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Abstract— Over the past decades, brain-computer
interfaces (BCIs) have been developed to provide
individuals with an alternative communication channel
toward external environment. Although the primary target
users of BCI technologies include the disabled or the
elderly, most newly developed BCI applications have
been tested with young, healthy people. In the present
study, we developed an online home appliance control
system using a steady-state visual evoked potential
(SSVEP)-based BCI with visual stimulation presented in an
augmented reality (AR) environment and electrooculogram
(EOG)-based eye tracker. The performance and usability
of the system were evaluated for individuals aged over 65.
The participants turned on the AR-based home automation
system using an eye-blink-based switch, and selected
devices to control with three different methods depending
on the user’s preference. In the online experiment, all
13 participants successfully completed the designated
tasks to control five home appliances using the proposed
system, and the system usability scale exceeded 70.
Furthermore, the BCI performance of the proposed online
home appliance control system surpassed the best results
of previously reported BCI systems for the elderly.

Index Terms— Augmented reality, brain-computer inter-
face, electroencephalography, electrooculography, steady-
state visual evoked potential.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) technology facili-
tates communication between users and external envi-

ronments without involving any physical body movements
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[1], [2]. Various non-invasive techniques have been employed
to measure brain activity, including magnetoencephalography
(MEG), functional near-infrared spectroscopy (fNIRS), and
electroencephalography (EEG). Among these, EEG has been
most widely used owing to its affordability, portability, and
ease of use. Over the past decades, various EEG-based BCIs
have been developed and used in a range of applications, such
as games [3], communication applications [4], [5], wheelchair
control [6], and smart home automation [7], [8].

Although the target users of BCI systems primarily com-
prise the elderly and people with physical disabilities, most
BCI systems developed to date have been tested with the
healthy, young population [9]. There are several reasons why
BCI systems have not been applied to target users. First, most
BCI studies are conducted in universities where participants
in their twenties are readily available. Second, it is difficult to
recruit elderly subjects or patients compared to healthy young
subjects [10], [11].

The participation of young, healthy subjects may lead to
the overestimation of the performance of a developed BCI
system. Consequently, the “true performance” of the system
may remain unknown. In previous studies, it has been fre-
quently reported that compared to the older population, the
participation of the younger population exhibited significantly
higher BCI performance, particularly in terms of classifica-
tion accuracy. For instance, Chen et al. [12] reported their
vibro-tactile BCI system showed lower classification accuracy
for an older population, compared to a younger population.
Moreover, Gembler et al. [9] also reported that a group of
elderly participants exhibited lower classification accuracy
than a group of young participants in a BCI speller application
based on steady-state visual evoked potential (SSVEP)-based
BCI. Furthermore, in a study that investigated the variations of
performance in sensorimotor-rhythm (SMR)-based BCIs, the
authors stated that a negative correlation between age and BCI
performance was conceivable [13]. Similarly, a succession of
studies has reported evoked potentials with higher amplitude
and shorter latency in younger participants than in older par-
ticipants [14], [15], [16], which most likely resulted in higher
performance of BCI systems based on evoked potentials.
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In the present study, we developed a home automation (HA)
system by combining SSVEP-based BCI, augmented reality
(AR), electrooculogram (EOG)-based eye tracker, and internet-
of-things (IoT) technologies. Subsequently, we evaluated the
performance and usability of the system for people aged over
65 years. Accordingly, the participants were asked to control
home appliances through the SSVEP-based BCI, an eyeblink-
based asynchronous switch, and an EOG-based eye-tracker,
without any external assistance. During the experiment, all
the user interfaces were presented in an AR environment
via a commercially available head-mounted display (HMD).
Depending on whether a device was compatible with IoT,
the home appliances were controlled either wirelessly in
an IoT-based network or using infrared (IR) signals. The
performance of the proposed system was evaluated in online
experiments involving participants aged over 65 years, where
five types of home appliances were controlled in real-time.
Furthermore, the usability of the proposed system was also
assessed with a questionnaire called system usability scale
(SUS) that has been widely employed to quantitatively evalu-
ate the practical usability of a system [17].

This study is sectioned as follows: The methods used in the
offline experiments to determine the optimal visual stimulation
time and electrode configurations are described in Section 2A.
Detailed descriptions of the proposed home appliance control
system and the online experimental paradigms are presented
in section 2B. The experimental results from the offline and
online experiments are presented in Section 3A and 3B,
respectively. Lastly, some issues associated with the proposed
system are discussed in Section 4.

II. METHODS

A. Experiment I – Offline Experiment to Determine
Optimal Duration of Visual Stimulation and Individualized
Electrode Configuration

1) Subjects: In total, 21 healthy individuals aged over
65 years (10 females and 11 males, average age 67.5 ±
3.0 years, ranging between 65 and 75) participated in the
offline experiment that aimed to determine optimal window
size and individualized electrode configuration. All partici-
pants had a normal or corrected-to-normal vision and none
of them had a history of neurological, psychiatric, or ocular
diseases. The data of two participants were excluded from
further analyses because there were no observable spectral
peaks at any SSVEP stimulation frequencies in the amplitude
spectrum of the recorded EEG data. Therefore, the EEG data
of 19 participants were analyzed. Generally, “BCI illiteracy”
is a well-known issue in all types of EEG-based BCIs [18].

All participants were informed about the details of the
experiments, and gave written consent before the experi-
ment began. The study and the experimental paradigm were
approved by the institutional review board of Hanyang Uni-
versity, South Korea (IRB No. HYI-14-167-13).

2) Experimental Paradigm: The offline experiment com-
prised three sessions, each consisting of 25 trials. In each trial,
five visual stimuli flickering at 6.6, 7.5, 8.57, 10, and 12 Hz
were presented to a see-through display of an AR headset,
MS HololensTM (Microsoft Corp., Redmond, WA, USA).

Fig. 1. (a) Visual stimuli presented in Experiment I. The stimulus to gaze
in next trial was guided by an arrow. (b) Configuration of four electrodes
to compute vertical and horizontal EOG components.

The visual stimuli flickered for 7 s with 7 s inter-stimulus
interval (ISI). Meanwhile, the participant was instructed to
keep focusing on one of the visual stimuli without blinking
and making body movements. In the experiment, we employed
a star-shaped stimulus called grow/shrink stimulus (GSS)
which flickers and varies its size simultaneously to evoke
SSVEP responses, due to its superiority in comparison with
the conventional visual stimuli in AR environment in terms of
classification accuracy [7]. The visual stimuli for the offline
experiment are shown in Fig. 1(a), with the corresponding
visual angle set to 6.4◦. Note that the visual stimuli were
designed to be fixed in designated positions in AR environment
to make the users feel more comfortable with the stimuli.

3) Data Recording and Analysis: The EEG data were
recorded from 12 electrode locations (Cz, Pz, P3, P4, P7,
P8, POz, PO3, PO4, Oz, O1, and O2) at a sampling rate
of 2,048 Hz from 12 electrode locations using a Biosemi
ActiveTwo system (Biosemi, Amsterdam, The Netherlands).
Subsequently, the data were down-sampled at a sampling rate
of 512 Hz to reduce the computational cost before being
bandpass filtered with cutoff frequencies of 2 and 54 Hz
to remove low-frequency baseline drift and power line noise
(60 Hz) using a Butterworth filter in MATLAB (MathWorks
Inc., Natick, MA, USA).

We employed an algorithm called extension of multivariate
synchronization index (EMSI) [19] to classify the SSVEP
responses. The algorithm recognizes the target frequency by
evaluating the synchronization index between given EEG data
and reference signal with each stimulation frequency, and then
finding the stimulation frequency that maximizes the index.
More details on the EMSI algorithm can be found in [19].

To evaluate the feasibility of the proposed system with the
universal electrode set, we first computed the classification
accuracy with the widely adopted electrodes in SSVEP-based
BCIs, O1, Oz, and O2. Subsequently, we calculated the
classification accuracies for all possible combinations of three
electrodes out of the eleven electrodes attached above the
parietal and occipital cortices (Pz, P3, P4, P7, P8, POz, PO3,
PO4, Oz, O1, and O2), then selected a set of three electrodes
that exhibited the highest performance for each participant.

Moreover, we computed information transfer rate (ITR) [20]
with varying window sizes to determine the optimal window
size, which was based on the following equation:

I T R = 60

T

[
log2 N + P log2 P + (1 − P) log2

(1 − P)

(N − 1)

]
,

(1)
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Fig. 2. Flow-chart of the proposed online home appliance control system.

where T denotes the window size in seconds, N represents the
number of possible targets, and P indicates the classification
accuracy. Since the testing dataset did not follow a nor-
mal distribution (Kolmogorov-Smirnov test), the Bonferroni-
corrected Wilcoxon signed rank test was applied to test the
statistical significance of the difference between performances
for universal and individualized electrode configurations.

B. Experiment II – Online Home Appliance Control
Experiment

1) Subjects: We attempted to enroll all participants from
the offline experiment for the online experiment as well. Six
of nineteen participants refused to participate in the online
experiment, primarily due to the prevalence of the COVID-19
pandemic during the online experiment. Consequently, thirteen
participants participated in the online experiment.

2) Data Recording: The EEG data were recorded from the
three electrode locations that were individually determined in
the offline experiment. The recording device and sampling rate
was the same with offline experiment. Additionally, the EOG
signals for eye-tracking were measured from four electrodes
attached around the eyes as shown in Fig. 1(b).

3) Hierarchical Constitution of the Proposed System: As
illustrated in Fig. 2, the proposed system was designed to have
multiple stages comprising the following four stages:

(i) Idle state. To allow the participants to switch on/off
the proposed HA system on their own, an asynchronous
switch based on eye blink was employed using multiple-
window summation of first derivatives in a sliding win-
dow (MSDW) [21]. The MSDW algorithm computes a
vertical EOG component to detect an eyeblink by

E OGV = VU − VD, (2)

where VU and VD correspond to the potential values
recorded above and below the right eye, respectively,

Fig. 3. Three different device selection methods implemented in the
online home appliance control system. (a) Image cards corresponding
to each device. (b) Five SSVEP stimuli corresponding to each device.
Each stimulus flickered at different frequencies and had an icon of the
corresponding device. (c) Six eye movement patterns corresponding
to each device, and a ‘help’ command to remind the eye movement
patterns. (d) Nine dots presented in the eye writing stage to assist the
eye movement.

as shown in Fig. 1(b). Accordingly, the system was
turned on or off each time four successive eyeblinks
were detected within 3 s. Unless the user turns on the
switch by successively blinking the eyes, the system
remained in an idle state. The user could also turn off
the system by using the eyeblink switch and return to
the idle state at any time during the system operation.

(ii) Determination of device selection methods. The pro-
posed HA system provided three options that the user
can take to select a device to control (image recogni-
tion, SSVEP, and eye writing). Accordingly, the user
could select the device using a method they prefer.
Once a user turned on the system via the eyeblink
switch, the user could select the target device to
control using one of the three methods. The control
method was determined based on the number of exe-
cutions of the eyeblink switch. Image Reconstruction
method was automatically selected when the user did
not blink their eyes within 3 s after turning on the
system. The SSVEP method was selected if the user
started to execute the eyeblink switch again within
3 s after turning on the system. The Eye Writing
method was selected if the user executed the eyeblink
switch twice. Fig. 2 illustrates the flowchart of this
process.

(iii) Device selection methods. The methods employed to
select the target device to control are as follows:
(a) Image Recognition method. Maintaining a gaze

at an image card attached to each device for
2 s allowed the participants to select the device.
The image recognition on Hololens was realized
with a toolbox called Vuforia in Unity 3D (Unity
Technologies ApS, San Francisco, CA, USA),
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with the image received through a built-in camera
of Hololens. Fig. 3(a) illustrates the image cards
attached to each device. In our experiment, a total
of five home appliances (TV, air purifier, humidi-
fier, heater, and audio) were prepared.

(b) SSVEP method. The user could select the device
to control by staring at one of the five visual stim-
uli flickering at different frequencies, each having
an icon representing the device to be controlled,
as depicted in Fig. 3(b). Accordingly, the device
could be selected based on the SSVEP detection
algorithm (EMSI) as described previously. Based
on the optimal window size determined in the
offline experiment, the duration of stimulus pre-
sentation was set to 3 s.

(c) Eye Writing method. The user could select the
device by writing a pattern of a number designated
for each device, using their ocular movement.
Consequently, the eye-writing patterns could be
identified based on the EOG-based eye-tracking
introduced in [22], which provides a detailed
description on the method. Accordingly, five
number patterns were employed in the present
experiment. Moreover, the user could also write an
eye-writing pattern corresponding to ‘0’ to show a
‘help’ window which will remind all the number
patterns (see Fig. 3(c)). The ‘help’ display was
visualized for 5 s before it disappeared. During
the eye-writing recognition session, nine guide dots
were visualized on the AR display lasting for 5 s
(see Fig. 3(d)). The movement of the eyes was
reconstructed from the horizontal and vertical EOG
components and the pattern that best matches the
predefined symbolic patterns was selected [22].

(iv) Command selection. Once the user selected a device to
control using one of the three device selection methods,
the user could then execute the control commands of the
device by staring at the visual stimuli, as described in
the ‘(iii) Device selection methods – (b) SSVEP method’
section. In total, five visual stimuli were presented,
which comprised four control commands and one ‘back’
command to directly return to the device selection stage
(see Fig. 4), except for the TV control. However, the
‘back’ command was not provided with in the command
selection stage in TV control which required five control
commands; the user needed to turn off and turn on
the system by serially executing the eyeblink switch to
select other devices during TV control. In each trial,
the visual stimuli were presented for 3 s with an ISI
of 7 s. The command selection trials were repeated
until the user turned off the system by executing the
eyeblink switch, thereby allowing the user to control
the selected device as intended. Once the command
selection session was completed, the participants could
turn off the entire system by executing the eyeblink
switch and returning to the idle state. Fig. 2 presents
the overall structure of the system operation. In our
experiments, the control commands were transmitted to

TABLE I
PRESENTED COMMANDS OF EACH HOME APPLIANCE IN ‘COMMAND

SELECTION’ STAGE

Fig. 4. The visual stimuli presented in the command selection stage. The
visual stimuli corresponding to the selected device was presented in the
AR display. Each stimulus was represented by intuitive icons representing
different control commands.

the devices using one of the following two methods:
i) Internet of things (IoT) and ii) Infrared (IR) remote
controller. Because the humidifier and air purifier were
devices embedded with IoT function, they were con-
trolled wirelessly via a custom software developed using
Samsung IoT device control application programming
interface (API) (Samsung Electronics, Co. Ltd., Seoul,
South Korea). Devices that were incompatible with IoT
were controlled using an IR transmitter embedded in
an Arduino microcontroller. The control commands for
each device control are presented in Table I.

4) Online Experimental Paradigm: The online experiment
comprised three sessions, each with two blocks. For each
session, the participants were instructed to use one of the three
device selection methods to select the device to control, and to
select and control a device for each block. Consequently, each
participant used all three device selection methods throughout
the experiment and controlled all five devices by performing
total six blocks. In each block, participants were instructed to
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i) switch on the HA system, ii) select the given device selection
method, iii) select the designated device to control, iv) execute
control commands according to the pre-instructed order, and
v) turn off the system. If the device exhibited malfunctions
due to an unintended command mistakenly selected by a
participant or a mis-classification of SSVEP responses, then
the participant had to correct the false operation and complete
the remaining tasks. For example, assume that the given task
was to select heater and execute “temperature up” command.
If the heater was turned off by participant mistakenly or due to
a misclassification, then the participant had to turn the heater
back on by staring at the stimulus with “on/off” icon and then
stare at the “temperature up” stimulus again to complete the
task. In another example, if the given task was to select the
air purifier but TV was selected, then the participant could go
back to the previous stage (device selection stage) by staring at
the stimulus with “back” icon and select the air purifier again.
Alternatively, the participant could simply turn off the system
and turn it on again using eyeblink switch, and then select
the air purifier in the device selection stage. The participants
managed to tackle the problematic situation according to their
own preferences. The minimal number of trials required to
complete each block in the command selection stage was six
for TV, and five for the other four devices. Each participant
was given approximately 10 min to familiarize themselves
with the device determination methods and the proposed HA
system before the experiment, and then instructed on the
designated device selection method, device, and commands
prior to each session.

After finishing each session, the participants watched a
YouTube video for approximately 4 min to investigate the time
needed to operate the eyeblink switch and the possible false
positive rate (FPR) of the eyeblink switch. To measure the
time needed to operate the eyeblink switch, the participants
were asked to operate the switch whenever the video paused
by the experimenter at three random time points. Once four
eyeblinks were successfully detected for switch operation,
the experimenter played the video again. The operation of
the switch while watching the video was counted as a false
operation of the switch.

Once the entire experiment concluded, the participants were
asked to fill a questionnaire called system usability scale (SUS)
to evaluate usability of the proposed system. In the experiment,
the Korean version of the questionnaire [23] were provided,
since all participants were native Koreans. A demonstration
video clip of the proposed HA system can be found in the
following link: https://youtu.be/qJkPxU-0m38.

III. RESULTS

A. Experiment I–Offline Experiment to Determine
Optimal Duration of Visual Stimulation and Individualized
Electrode Configuration

To determine the optimal duration of visual stimulation, the
classification accuracy and ITR were evaluated using different
window sizes with the universal and individually selected
electrodes (see Fig. 5). First, we tested the statistical signifi-
cance of the performance difference between the universal and

Fig. 5. Comparison of the mean classification accuracy and ITR
calculated with universal and individualized electrode configurations, with
respect to different window sizes. (∗p < 0.05, ∗∗∗p < 0.005, ∗∗∗∗p <
0.001, Bonferroni-corrected Wilcoxon signed rank test).

individualized electrode configurations, using a Bonferroni-
corrected Wilcoxon signed rank test. The individually selected
electrodes showed significantly improved performance com-
pared to the universal electrodes set for many window sizes,
in terms of both the classification accuracy and ITR. The list
of the individually selected electrodes sets for each participant
and the grand averaged SSVEP response are presented in the
Table V and Fig. 8 of Appendix section, respectively.

In this study, we selected 3 s as the optimal duration of
stimulus presentation, which was primarily based on the fol-
lowing two observations. First, a higher ITR can be achieved
with a shorter window size since ITR is in inverse proportion
to window size. Second, although the ITR was higher with
a shorter window size, the classification accuracy with the
shortest window size, i.e., 1.5 s, was only 80.2%. In contrast,
the classification accuracy for a window size of 3 s was 91.6%,
which was considered to be sufficiently high with a classifi-
cation accuracy comparable to that with the window size of
4 s (93.6%). It should be noted that the classification accuracy
was almost saturated for window sizes larger than 3 s.

B. Experiment II– Online Home Appliance Control

The classification accuracy and ITR achieved in the online
home appliance control experiments are listed in Table II.
All participants successfully completed the experiment. In the
table, the parameter ‘Total Trials’ represents the number of
trials each participant performed to complete the experiment.
Meanwhile, ‘Correct Trials’ represents the number of the
trials in which the pre-instructed devices or commands were
selected correctly by the participant, while ‘Incorrect Trials’
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TABLE II
SSVEP CLASSIFICATION PERFORMANCE IN EXPERIMENT II

corresponds to the number of misclassified trials. The number
of trials differed across participants because each participant
had different numbers of errors and adopted their own strategy
to correct the wrong operation. The classification accuracy
was evaluated by dividing the number of correct trials by
the number of total trials (correct trials) / (total trials). The
classification accuracy and ITR were 88.8% and 34.0 bits/min
on average, respectively.

Table III lists the overall performance of the eyeblink
switch. Evidently, the time of 4.1 s was required to operate the
eyeblink switch on average, although the switch was designed
to operate by the detection of four eyeblinks within 3 s.
It should be noted that this result does not imply that the
participants failed to operate the switch, instead, it infers that
the participants occasionally had difficulty blinking rapidly
for the first 3 s, and thus they had to keep blinking a few
more times. Consequently, the first time point where the
four eyeblinks were detected within recent 3 s was 4.1 s on
average. The FPR of the eyeblink switch was 0.08 times per
minute, or 4.98 times per hour on average. During the online
experiment, if the status of the system was changed by a false
operation of the eyeblink switch, the participants had to return
to the designated stage by executing the eyeblink switch again
by repeatedly blinking their eyes.

Figure 6 illustrates the accuracy of device selection through
the EOG-based eye writing recognition for each participant.

TABLE III
PERFORMANCE OF EYEBLINK-BASED SWITCH IN EXPERIMENT II

Fig. 6. Classification accuracy of device selection using the eye writing.

Reportedly, the classification accuracy was 89.3% on average,
with most participants managing to select a device with 100%
accuracy, three participants exhibited 75% accuracy and only
one participant exhibited 36.4% accuracy. Importantly, the
accuracy of device selection through image recognition was
100% for all participants.

The usability of the proposed system investigated using
SUS is presented in Table IV. The SUS score ranges between
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TABLE IV
COMPARISON OF PERFORMANCE WITH PREVIOUSLY REPORTED BCIs TO CONTROL EXTERNAL DEVICE FOR THE ELDERLY

0 and 100, with 0 representing the poorest usability and
100 reflecting the best usability. The investigated SUS score
for the proposed HA system was 71.2, ranging between 45 and
92.5. Even though an absolute criterion does not exist for
evaluating the SUS scores, the SUS score of 70 on average was
proposed as an acceptable minimum according to the original
literature related to SUS [24].

IV. DISCUSSION

With the recent advances in medicine, healthcare, and
therapeutics, the general life expectancy of the population is
gradually increasing. Consequently, the social burden of caring
for the elderly is becoming a serious problem [25]. Admittedly,
various assistive technologies have been proposed to aid the
elderly accomplish their daily life activities, e.g., an exercise
monitoring system using user’s physiological signals [26].
However, there has been no such system to control home
appliances in a hands-free manner with reliable performance,
which can assist the elderly to live without a caregiver at home.
Moreover, it has been also reported that using such smart home
systems for the elderly can improve their health conditions
and their independence [27]. However, despite recent advances
in neural engineering and signal processing fields, no BCI
study controlling external devices has demonstrated a practical
performance level and usability with the elderly. In the present
study, the authors strived to overcome the shortcomings of
the previous BCIs by combining AR-HMD with SSVEP-based
BCI and EOG-based eye-tracking and by designing a system
architecture that allows these end users to select devices with a
preferred method. Furthermore, the employment of AR-HMD
has given mobility and flexibility to the proposed HA system
by ensuring that the users no longer have to stay in front of the
screen to present visual stimulus in conventional BCI systems.

In the present study, AR, BCI, and IoT technologies were
combined to develop a real-time home appliance control
system for the elderly. Subsequently, we evaluated the perfor-
mance and usability of the proposed system involving people
aged over 65 years. In the offline experiment, the optimal
duration of visual stimulation and individualized electrode
configurations were determined. Subsequently, we developed
an online SSVEP-based BCI system using the experimental
conditions determined in the offline experiment. The imple-
mented online home appliance control system provided users

with various interfacing options by combining image recogni-
tion, EOG-based eye writing, and the eyeblink-based switch
with the conventional SSVEP-BCI system. The experimental
results revealed that all elderly participants successfully con-
trolled five home appliances with the proposed HA system,
suggesting that the proposed system has potential to be utilized
in practical scenarios.

The performance of the proposed HA system was compared
with those of previous BCI-based external environment control
systems targeted to the older adults, as presented in Table IV.
To the best of our knowledge, the performance of the device
control system in this study surpassed the best results reported
in the literature on BCIs for external device control for the
elderly, in terms of both accuracy and ITR. Although the
system proposed by Schettini et al. showed higher accuracy
than the proposed HA system, the ITR of their system was
significantly lower than that of our system. Most importantly,
the proposed system does not require any calibration session,
whereas most of the BCIs reported in previous literature
required a calibration session to train a classifier. Although
the authors used individualized electrode configurations to
enhance the overall performance of the system, the perfor-
mance with the universal electrode configuration (O1, Oz, and
O2) was also sufficiently high to be employed in practical
home appliance control applications (Fig. 5). Although some
previous studies reported higher SUS than ours, it is expected
that the usability of the proposed system may be further
enhanced by employing control functions based on the pre-
experimental survey with the participants or by incorporating
additional functions into the HA system such as communica-
tion and PC applications [38].

Although the average SSVEP classification accuracy was
higher than 90% for a 3 s window size in the offline
experiment, the average accuracy was only 88.8% in the
online experiment even when the same window size was used.
It has been frequently reported that the BCI performance in
online sessions was higher than that in offline or calibration
sessions for various reasons, including the training effect [28],
[29], [30]. However, unlike previous literature that compared
the performances in offline and online BCI experiments, the
experimental paradigm employed in the online experiments in
this study was even more complex than that for the offline
experiment. Indeed, many additive functions including image
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recognition, eye writing, and eyeblink switch were employed
during online experiments, all of which the participants had
not experienced in the previous offline experiment. Moreover,
the BCI performance might be affected by the circumstance of
the online experiment because the participants had to complete
the pre-instructed task based on their own decision when
a false operation occurred. Indeed, the degradation of BCI
performance due to an increased cognitive workload has been
frequently reported [31].

In the online experiment, on average, the eyeblink switch
required 4.1 s to operate the switch, and the averaged FPR
of the switch was 4.98 times per hour. Compared to our
previous study [7], in which younger people participated and
an average FPR of 0.89 times/h was achieved with the same
eyeblink switch, this result revealed considerably degraded
performance. Indeed, the participants in this study occasionally
struggled to repeatedly blink their eyes within such a short
period, although they had no problem in their ordinary blink.
This phenomenon is presumably attributed to the age, which
is primarily based on the reports that the functionality of
eyelids of older population is reduced compared to younger
population [32], [33]. Moreover, it has been reported that
older population takes longer in spontaneous eye blinking as
well as in intentional eyeblinks [32], [33], [34]. Nevertheless,
in the online experiment of this study, all the participants
successfully determined the device selection method using the
eyeblink switch, and could complete the designated task by
switching on and off the HA system using the eyeblink switch
even when unexpected false operations occurred. In this study,
the main target subjects were the elderly, not the patients with
locked-in syndrome, but it is expected that our hybrid EEG
and EOG system can also be applied to some patients with
amyotrophic lateral sclerosis (ALS) because the oculomotor
function is generally the last motor-related function remaining
in those with severe ALS.

The individually selected electrode sets for each participant
and the topographical distribution for the number of selections
of each electrode are presented in Table V and Fig. 7 in the
Appendix section, respectively. Although O1, Oz, and O2, the
traditional electrode set widely employed for SSVEP-based
BCIs were most frequently selected, it is noteworthy that P7
showed remarkable number of selections while P8 was rarely
selected. This result might be in line with a previous report
that showed motion-evoked P300 amplitude was significantly
larger in the left hemisphere than in the right hemisphere [35],
although further investigations are still needed.

The average SUS score for the proposed HA system was
shown to be approximately 71. It is a score that satisfies the
minimum acceptance level suggested by the original literature
proposing SUS [24]. Based on the studies by Kortum et al.
[36], [37], in which the usability of various daily products and
mobile applications were investigated using SUS, the score of
the proposed HA system is higher than Excel (SUS score:
56.5; Microsoft, Corp., Redmond, WA, USA), lower than
Microwaves (SUS score: 86.9), and similar to Skype (SUS
score: 71; Microsoft Corp., Redmond, WA, USA). In addition,
a study reported that the conventional control interfaces such
as mouse and buttons scored SUS of 84 on average with

TABLE V
INDIVIDUALLY SELECTED ELECTRODE SETS FOR EACH PARTICIPANT

elderly participants [38]. Given that most of the BCI studies
focus on methodological aspects while neglecting usability
aspects [39], enhancing the usability of the proposed HA
system could be an interesting research topic that has to be
pursued in the future study. The usability of the proposed
system may be enhanced by i) employing control functions
preferred by participants via a pre-experimental survey, or
ii) adding functions such as communication as in [38].

Although presentation of visual stimulus is inevitable in
SSVEP-based BCI systems, the usability of the visual stimula-
tion method in the proposed system was not evaluated, which
includes fatigue caused by visual stimulation. Reportedly,
a motion-reversal stimulus caused less fatigue and mental
workload compared to a flickering stimulus in a previous study
[41]. The comfortability of the visual stimulus adopted in the
present study and GSS that changes its size and luminance
concurrently has not yet been investigated, the usability of
this relatively new type of stimulus should be evaluated in
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Fig. 7. Topographical distribution of the number of employments for
individually selected electrode set in Experiment I.

Fig. 8. The grand-averaged spectral amplitude of the data recorded
in Experiment I. Each row shows the data with stimulation frequencies
of 6.6, 7.5, 8.57, 10, and 12 Hz. Please note that not only the SSVEP
response at the fundamental frequency but also the SSVEP responses
at the subharmonic and the harmonic frequencies were clearly elicited.

a future study. Furthermore, as AR and IoT are cutting-
edge technologies, their usability and user acceptance are also
crucial aspects. Indeed, various applications for the elderly
using AR and IoT have been recently developed and the
usability of the applications, such as friendliness and comfort,
has also been investigated and has received positive responses
[42], [43], [44], [45]. For example, Aruanno et al. developed a
cognitive training program in AR environment using Hololens
before evaluating its usability for people with 64–67 years
old, reporting that the task achievement was independent of
their familiarity to the technology or technological knowledge.
Relatively, even people who never used a computer could
correctly accomplish all the given tasks, owing to the intuitive
interaction methods provided by Hololens [44]. As an another

example, Lera et al. [42] developed a software to instruct
drug dose in AR environment and evaluated its usability with
people aged 59–90, and the averaged ‘AR usefulness’ and ‘AR
friendliness’ scores were 4.4 and 3.8 out of 5, respectively.
Reportedly, the elderly accommodated the necessity of IoT
technology and presented a high level of willingness, after
acquiring sufficient awareness about the benefits of IoT [45].
Moreover, as the technologies are still in early stages of
development, the usability is expected to be further enhanced
in the future.

APPENDIX

Table V and Figs. 7 and 8 are included in this Appendix
section.
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