IDSM system and the Trigno system), a bandpass filter with a
passband frequency of 25 Hz to 450 Hz was used to remove
the low-frequency artifacts. Thirdly, according to the ten active
hand gestures, the filtered data related to the gestures were
separated and divided into ten classes, while the rest of the
data belonged to the rest state. Fourthly, a series of 100 ms
analysis windows with an overlap of 50 ms was utilized to
segment the data of all classes.

2) Feature Extraction: For each channel of data, four
time-domain features (mean absolute value, mean absolute
value slope, wavelength, and zero-crossing) were calculated
for each analysis window, and were calculated as reference
[47]. Therefore, the features extracted from each channel of
data formed a four-dimensional vector. For all signals (IM,
MSC and sEMG), four time-domain features were extracted
as above. The feature fusion of the MSC and sEMG signals for
the IDSM system was achieved by concatenating their feature
vectors together. Illustrate with an example, two channels
of EMG signal would produce an eight-dimensional feature
vector. And four channels of MSC signal would produce a
16-dimensional feature vector, and concatenating their fea-
ture vectors together would produce a 24-dimensional feature
vector. The feature fusion of IM and sEMG signals for the
Trigno system was as for the IDSM system above. Because
the hold-on time for each gesture was different, the features
of eleven gestures (the RS was included) were balanced
by randomly selecting the same number of samples for all
gestures.

3) Classification: In this study, the accuracy of an offline
classification was regarded as the performance index. The
feature vectors were divided into a training set and a test set by
5-fold cross-validation, and then classified by linear discrimi-
nant analysis (LDA). Compared with other classifiers, LDA is
easier to implement, has less computation, and does not affect
the accuracy of limb motion classification significantly [43].

4) Statistical Analysis: To examine whether the type of
signals (MSC, sEMG, IM, and their combinations) have

an impact on the accuracy of movement classification, the
one-way ANOVA is conducted in terms of mean classification
accuracy, using the SPSS Statistical Modeling software (SPSS
22.0 IBM Corp., Chicago, IL). A level of P < 0.05 is selected
as the threshold for statistical significance with the null
hypothesis that the classification accuracies achieved by dif-
ferent signals (such as 4MSC, 2EMG, 6ACC, 2EMG+4MSC,
and so on) are not significantly different from each other.
If there is a significant difference in the results of ANOVA,
LSD (least significant difference) as the post-hoc analysis
(multiple comparison analysis) would be conducted.

C. Results
1) The Waveforms of the sMHS: Fig. 8 (c) shows the wave-

forms of one channel of sEMG signal (in the top portion)
from one pair of electrodes and two channels of MSC sig-
nals (in the bottom portion) from the corresponding two
electrodes, including ten active gestures and ten rest states
from a complete trial. These two sensors are located on the
brachioradialis (Fig. 8(a), the left portion). The waveforms of
the MSC signal have mean values and standard deviations of
29.0±6.7 � and 142±33.0 �, respectively. Unlike the sEMG
signal, the MSC is a low-frequency signal. It is highly related
to hand movements (gestures), so each active movement can be
distinguished from the waveforms. For each active movement,
the trends of the MSC amplitudes are different from the
sEMG. Some movements have low sEMG amplitudes but high
MSC amplitudes. For instance, among the ten active hand
gestures, WS, WP, and TM have lower sEMG but higher MSC
(of the second channel), compared with other movements.
This complementary feature of different signals may promote
pattern recognition performance.

Then, repeatability was tested, which is a very important
index of sensors. For the sMHS sensor, two factors can affect
the repeatability. The first one is the nuance of the same
gesture in each trial, and the other is the hysteresis of the
sensor. Fig. 8(d) shows one channel of MSC signal, including
three trials. The gray area represents the standard deviation,
which is within ±5 �.

2) Accuracies of Hand Gesture Recognition Using the sMHS:
To evaluate the performance of the IDSM system for hand



HUANG et al.: IN-SITU MEASURING sEMG AND MSC WITH A FLEXIBLE AND STRETCHABLE HYBRID SENSOR 589

Fig. 10. Performance of the IDSM system was validated on the hand gesture recognition. (a) Accuracies of different combinations of sEMG and MSC
signals. A total of eight combinations of sEMG and MSC signals were compared. In order to simplify the graphics display, the eight combinations
are divided into four groups (marked in different colors). There is no significant difference between any two signals within the group. (b) Accuracies
of our device and Delsys. (c) The confusion matrix of two channels of EMG signal and four channels of MSC signal. (d) The confusion matrix of two
channels of sEMG signal and six channels of IM signal.

gesture recognition, sEMG, MSC, and their combination were
fed into the LDA classifier. The signals were as follows:
(a) one channel of sEMG (1EMG), (b) two channels of MSC
(2MSC), (c) one channel of EMG and one channel of MSC
(1EMG+1MSC), (d) two channels of sEMG (2EMG), (e) one
channel of sEMG and two channels of MSC (1EMG+2MSC),
(f) four channels of MSC (4MSC), (g) two channels of sEMG
and two channels of MSC (2EMG+2MSC), and (h) two chan-
nels of sEMG and four channels of MSC (2EMG+4MSC).
The accuracies of classification for these data are shown in
Fig. 10. It can be observed that the classification accuracy
increases with the number of signal sources. When all the
available sEMG and MSC signals are used, the highest accu-
racy of 95.6±2.9% is achieved.

Using the same sensor, the IDSM system can help to pro-
mote classification performance. For one pair of sensors, one
channel of sEMG and two channels of MSC were collected
and achieved a classification accuracy of 81.3±8.1% which is
28.1% higher than that achieved from one channel of sEMG
(53.2±12.3%). For all four sensors, two channels of sEMG
and four channels of MSC were collected and achieved a
classification accuracy of 95.6±2.9% which is 16.11% higher
than that of two channels of sEMG (79.5±5.5%).

From the same muscle, both sEMG and MSC can obtain
useful information for motion recognition, and ANOVA analy-
sis shows that there is no significant difference in recog-
nition performance between the two signals. For example,
in Fig. 10(a), one channel of sEMG almost achieved the same
accuracy as two channels of MSC (p=0.928, Group 1), and
two channels of sEMG almost achieved the same accuracy as
four channels of MSC (p=0.408, Group2). It is observed that
a combination of two channels of sEMG and four channels

of MSC achieved similar performance as using a combination
of two channels of sEMG and two channels of MSC. This
suggests that a configuration of two channels of sEMG and
two channels of MSC might be sufficient for hand gesture
recognition.

3) Comparison to Trigno in Hand Gesture Recognition: The
data acquired by the Trigno system were processed in the
same manner as used with the sMHS. As shown in Fig. 10 (b),
the EMG signals of the IDSM system and the Trigno system
achieved similar performance, while the classification accuracy
of 4MSC (76.7±9.8%) was 10.6% higher than that of 6ACC
(66.7±17.4%). The classification accuracy of 2EMG+4MSC
(95.6±2.9%) was 7.1% higher than that of 2EMG+6ACC
(88.5±7.4%). ANOVA analysis shows that there is a signif-
icant difference in classification accuracies between 4MSC
and 6ACC (p<0.0001), and between 2EMG+4MSC and
2EMG+6ACC (p<0.0001). These results show that the MSC
signal is more efficient than the ACC signal for the task of
hand gesture recognition.

Fig. 10(c) shows the confusion matrixes of the IDSM
system, which has an average classification accuracy of
95.6±2.9% (eleven subjects, eleven classes) and the classi-
fication accuracy of each movement is over 91%. Fig. 10(d)
is the confusion matrix of the Trigno system, which has an
average classification accuracy of 88.5±7.4%. For the Trigno
system, some movements related to the individual fingers have
relatively low accuracies. For instance, the accuracies of the
VT and OK movements are less than 80%. The reason is that
the muscles related to these movements are small or deep in
the forearm, so the sensor units of the Trigno system can only
obtain limited information about these muscles. In addition,
the IM signal is related to movement, which is not very
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effective when the hand remains still. On the contrary, the
IDSM system can obtain both electrical and morphological
information from the muscles, which is complementary and
helps improve classification performance. As a result, the
IDSM system achieved a higher classification accuracy than
Trigno.

VI. DISCUSSION

The experimental results indicated that under the condition
of a certain number of channels, a combination of different
types of signal sources could be more effective to improve
hand gesture recognition performance, due to their comple-
mentary characteristics. The findings of this study showed that
the combination of sEMG and MSC signals could promote
the accuracy of hand gesture recognition, and achieve better
performance than solely using sEMG or the combination
of sEMG and IM signals. These experiments also suggest
that a combination of different types of signals could be an
alternative to a large number of single-type signal recordings
for motion recognition analysis.

The hybrid signal sensor and in-situ measurement are
promising in obtaining multiple signals with fewer sensors.
Because muscles are multi-signal carriers (which carry bio-
electrical, morphological, and biomechanical signals), sensors
with the capability of acquiring multiple signals are reason-
able. Our novel sMHS sensor with the IDSM method is not
only able to extract bioelectrical and morphological signals
but also increase the number of signal channels by two times
without adding sensors. These technologies may help us to
achieve a more simple and portable acquisition system.

Being conformal to the human body and comfortable to
wear, the flexible and stretchable sensors have the potential
to develop practical and wearable human-machine interfaces
(HMI). In the hand gesture recognition task, the sMHS sensor
was proved effective with an accuracy of 95.6±2.9%, using
only four sensors. By manufacturing this sensor into arrays,
and combining it with multi-frequency and multi-channel
FDM in-situ measuring technology, more channels of different
types of signals would be obtained, and the accuracy would
be further improved. In view of the characteristics mentioned
above, the system with flexible and stretchable sensors would
have a smaller size, lighter weight, simpler system, and higher
motion intention recognition precision.

In addition to the above advantages, this sensor may be
beneficial to improve the stability of gesture recognition due
to the MSC signal. The robustness is the main issue for
the practical application of sEMG-based gesture recognition.
Some factors, such as muscle contraction level change and
electrode shift [1], [44], [45], [46], will decrease the accu-
racy of sEMG-based gesture recognition. Firstly, unlike EMG
signal, the MSC signal is stable and strong, thus the slight
movement of the electrode will not induce interference to
MSC as large as to sEMG. Secondly, due to the continuity
of muscle shape change, there is a strong correlation between
signals when the electrode displacement is small (relative to
the length of the muscle). So the change of MSC signal caused
by electrode movement is relatively small. Finally, because the

MSC signal is directly related to muscle contraction, when the
signal is normalized by the muscle contraction level, the effect
of the muscle contraction level change would be minimized.
These are exactly what HMI needs.

Although the sMHS sensor and IDSM system show their
advantages, some factors that may affect the performance
should be considered for practical use.

(a) Amputee subjects. The muscle anatomy of a residual
limb is different from an intact limb. Our previous research
shows that the combination of MSC and EMG could achieve
higher accuracy in the amputee subject than EMG alone, but
the accuracy is still lower than in the normal subject [39].
For better performance of gesture classification, a small-sized
sMHS sensor array is needed. Moreover, a socket is typically
used to attach the prosthesis to the residual limb. The friction
and extrusion from the socket will affect the deployment of
the sensor and the acquisition of the MSC signal. Therefore,
the prosthetic socket should be specially designed.

(b) Practical factors affecting the measurement of muscle
shape. Compared with EMG, MSC signal may be less affected
by limb position, fatigue, sweating and other factors. However,
some other facts, such as the rapid change in temperature
[49] may affect the precision of the signal. So the power
of the sensor should be limited, and it is recommended that
the current flowing through the sensor be less than 1mA
(the corresponding power is 0.1mW). Our previous study on
locations also shows that locations could affect the MSC signal
[48], and the sensors should be placed in locations with more
muscles.

(c) EMG sensor pair distance. The distance between one
pair of EMG sensors should be kept at least 5mm [42].
In our experiment, the distance is about 50mm which is
much larger than the 10mm inter electrode distance for
Trigno. From the result (Fig.7(c)), it seems that the farther
the distance, the greater the signal amplitude. Although the
amplitude of the signal is somewhat different, it may not have
a significant impact on the results of gesture recognition.

(d) Sensor size. As a demonstration, the sensor of this work
is quite long. Although the sMHS sensors could collect more
signals, they would take up more space around the forearm
than typical bipolar EMG pairs. Especially for amputees, the
muscle size of the residual limbs can be quite small. Thus,
smaller sensors are needed. Our previous studies on MSC
signals have shown that small sensors and large sensors have
similar results for gesture classification, but the accuracy of
small sensors is slightly decreased [48]. Fortunately, it is easy
to make this kind of high-density sensor array. This would
compensate for the decrease in accuracy.

(e) Strain direction. In this work, the MSC sensor is a unidi-
rectional strain measurement sensor, thus it can only measure
the deformation in one direction. When the sensor is placed on
multiple muscles, it is important to measure the deformation
in multiple directions. The measurement of multiple directions
can be realized by making sensors with special shapes, for
example, the measurement of two dimensions can be realized
by making a cross sensor.

(f) Classifiers. The classification accuracy may be further
improved if a better classification method is used. Artificial
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neural network (ANN), K-means nearest neighbor (KNN)
and support vector machine (SVM) were also used to clas-
sify the data (2EMG+4MSC), and the accuracies for each
classifier were 88.95±3.15%, 94.61±1.59%, 95.58±2.87%,
97.66±1.51% respectively. Because the complexity of SVM
is higher than LDA, we chose LDA as the classifier in this
study.

The limitations of the developed sensor should also be
noted. Firstly, the muscle shape change sensor is not precise
for its hysteresis characteristic which is caused by the creep
of the material. Although the sensor works well in motion
intention recognition, its application might be limited where
precise measurements are required. Secondly, the sensor is
more fragile compared with traditional ones. The top layer
of the nanogold film is very thin and soft which can induce
two problems: (a) the nanogold film may lead to the change
of impedance or even the failure of the sensor due to the
scratch of a sharp object (b) The interface is not stable. The
sensor is connected to the data acquisition system through a
wire, which is rigid. When receiving a large tensile force and
generating a large deformation, the connection between the
sensor and the wire can break, making the sensor fail to work.
To overcome these limitations, our future work will focus
on the encapsulation of the sensor (to make it more robust),
and the fabrication of the sMHS sensor array, which has the
potential to further promote motion recognition performance.

VII. CONCLUSION

This study shows that the proposed flexible stretchable
sMHS hybrid sensor and IDSM acquisition system can simul-
taneously collect EMG signals and MSC signals, realize the
in-situ measurement of the two signals, and can be used for
gesture recognition.

ACKNOWLEDGMENT

The authors would like to thank the members of the Neural
Engineering Center, Institute of Advanced Integration Tech-
nologies Shenzhen Institutes of Advanced Technology for their
assistance in the experiments. They are also grateful to Gang
Zhang for his Linguistic Assistance during the preparation of
this manuscript.

REFERENCES

[1] L. Pan, D. Zhang, N. Jiang, X. Sheng, and X. Zhu, “Improving
robustness against electrode shift of high density EMG for myoelectric
control through common spatial patterns,” J. Neuroeng. Rehabil., vol. 12,
pp. 1–16, Dec. 2015.

[2] D. T. Barry, J. A. Leonard, A. J. Gitter, and R. D. Ball, “Acoustic
myography as a control signal for an externally powered prosthesis,”
Arch. Phys. Med. Rehabil., vol. 67, no. 4, pp. 267–269, 1986.

[3] T. Bianchi, D. Zambarbieri, G. Beltrami, and G. Verni, “NIRS monitor-
ing of muscle contraction to control a prosthetic device,” Proc. SPIE,
vol. 3570, pp. 157–163, Jan. 1999.

[4] D. J. Curcie, J. A. Flint, and W. Craelius, “Biomimetic finger control
by filtering of distributed forelimb pressures,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 9, no. 1, pp. 69–75, Mar. 2001.

[5] G. Ogris, M. Kreil, and P. Lukowicz, “Using FSR based muscule activity
monitoring to recognize manipulative arm gestures,” in Proc. 11th IEEE
Int. Symp. Wearable Comput., Oct. 2007, pp. 45–48.

[6] C. Castellini and G. Passig, “Ultrasound image features of the wrist are
linearly related to finger positions,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Sep. 2011, pp. 2108–2114.

[7] D. S. González and C. Catellini, “A realistic implementation of ultra-
sound imaging as a human-machine interface for upper-limb amputees,”
Front. Neurorobot., vol. 7, p. 17, Oct. 2013.

[8] C. Orizio, “Muscle sound: Bases for the introduction of a mechanomyo-
graphic signal in muscle studies,” Critical Rev. Biomed. Eng., vol. 21,
no. 3, pp. 201–243, 1993.

[9] S. Moromugi et al., “Muscle stiffness sensor to control an assistance
device for the disabled,” Artif. Life Robot., vol. 8, pp. 42–45, Sep. 2004.

[10] H. Han, H. Han, and J. Kim, “Development of real-time muscle
stiffness sensor based on resonance frequency for physical human robot
interactions,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
Aug. 2012, pp. 2367–2370.

[11] S. Moromugi, S. Kumano, M. Ueda, T. Ishimatsu, M. Q. Feng, and
T. Tanaka, “A sensor to measure hardness of human tissue,” in Proc.
5th IEEE Conf. Sensors, Oct. 2006, pp. 388–391.

[12] S. Muraki, K. Fukumoto, and O. Fukuda, “Prediction of the muscle
strength by the muscle thickness and hardness using ultrasound muscle
hardness meter,” SpringerPlus, vol. 2, no. 1, pp. 1–7, Dec. 2013.

[13] N. Li, D. Yang, L. Jiang, H. Liu, and H. Cai, “Combined use of FSR
sensor array and SVM classifier for finger motion recognition based
on pressure distribution map,” J. Bionic Eng., vol. 9, no. 1, pp. 39–47,
2012.

[14] A. Radmand, E. Scheme, and K. Englehart, “High-density force myogra-
phy: A possible alternative for upper-limb prosthetic control,” J. Rehabil.
Res. Develop., vol. 53, no. 4, pp. 443–456, 2016.

[15] W. S. Kim, H. D. Lee, D. H. Lim, J. S. Han, K. S. Shin, and C. S. Han,
“Development of a muscle circumference sensor to estimate torque of
the human elbow joint,” Sens. Actuators A, Phys., vol. 208, pp. 95–103,
Feb. 2014.

[16] O. L. Silva et al., “A proposal to monitor muscle contraction through
the change of electrical impedance inside a muscle,” in Proc. 5th IEEE
RAS/EMBS Int. Conf. Biomed. Robot. Biomechatronics, Aug. 2014,
pp. 763–767.

[17] A. Krasoulis, I. Kyranou, M. S. Erden, K. Nazarpour, and
S. Vijayakumar, “Improved prosthetic hand control with concurrent
use of myoelectric and inertial measurements,” J. NeuroEng. Rehabil.,
vol. 14, no. 1, pp. 1–14, Jul. 2017.

[18] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers,
and K. B. Englehart, “Continuous locomotion-mode identification
for prosthetic legs based on neuromuscular-mechanical fusion,”
IEEE Trans. Biomed. Eng., vol. 58, no. 10, pp. 2867–2875,
Oct. 2011.

[19] W. C. Guo, X. Sheng, H. Liu, and X. Zhu, “Toward an enhanced human-
machine interface for upper-limb prosthesis control with combined EMG
and NIRS signals,” IEEE Trans. Human-Mach. Syst., vol. 47, no. 4,
pp. 564–575, Aug. 2017.

[20] D. Blana, T. Kyriacou, J. M. Lambrecht, and E. K. Chadwick, “Feasibil-
ity of using combined EMG and kinematic signals for prosthesis control:
A simulation study using a virtual reality environment,” J. Electromyogr.
Kinesiol., vol. 29, pp. 21–27, Aug. 2016.

[21] L. Liu, X. Chen, Z. Lu, S. Cao, D. Wu, and X. Zhang, “Development
of an EMG-ACC-based upper limb rehabilitation training system,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 3, pp. 244–253,
Mar. 2017.

[22] J. Lobo-Prat et al., “Implementation of EMG- and force-based control
interfaces in active elbow supports for men with Duchenne muscular
dystrophy: A feasibility study,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 24, no. 11, pp. 1179–1190, Nov. 2016.

[23] R. B. Woodward, S. J. Shefelbine, and R. Vaidyanathan, “Pervasive
monitoring of motion and muscle activation: Inertial and mechanomyo-
graphy fusion,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 5,
pp. 2022–2033, Oct. 2017.

[24] Z. G. Xiao and C. Menon, “Performance of forearm FMG and sEMG for
estimating elbow, forearm and wrist positions,” J. Bionic Eng., vol. 14,
no. 2, pp. 284–295, Apr. 2017.

[25] S. Herrmann, A. Attenberger, and K. Buchenrieder, “Prostheses control
with combined near-infrared and myoelectric signals,” in Proc. Int. Conf.
Comput. Aided Syst. Theory, 2011, pp. 601–608.

[26] T. D. Lalitharatne, K. Teramoto, Y. Hayashi, and K. Kiguchi, “Towards
hybrid EEG-EMG-based control approaches to be used in bio-robotics
applications: Current status, challenges and future directions,” Paladyn,
J. Behav. Robot., vol. 4, no. 2, pp. 147–154, 2013.

[27] J. Segil, R. Patel, J. Klingner, R. F. Weir, and N. Correll, “Multi-
modal prosthetic fingertip sensor with proximity, contact, and force
localization capabilities,” Adv. Mech. Eng., vol. 11, no. 4, Apr. 2019,
Art. no. 168781401984464.



592 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

[28] M. Markovic, S. Dosen, D. Popovic, B. Graimann, and D. Farina,
“Sensor fusion and computer vision for context-aware control of a multi
degree-of-freedom prosthesis,” J. Neural Eng., vol. 12, no. 6, Dec. 2015,
Art. no. 066022.

[29] X. Li, O. W. Samuel, X. Zhang, H. Wang, P. Fang, and G. Li, “A motion-
classification strategy based on sEMG-EEG signal combination for
upper-limb amputees,” J. NeuroEng. Rehabil., vol. 14, no. 1, pp. 1–13,
Jan. 2017.

[30] W. Xia, Y. Zhou, X. Yang, K. He, and H. Liu, “Toward portable hybrid
surface electromyography/A-mode ultrasound sensing for human–
machine interface,” IEEE Sensors J., vol. 19, no. 13, pp. 5219–5228,
Jul. 2019.

[31] R. C. Luo, C.-C. Yih, and K. L. Su, “Multisensor fusion and integration:
Approaches, applications, and future research directions,” IEEE Sensors
J., vol. 2, no. 2, pp. 107–119, Apr. 2002.

[32] E. Waltz and J. Llinas, Multi Sensor Data Fusion. Boston, MA, USA:
Artech House, 1990.

[33] P. Varshney, “Multisensor data fusion,” Electron. Commun. Eng. J.,
vol. 9, no. 6, pp. 245–253, Jan. 1998.

[34] J. Silva, T. Chau, and A. Goldenberg, “MMG-based multisensor data
fusion for prosthesis control,” in Proc. Int. Conf. IEEE Eng. Med. Biol.
Soc., vol. 3, Sep. 2003, pp. 2909–2912.

[35] M. Rossi, M. Nardello, L. Lorenzelli, and D. Brunelli, “Dual mode pres-
sure sensing for lower-limb prosthetic interface,” Proceedings, vol. 1,
no. 4, p. 593, 2017.

[36] L. Li, Z. Lou, D. Chen, K. Jiang, W. Han, and G. Shen, “Recent advances
in flexible/stretchable supercapacitors for wearable electronics,” Small,
vol. 14, no. 43, Oct. 2018, Art. no. 1702829.

[37] Q. Hua et al., “Skin-inspired highly stretchable and conformable matrix
networks for multifunctional sensing,” Nature Commun., vol. 9, no. 1,
p. 244, Jan. 2018.

[38] P.-G. Huang et al., “A novel flexible sensor for muscle shape change
monitoring in limb motion recognition,” in Proc. 40th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2018, pp. 4665–4668.

[39] Z. Liu et al., “High-adhesion stretchable electrodes based on
nanopile interlocking,” Adv. Mater., vol. 29, no. 2, Jan. 2017,
Art. no. 1603382.

[40] B. Taji, A. D. C. Chan, and S. Shirmohammadi, “Effect of pres-
sure on skin-electrode impedance in wearable biomedical measurement
devices,” IEEE Trans. Instrum. Meas., vol. 67, no. 8, pp. 1900–1912,
Aug. 2018.

[41] M. Rapin et al., “Wearable sensors for frequency-multiplexed EIT and
multilead ECG data acquisition,” IEEE Trans. Biomed. Eng., vol. 66,
no. 3, pp. 810–820, Mar. 2019.

[42] R. Merletti and D. Farina, Surface Electromyography: Physiology,
Engineering, and Applications. Washington, DC, USA: IEEE Computer
Society, 2016.

[43] Y. Wei et al., “Real-time classification of forearm movements based on
high density surface electromyography,” in Proc. IEEE Int. Conf. Real-
Time Comput. Robot. (RCAR), Jul. 2017, pp. 246–251.

[44] J. He, D. Zhang, X. Sheng, S. Li, and X. Zhu, “Invariant surface EMG
feature against varying contraction level for myoelectric control based
on muscle coordination,” IEEE J. Biomed. Health Informat., vol. 19,
no. 3, pp. 874–882, May 2015.

[45] N. V. Iqbal, K. Subramaniam, and S. Asmi P., “Robust feature sets for
contraction level invariant control of upper limb myoelectric prosthesis,”
Biomed. Signal Process. Control, vol. 51, pp. 90–96, May 2019.

[46] J. He, X. Sheng, X. Zhu, and N. Jiang, “Position identification for robust
myoelectric control against electrode shift,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 28, no. 12, pp. 3121–3128, Dec. 2020.

[47] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunc-
tion myoelectric control,” IEEE Trans. Biomed. Eng., vol. 40, no. 1,
pp. 82–94, Jan. 1993.

[48] P. Huang et al., “Identification of upper-limb movements based on
muscle shape change signals for human-robot interaction,” Comput.
Math. Methods Med., vol. 2020, pp. 1–14, Apr. 2020.

[49] D.-J. Guo, X.-D. Pan, and H. He, “Effects of temperature on MWC-
NTs/PDMS composites based flexible strain sensors,” J. Central South
Univ., vol. 27, no. 11, pp. 3202–3212, Nov. 2020.

[50] R. Wang, W. Xu, W. Shen, X. Shi, J. Huang, and W. Song, “A highly
stretchable and transparent silver nanowire/thermoplastic polyurethane
film strain sensor for human motion monitoring,” Inorganic Chem.
Frontiers, vol. 6, no. 11, pp. 3119–3124, 2019.

[51] H. Wang, D. Li, W. Zhong, L. Xu, T. Jiang, and Z. L. Wang, “Self-
powered inhomogeneous strain sensor enabled joint motion and three-
dimensional muscle sensing,” ACS Appl. Mater. Interfaces, vol. 11,
no. 37, pp. 34251–34257, Sep. 2019.

[52] J. Xu and H. Jo, “Development of high-sensitivity and low-cost electro-
luminescent strain sensor for structural health monitoring,” IEEE Sensors
J., vol. 16, no. 7, pp. 1962–1968, Apr. 2016.

[53] J. Hughes and F. Iida, “Multi-functional soft strain sensors for wearable
physiological monitoring,” Sensors, vol. 18, no. 11, p. 3822, 2018.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


