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Decoding Articulation Motor Imagery Using Early
Connectivity Information in the Motor Cortex: A
Functional Near-Infrared Spectroscopy Study

Zengzhi Guo and Fei Chen , Senior Member, IEEE

Abstract— Brain computer interface (BCI) based on
speech imagery can help people with motor disorders com-
municate their thoughts to the outside world in a natural way.
Due to being portable, non-invasive, and safe, functional
near-infrared spectroscopy (fNIRS) is preferred for devel-
oping BCIs. Previous BCIs based on fNIRS mainly relied
on activation information, which ignored the functional
connectivity between neural areas. In this study, a 4-class
speech imagery BCI based on fNIRS is presented to decode
simplified articulation motor imagery (only the movements
of jaw and lip were retained) of different vowels. Synchro-
nization information in the motor cortex was extracted as
features. In multiclass (four classes) settings, the mean
subject-dependent classification accuracies approximated
or exceeded 40% in the 0-2.5 s and 0-10 s time windows,
respectively. In binary class settings (the average classifi-
cation accuracies of all pairwise comparisons between two
vowels), the mean subject-dependent classification accura-
cies exceeded 70% in the 0-2.5 s and 0-10 s time windows.
These results demonstrate that connectivity features can
effectively differentiate different vowels even if the time
window size was reduced from 10 s to 2.5 s and the decoding
performance in both the time windows was almost the same.
This finding suggests that speech imagery BCI based on
fNIRS can be further optimized in terms of feature extrac-
tion and command generation time reduction. In addition,
simplified articulation motor imagery of vowels can be
distinguished, and therefore, the potential contribution of
articulation motor imagery information extracted from the
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motor cortex should be emphasized in speech imagery BCI
based on fNIRS to improve decoding performance.

Index Terms— Brain computer interface, speech imagery,
functional near-infrared spectroscopy, synchronization
information, command generation time reduction.

I. INTRODUCTION

BRAIN computer interface (BCI) is a communication
system that allows individuals with severe motor impair-

ments to control computers or robots, without using the normal
pathways of muscle activity and peripheral nerves, but using
neural signals produced by brain activity [1]. Individuals with
very limited or no voluntary movement can interact with their
surroundings without vocal speech or physical gestures by a
BCI system. The BCI systems with protocols that need users
to attend to stimuli are commonly named as reactive BCIs,
such as P300 spellers and steady state visual evoked potential
spellers [1]. Reactive BCIs rely on additional displays to gen-
erate external stimuli which makes them not convenient to be
used. Active BCI needs users to perform several mental tasks.
Most of the mental tasks used in active BCI, such as mental
arithmetic or motor imagery, have little or no correlation with
the actual intended message. Speech imagery is a mental task
that imagines speaking without any articulation movements
[2]. Speech imagery is an intuitive medium to reflect the
thought of users, which overcomes the shortcomings of the
above mental tasks.

Magnetoencephalography, functional magnetic resonance
imaging (fMRI), electroencephalography (EEG), positron
emission tomography (PET), and functional near-infrared
spectroscopy (fNIRS) are frequently used functional neu-
roimaging modalities to record brain signals. Among them,
fNIRS and EEG are preferred for developing BCIs because
of being portable, non-invasive, safe, and low cost [3]. EEG
measures brain activity by measuring neuroelectric signals of
neurons from electrodes placed on the scalp. Although EEG
offers high temporal resolution (e.g., >1000 Hz), it suffers
from the low spatial resolution (e.g., 5.0-9.0 cm) which
limits EEG to accurately localize associated cortical sources
[4]. fNIRS, which measures the concentration changes of
oxygenated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) through the intact skull based on near-infrared-range
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light, offers a higher spatial resolution (∼3.0 cm) than EEG
and a relatively better temporal resolution (∼10 Hz) as com-
pared to fMRI. fNIRS can measure brain activity in complex
situations as it is not much susceptible to motion artifacts
unlike EEG [5].

fNIRS-based speech imagery BCI has been proven to be
feasible many times. Tanino et al. [6] used the fNIRS to
discriminate the yes or no answers without voice and gesture
for ten healthy subjects. The subjects imagined affirmative
or negative answers to a variety of questions, with an aver-
age offline classification accuracy of 69%. A similar yes/no
paradigm also was tested on eight healthy participants with
fNIRS. Hwang et al. [7] extracted multiple types of features
in different time windows from fNIRS signals and selected the
best feature subset from them. An average offline classification
accuracy of about 75% was reported. Sereshkeh et al. [8] used
fNIRS to distinguish covertly rehearsed yes or no responses
and unconstrained rest in a sample of twelve participants and
obtained an average online three-class accuracy rate of 64.1%.
The feasibility of fNIRS-based speech imagery BCI also has
been tested on a patient with amyotrophic lateral sclerosis.
Gallegos-Ayala et al. [9] tested a yes/no paradigm on a patient
with amyotrophic lateral sclerosis using fNIRS and the online
classification accuracy was 71.7%.

Although fNIRS-based BCIs have been developed for more
than ten years, they suffer from a lacking of fNIRS-specific
algorithm studies as compared to EEG-based BCIs. Hong et al.
counted 74 articles (2010-2019) on fNIRS-based BCIs, and
they found that 99% of the articles used temporal features,
such as mean, kurtosis, variance, and slope [3]. However,
detecting and distinguishing brain activity caused by motor
imagery is very difficult because the strength of neural activity
caused by motor imagery is reduced by 70% than that of
voluntary movements [10]. Therefore, more intelligent algo-
rithms are required to detect the small changes of brain
activity associated with motor imagery. Some studies based
on EEG have observed that synchronization information is
more discriminative than activation amplitude information due
to the sensitivity of synchronization changes [11], [12]. Con-
nection features, which can reflect information dissemination
and processing, have been proven to be effective in various
EEG studies, such as emotion detection and motor imagery
classification [12], [13], [14], [15]. Motivated by those studies,
functional connectivity features were utilized to decode the
articulation motor imagery of different vowels.

Slow hemodynamic response makes the time to generate
commands of fNIRS-based BCIs too long. A previous fMRI
study measured the temporal delay of hemodynamic response
and reported that the hemodynamic response peaked within
about 6 s after being evoked by visual stimuli [16]. Due to
the relatively slow hemodynamic response, the command gen-
eration time of BCI based on fNIRS usually took at least 15 s
which makes the information transmission rate relatively low
[17]. Therefore, rapid decoding of the commands to reduce
delays in fNIRS-based BCIs is becoming a research focus.
Zafar and Hong demonstrated that the decoding performance
of three metal tasks based on the early information extracted
from fNIRS signals in a 0-2.5 s time window could reach

57.5% [18]. However, the classification accuracy based on
signal mean and peak value is a bit sacrificed from 65.9%
to 57.5% when the time window size was reduced from
7 s to 2.5 s. Using fNIRS signals in a 0-2 s time window,
Li et al. found the movements of the right and left hands
could be distinguished in a sample of eleven healthy subjects
and a classification accuracy rate of 85.5% was reported [19].
A reduced window size (0–2 s) also was used in a BCI based
on fNIRS to decode four mental tasks (mental arithmetic,
mental counting, mental rotation, and word formation) for ten
healthy adults, the classification accuracy rate reached 75.6%
[20]. Zafar and Hong used early information of fNIRS signal
extracted from 0-2.5 s time window to decode two finger
tapping tasks (right-hand thumb and little finger) and achieved
an average classification accuracy rate of 74.9% [21]. Those
results suggested that the early information of fNIRS signal
could provide lofty differentiable information for BCIs.

The purpose of this work was to establish a framework
for an intuitive and natural communication BCI that utilized
the brain activities in the motor cortex caused by simplified
articulation motor imagery to decode different Chinese vowels.
Features were extracted from synchronization information of
fNIRS signals. To reduce the command generation time, the
running temporal window size was reduced from 10 s to 2.5 s
for the fNIRS-based BCI in this work.

II. METHODS

A. Participants

Nineteen (7 women and 12 men; mean age 20 years, range
18-26 years) healthy individuals participated in this study. The
study was approved by the Ethical Review Board of Southern
University of Science and Technology in Shenzhen China.
All subjects were right-handed and had no history of cardio-
vascular, psychiatric, respiratory, neurological, drug-related,
or alcohol-related diseases. Chinese was the native language
of all subjects. Participants were given their informed consent
to participate and the procedure was accurately explained prior
to the experiment.

B. Instrumentation

To measure fNIRS signals from the motor cortex, an imag-
ing system (Lightnirs; Shimadzu, Japan), which had 16 optical
fibers (8 sources, 8 detectors), was equipped. A 2 × 8 fNIRS
optode array with an emitter-detector separation of 3 cm
was placed over the subject’s head. The NIRS signals were
sampled at 13.33 Hz. Each fNIRS emitter contained two laser
diodes that emitted light at wavelengths of 760 nm and 850 nm,
respectively. 22 light channels, constituted by 16 fNIRS optical
poles, were arranged as shown in Fig. 1. A three-dimensional
digitizer (FASTRAK, Polhemus, Vermont, USA) was used to
measure the locations of the optical poles. Positions of the
22 light channels in the Montreal Neurological Institute (MNI)
standard brain space were estimated for each subject [22].The
MNI coordinates of fNIRS channels and channel cortical
projection points are listed in Table SI (in Supplementary
Material). The measured brain areas are mainly divided into
two regions: supplementary motor area (SMA) and premotor
cortex (PMC).
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Fig. 1. The positions of light channels.

C. Experimental Protocol

The complicated articulation movements of speaking
Chinese vowels were simplified and only movements of the
jaw and lips were retained in this study. The movements
of the jaw and lips are controlled by different muscles.
Jaw opening is controlled by the digastricus, whereas lip
rounding is controlled by the orbicularis oris [23]. During the
experiment, four stimulus materials were presented as visual
cues on a screen and the subjects were instructed by the visual
cues to perform the tasks, including: vowel /a/ (imagined
jaw opening widely with imagined vocalization); vowel /u/
(imagined lip rounding with imagined vocalization); vowel /i/
(imagined jaw opening slightly with imagined vocalization);
and vowel /o/ (imagined jaw opening moderately and lip
rounding with imagined vocalization). For vowel /a/, jaw
opening widely means opening the mouth to a round shape.
For vowel /o/, jaw opening moderately means opening the
mouth to an oval shape. For vowel /i/, jaw opening slightly
means opening the mouth slightly. Jaw closing means mouth
closing.

The subjects were seated on a comfortable chair in a dark
soundproof room, about 90 cm away from the display which
was used to provide visual instructions. The fNIRS head cover
was placed on the subject’s head. Before the start of the
experiment, the subjects were coached and rehearsed with
real movements to ensure correct task execution. 20 trials
were performed for imagining movements of each vowel,
and therefore a total of 80 imagery trials were performed
by each subject. Subjects performed the real movements of
each vowel for 20 trials before the imagery tasks to ensure
that the subjects could conduct the trials and the imagery
tasks correctly. Subjects rested for 5∼10 min after performing
40 trials.

The timing for experimental trials was organized in the
following manner as shown in Fig. 2. First, a vowel symbol
chosen in a pseudo-random order appeared on the screen, and
disappeared after 2 s. Then the vowel symbol was replaced by
the symbol #. The symbol # remained on the screen for a time
interval of 2 s and was then replaced by the symbol ∗. The ∗
symbol remained on the screen for 10 s and the participants
were asked to perform the task repeatedly during this period.
When the ∗ symbol was replaced by the # symbol on the
screen, the participants had a 15 s rest interval, until the start
of the next trial. Participants proceeded to the next trial after
the 15 s rest.

D. Signal Pre-Processing

Data quality was evaluated manually by an expert.
As the data quality was poor, the data from one subject
was excluded from the following signal processing. Sig-
nal pre-processing was performed using MATLAB software
(Mathworks, Sherborn, MA, USA). First, optical signals were
processed using the NIRS-SPM toolbox [24] and converted to
HbO and HbR concentration changes by using the modified
Beer-Lambert law. Motion artifact segments were replaced
with spline interpolation based on neighboring signals to
correct motion artifacts [25]. The signals were filtered using a
3rd order Butterworth low-pass filter with a cutoff frequency
of 0.4 Hz to remove cardiac interference (0.8 Hz). Long-term
baseline drifts were minimized using a 5th order Butterworth
high-pass filter with a cutoff frequency of 0.02 Hz.

E. Feature Extraction

In this study, functional connectivity features were extracted
for the classification tasks because functional connectivity
can reflect information propagation. The temporal correla-
tion of regional hemodynamics was estimated by Pearson’s
correlation which was commonly used to quantify functional
connectivity between different brain regions in fNIRS-based
studies [26], [27], [28], [29]. The Pearson correlation coef-
ficient is used to measure the degree of linear correlation
between two numerical variables. The Pearson correlation
coefficient is obtained by dividing the covariance by the
standard deviation of the two variables. The strength of the
correlation, as well as the direction of the relationship could
be reflected by the Pearson correlation coefficient. The value
of Pearson correlation coefficient is assigned between −1 and
1. When the value is 1, it means a total positive correlation;
when the value is −1, it means a total negative correlation;
when the value is 0, it means no correlation between the two
variables. The Pearson correlation coefficient r is calculated
as follows:

r =

n∑
i=1

(Xi − Mx ) · (Yi − My)√
n∑

i=1
(Xi − Mx )2 ·

√
n∑

i=1
(Yi − My)2

, (1)

where Xi is the i -th point of the HbO/HbR signal of one
channel and Yi is the i -th point of the HbO/HbR signal
of another channel. n is the number of data points of the
HbO/HbR signal. Mx and My are the average values of the
HbO/HbR signal for the two channels, respectively.

Correlation coefficients for HbO and HbR concentration
time series recorded from each pair of leads were computed.
Two 22 × 22 correlation matrixes were obtained for each
trial of each subject. The indices of fNIRS channels were
represented by the row and column of the correlation matrices.
The correlation coefficients were represented by the matrix
elements. Because Pearson’s correlation was undirected, the
correlation matrix is a symmetric matrix that takes the main
diagonal as the axis of symmetry, and all elements are sym-
metrically equal. Only the elements in the upper triangular
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Fig. 2. The timing diagram of the experiment.

part of the correlation matrixes of HbO and HbR signals
(except those diagonal elements) were selected as connection
features in each trial. Those connection features constituted
a one dimensional feature vector. Therefore, the connection
features of HbO and HbR signals in each trial were reduced
from 968 (= 2 × 22 × 22) to 462 (= 2 × (1 + 2+ . . . . + 21)).

In order to compare the decoding performance of connection
features with that of commonly used activation features, mean,
slope, kurtosis, skewness, and variance values of HbO and
HbR signals in each channel were obtained as activation
features for classification. Mean values were calculated by
averaging all data points. Slope values were computed with
the polyfit function in Matlab. Kurtosis values were computed
with the kurtosis function in Matlab. Skewness values were
computed with the skewness function in Matlab. Variance val-
ues were computed with the var function in Matlab. However,
the number of connection features (462 candidate features)
is bigger than that of each type of activation features (44
candidate features).

F. Feature Selection
Feature selection plays an extremely important role in

classification problem-solving. On the one hand, in the case
of limited samples, it is not appropriate to design a classifier
with a large number of features in terms of computational
overhead and classifier performance; On the other hand, the
relationship between features and classifier performance is
not necessarily linear, and when the number of features
exceeds a certain limit, the performance of the classifier will
deteriorate. Therefore, effective feature selection has become
a problem that must be solved in classification. Feature selec-
tion can eliminate irrelevant or redundant features, thereby
reducing the number of features, improving model accuracy,
and reducing running time. The selection of valid features
simplifies the model and makes it easier for understanding
features.

Fisher score (F-score) is a ranking method to assign each
feature with a weight value to indicate the importance degree
of the feature. Because the calculation of F-score is simple and
fast, it has become one of the most commonly used feature
selection methods for BCI based on fNIRS [30], [31]. The
impressive classification results of those studies proved that

the optimal feature subset selected by F-score had a high
distinguishing ability. The main idea of F-score is that the
features with strong discriminative power should be as small
as possible intra-class distance and as large as possible inter-
class distance. The F-score of the i -th feature of the dataset
is defined as:

FSi =
∑c

k=1

(
Mk,i − Mi

)2

∑c
k=1

1
(nk−1)

∑nk
j=1

(
xk, j,i − Mi

)2 , (2)

where Mi , Mk,i are the mean values of the i-th feature in the
train aset and in the train set of k-th class, respectively, xk, j,i

is the i-th feature of the j-th sample in the k-th class, and nk is
the number of samples in k-th class. A high F-score indicates
that the feature has a large separability.

Leave-one-out cross-validation (LOOCV) scheme was used
to estimate the classification accuracy because it is suitable
for small samples and the data set in this study contained
only 80 samples. In LOOCV, if there are N samples in the
original data set, then each sample is used as a validation
set alone, and the remaining N-1 samples are used as a
training set, so N classifiers were constructed based on the
N training sets; Each validation set was tested with the
corresponding classifier; The average classification accuracy
of the N classifiers is used as the classification performance
indicator. According to the procedure of LOOCV, the sample
utilization of it is high because each classifier in it is con-
structed by almost all samples and therefore the classification
accuracy error caused by the inefficient sample is signifi-
cantly reduced. The classification accuracies of support vector
machine (SVM) (Linear, Gaussian, and Polynomial kernels),
linear discriminant analysis (LDA), and k-nearest neighbor
(KNN) were compared for distinguishing different articulation
motor imagery tasks. Those well-known learning algorithms
were chosen to classify in this study for their simplicity and
low computational requirements, therefore, those algorithms
have the potential to be applied in online BCI systems in the
future.

A wrapper model with LOOCV scheme and the well-known
machine learning algorithms was used to select features in
this study. The wrapper model evaluated each feature subset’s
performance with each machine learning method and selected
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the optimal feature subset for each machine learning method
with the highest classification accuracy. The entire procedure
of the wrapper model for each machine learning method is
described as follows:

1. According to the procedure of LOOCV, 80 train sets and
the corresponding 80 test sets were obtained.

2. For each train set, each feature in the train set was
assigned with an F-score, and all the features were
sorted in descending order according to F-score values.
N represents the number of features in the rearranged
feature set.

3. The first n features with the highest F-score values were
selected from the rearranged feature set to establish a
new feature subset where n changed from 1 to N . N
feature subsets were obtained for each train set.

4. Each machine learning method was used to evaluate the
feature subsets with the same number of features in
different train sets. The classification accuracies of all
feature subsets with different numbers of features were
obtained.

5. The best classification result and the corresponding
optimal feature subset for each machine learning method
were selected.

III. RESULTS

Multiple brain regions are activated by speech imagery and
functional connections play a vital role in speech processing.
Neural signatures differ between the different imagery tasks
in activation and connection patterns as elaborated below.
In this study, connection features were used to distinguish
different tasks. Multiclass and binary classification accuracy
scores were recorded. Furthermore, in order to reduce the time
to generate a command, the time window size for extracting
features was reduced from 10 s to 2.5 s, and the multiclass
and binary classification accuracies were calculated.

A. Neural Signatures in Activation Pattern
In this study, only the neural signatures of HbO signals

were shown because there is an extremely negative correlation
between HbO signals and HbR signals and the changes of HbR
signals can be reflected by that of HbO signals [32]. In order
to create the activation map, the 10 s task period data of each
trial was extracted. Activation was calculated by subtracting
the average value of the HbO in 2 s before the task from the
average value of the HbO in 3-7 s during the task. The aim
of subtracting the average HbO value in 2 s before the task
was to correct baseline. The average value of HbO in 3-7 s
during the task was used because the HbO signals usually
reached peaks in this period in this study. 22 features were
obtained for each trial. The overall average activation level
for each type of task was obtained by averaging the activation
levels of all trials and all subjects. These activation levels were
arranged into spatial maps according to the positions of the
channels. Linear interpolation was used to restore the data
between different channels. To compare the HbO activation
levels of different vowels imagery tasks and that of baseline
period, the paired tests were conducted according to Wilcoxon

signed-rank test on the HbO activation levels for each channel.
This nonparametric test can be applied regardless of the
sample distribution and whether the distribution is known. The
channels with p < 0.05 were considered significantly activated
in the imagery tasks.

Figure 3 depicts the activation maps of different vowel
imagery tasks. The activation patterns for all tasks are similar
and the activation levels of channels 1, 7, 8, 9, 12, 15, 16, and
19 are slightly higher than that of other channels. Channel 8 is
significantly activated for vowel /o/, /u/, and /i/ imagery tasks
and more channels are significantly activated for vowel /o/ than
other vowels. Two large bilateral clusters of high activations
were found located on the bilateral PMC. In addition, a small
parietal cluster of high activations located on the SMA also
was observed. The activation analysis revealed a set of brain
areas involved in articulation motor imagery: the bilateral
PMC and the SMA. Compared with the other vowels, the
activation level for the articulation motor imagery of vowel
/o/ is higher. Wilcoxon rank-sum tests were conducted on
the activation levels of trials between vowel /o/ and the other
vowel. Wilcoxon rank-sum test is a nonparametric test. It does
not require the residuals of the fitted model to follow a normal
distribution. The channels with significantly higher (p < 0.05)
activation levels of vowel /o/ than those of the other vowel
are marked on the brain maps (Fig. 4). The activation levels
of vowel /o/ are significantly higher in some brain areas than
that of the other vowels.

B. Neural Signatures in Connection Pattern
Figures 5 and 6 show the average adjacency matrixes of

the weighted brain networks across 18 subjects for different
tasks in the 0-10 s and 0-2.5 s time windows, respectively.
According to the positions of channels on the motor cortex,
the channels were divided into three groups. Channels 1, 2,
8, 9, 10, 16, and 17 were located on the left PMC; channels
3, 4, 5, 11, 12, 18, 19, and 20 were located on the SMA;
and channels 6, 7, 13, 14, 15, 21, and 22 were located on
the right PMC. As presented in Figs. 5 and 6, distributions of
the average connection coefficient matrices for the articulation
motor imagery of four vowels were almost identical in both
0-10 and 0-2.5 time windows. The brain functional connectiv-
ity for motor imagery of four vowels is evenly distributed in
both the time windows. The correlations concentrated on the
left PMC were stronger than that concentrated on the right
PMC. Those results might indicate that the left PMC plays
a more important role in articulation motor imagery than the
right PMC.

The connection strengths of each vowel were used to
subtract those of the other vowels to estimate the con-
nection strength differences. The connection strength differ-
ences among paired vowels across all subjects in the 0-10 s
and 0-2.5 s time windows are depicted in Figs. 7 and 8,
respectively. Wilcoxon rank-sum test was conducted to check
whether the connection strengths were significantly differ-
ent between paired vowels in the different time windows.
Figures S1 and S2 (in Supplementary Material) depict the
linkages of each vowel with significantly higher connection
strengths than those of the other vowels in the 0-10 s and



GUO AND CHEN: DECODING ARTICULATION MOTOR IMAGERY 511

Fig. 3. The brain maps show average HbO activations for articulation motor imagery of different vowels across all subjects. The channel number
with the red color indicates that the response of this channel is significantly higher than the baseline (p < 0.05, Wilcoxon signed-rank tests).

Fig. 4. The statistical mapping for the HbO activations contrast between vowel /o/ and vowel /a/, /u/ or /i/. A warm color indicates that the response
in the channel of the vowel /o/ is significantly higher than that of the other vowels (p < 0.05, Wilcoxon rank-sum tests). (a) /o/ vs. /a/. (b) /o/ vs. /u/.
(c) /o/ vs. /i/.

Fig. 5. Average correlation coefficient matrixes across all subjects of HbO in 0-10 s time window. (a) Articulation motor imagery of vowel /a/.
(b) Articulation motor imagery of vowel /o/. (c) Articulation motor imagery of vowel /u/. (d) Articulation motor imagery of vowel /i/.

0-2.5 s time windows, respectively. In the 0-10 s time window,
most connection strengths of vowel /a/ are higher than those
of the other vowels and a lot of connection strengths of vowel
/a/ are significantly higher than those of the other vowels. Any
connection strength of vowels /o/, /u/, /i/ is not significantly

higher than that of vowel /a/. Most connection strengths of
vowel /i/ are lower than those of the other vowels and a lot of
connection strengths of vowels /a/, /o/, and /u/ are significantly
higher than those of vowel /i/. Any connection strength of
vowel /i/ is not significantly higher than that of the other
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Fig. 6. Average correlation coefficient matrixes across all subjects of HbO in 0-2.5 s time window. (a) Articulation motor imagery of vowel /a/.
(b) Articulation motor imagery of vowel /o/. (c) Articulation motor imagery of vowel /u/. (d) Articulation motor imagery of vowel /i/.

Fig. 7. Paired functional connection strength difference between two vowels in the 0-10 s time window.

vowels. In the 0-2.5 s time window, most connection strengths
of vowels /a/, /u/ and /o/ are higher than those of vowel /i/ and
many of connection strengths of those vowels are significantly
higher than those of vowel /i/.

C. Classification Results
The best classification accuracy was obtained according

to the feature selection process. Tables I and II describe the
subject-dependent classification accuracies of the connection
features extracted in the 0-10 s and 0-2.5 s time windows for
each subject, respectively. The classification performances of
SVM (Linear, Gaussian, and Polynomial kernels), LDA, and
KNN were compared. As shown in Tables I and II, both the
average subject-dependent multiclass and binary classification
accuracies for LDA in both the 0-10 s and 0-2.5 s time win-
dows are higher than the other machine learning algorithms.

Table I shows the classification accuracies in the 0-10 s time
window. For the multiclass (four-class) classification of LDA

in the 0-10 s time window, the mean classification accuracy
reached 40.9%. The classification accuracy of each subject
was higher than the random chance level (i.e., 25%). The
average classification accuracies of all pairwise comparisons
between two vowels were calculated for each subject as the
binary classification accuracy. For the binary classification of
LDA in the 0-10 s time window, the average classification
accuracy was 71.6% which exceeded the marginal classifica-
tion accuracy rate (i.e., 70%) [33] that determines whether a
binary BCI system could be used for practical application. The
classification accuracy of each subject exceeded the random
chance level (i.e., 50%).

Table II lists the classification accuracies using early infor-
mation in the 0-2.5 s time window. For the multiclass
classification of LDA in the 0-2.5 s time window, the mean
classification accuracy was 39.5%. Each value of the classifica-
tion accuracy was higher than the random chance level (25%).
For binary classification, the average classification accuracy
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Fig. 8. Paired functional connection strength difference between two vowels in 0-2.5 s time window.

TABLE I
THE CLASSIFICATION ACCURACIES (%) OF CONNECTION FEATURES IN 0-10 S TIME WINDOW

was 71.9%, and the classification accuracy of each subject
exceeded 50%.

As can be seen from Tables I and II, although connec-
tivity features were extracted from the reduced (0-2.5 s)
time window, both the multiclass and binary classification
accuracies based on those features were comparable with
that in the 0-10 s time window. Table SII (in Supplementary

Material) depicts the significance level p-value of paired t-test
among the classification accuracies acquired through different
time windows for different machine learning methods. The
differences between multiclass/binary classification accuracies
acquired through different time windows for all machine
learning methods are not significant. Those results might
indicate that the functional connectivity features extracted
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TABLE II
THE CLASSIFICATION ACCURACIES (%) OF CONNECTION FEATURES IN 0-2.5 S TIME WINDOW

Fig. 9. The multiclass and binary classification accuracies (%) of LDA in 0-10 s and 0-2.5 s time windows. (a) The four-class classification
accuracies in 0-10 s time window. (b) The four-class classification accuracies in 0-2.5 s time window. (c) The binary classification accuracies in
0-10 s time window. (d) The binary classification accuracies in 0-2.5 s time window. ∗ and ∗∗ mean the p-value of paired t-test below 0.05 and 0.005,
respectively.

from the 0-2.5 s time window can provide as much differ-
entiated information as that extracted from the 0-10 s time
window.

Figure 9 shows the multiclass and binary classification
accuracies of connection and activation features using LDA
in 0-10 s and 0-2.5 s time windows. No matter in multiclass
setting or binary setting, the average classification accuracy of
each type of activation features is lower than that of connection
features. Paired t-test was conducted among the classification
accuracies acquired through different features in different time
windows. The decoding performance of functional connectiv-
ity features is significantly higher than that of most temporal
features. Those results may suggest that connection features
could provide more distinguishable information than activation
features.

D. The Role of Different Connections in Providing
Discriminative Information

Figure 10 shows the F-score matrices in both the 0-10 s
and 0-2.5 s time windows. F-score was the measure of each
functional connection feature in providing the discrimination
power for classifying different articulation motor imagery
tasks. According to the distributions of the F-score matrices
in both the 0-10 s and 0-2.5 s time windows, the connections
with high discrimination power mainly concentrated on the
synchronization between the left PMC and the right PMC
or SMA and between channels located on the left PMC.
Figure 11 shows the 20 most selected connection features
of HbO signal in different time windows. These selected
features indicate that the features with strong discriminative
power usually were selected to classify and the connections
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Fig. 10. F-score matrixes of connection features in (a) 0-10 s time window, (b) 0-2.5 s time window.

Fig. 11. Most selected features of HbO signals in different time windows. (a) 0-10 s time window, (b) 0-2.5 s time window.

which concentrated on the left PMC were usually selected
as features. Those results suggested that the left PMC play a
more important role in identifying different articulation motor
imagery tasks than the right PMC.

IV. DISCUSSION

This study aimed to establish an fNIRS-based BCI to
decode articulation motor imagery of four vowels. Relevant
features extracted from the brain functional network in the
motor cortex can efficiently decode different vowels. Features
extracted from the neural network in the reduced (0-2.5 s)
time window can provide much information to distinguish
different vowel imagery tasks no less than that in the long
(0-10 s) time window. Those results suggest that speech
imagery BCI based on fNIRS can be further optimized in
terms of feature extraction and command generation time
reduction.

Figure 3 shows the average value of HbO concentration
changes of 22 channels for different tasks. As shown in
Fig. 3, two large bilateral clusters of high activations located
on the PMC and a small parietal cluster of high activations
located on the SMA were found. Those brain areas with high
activations revealed by the activation analysis were indicated
heavily involved in articulation motor imagery. These results
are consistent with the previous fMRI study [34] suggesting
that the bilateral and parietal motor areas are involved in
controlling lip and jaw movements. As shown in Figs. 5 and 6,
the connection coefficients of interaction between the left
PMC and other brain regions and between channels located
on the left PMC are higher than that between the right PMC
with other neural areas and between channels located on the
right PMC. Figure 10 shows that the connections with strong
discriminative information mainly concentrate to the left PMC
in both the 0-10 s and 0-2.5 s time windows. Given that
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the left PMC plays a more important role in motor imagery
of articulation than the right PMC, this finding is in line
with the previous finding [34] that a significant left-favoring
hemispheric activation asymmetry was found in lip and jaw
movement control.

As can be seen from Fig. 3, the activation level of HbO of
imagining the articulation movements of vowel /o/ is higher
than that of other vowels. Fig. 4 shows the activation levels
of vowel /o/ are significantly higher in some brain areas than
that of the other vowels. The articulation movements of vowel
/o/ contained jaw opening and lip rounding which is more
complex than that of other vowels. These results suggest that
different complexities of the articulation motor imagery tasks
lead to different activation levels of HbO. This phenomenon
has also been shown in previous studies. HbO changes in
response to finger-tapping tasks with different complexities
can be detected by fNIRS [35]. Holper et al. [36] also found
fNIRS can be used to differentiate motor imagery tasks with
different complexities (a simple finger-tapping imagery task
and a complex sequential finger-tapping imagery task), and
the average classification accuracy across 12 subjects reached
81%. The impact of task complexity on brain activities also has
been examined by other functional neuroimaging modalities.
Catalan et al. [37] found higher brain activations for complex
finger movements than for simple finger movements using
PET. Similar conclusions also have been obtained by another
study using PET with different complex hand movement
tasks [38]. Furthermore, Kuhtz-Buschbeck et al. [39] found
the motor evoked potentials showed a significant rise in the
complex imagined finger movements task compared to that
in the simple imagined finger movements task using fMRI
combined with transcranial magnetic stimulation.

Figure 7 shows that most connection strengths of vowel
/a/ are higher than those of the other vowels and most
connection strengths of vowel /i/ are lower than those of
the other vowels in the 0-10 s time window. As depicted in
Fig. 8, most connection strengths of vowel /i/ are lower than
those of the other vowels in the 0-2.5 s time window. The
strong connection strength of vowel /a/ and weak connection
strength of vowel /i/ may be caused by different force levels
of jaw opening. Previous studies also have found similar
phenomena. Nambu et al. [40] found that different finger-
pinch force levels (25, 50, or 75% of the maximum voluntary
contraction (MVC)) could be recognized from the activity in
the human brain using fNIRS. Zheng et al. [41] explored the
functional connectivity between multiple cortical areas during
grip force tracking tasks at 25%, 50%, and 75% of MVC with
fNIRS and found the functional connectivity between the left
prefrontal cortex and the left sensorimotor cortex and between
the right prefrontal cortex and the right sensorimotor cortex
strengthened with a higher grip force level. Ortega et al. [42]
have revealed traces of the brain activity being modulated
by the level of hand-specific forces (10, 17.5, or 25% of
MVC) using EEG and fNIRS and reconstructed bimanual
force trajectories. Andrushko et al. [43] found increases in
right-handgrip force resulted in greater ipsilateral sensorimotor
activation and greater functional connectivity between hemi-
spheres within the sensorimotor network with 25%, 50%, and

75% of MVC. Furthermore, different imagined force levels
also were observed leading to different brain activities and
functional connectivity. Mizuguchi et al. [44] investigated the
relationship between brain activity and imagined right hand
grasping force level (10%, 30%, and 60% of MVC) with fMRI
and observed right fronto-parietal activity increased with inten-
sifying of the imagined force level. Yin et al. [45] decoded
imagined both force (20/50/80% MVC) and speed (0.5/1/2 Hz)
of hand clenching with fNIRS and EEG and the classification
accuracy of both force and speed of hand clenching achieved
89% ± 2%. Yin et al. [46] investigate the brain hemodynamic
responses of hand clench force (20/50/80% MVC) and speed
(0.5/1/2 Hz) imagery with fNIRS and obtained an average
classification accuracy of 78%. Fu et al. [47] explored the
relationship between brain activity and imagined hand clench-
ing force (20/50/80% MVC) and speed (0.5/1/2 Hz) with
EEG and fNIRS and reported an average 6-class classification
accuracy of 74%±2%. In this study, the force levels of jaw
opening are different for the vowel /a/, /o/, and /i/. The force
level of jaw opening of /a/ is the largest and the force level
of jaw opening of /i/ is the least. Therefore, the connection
strengths of different vowels were observed to be varied and
the functional connectivity provided a lot of information to
classify different vowels. Most connection strengths of vowel
/o/ were lower than that of vowel /a/ may be due to the
functional connectivity being more sensitive to force level
rather than task complexity.

As depicted in Tables I and II, the classification accuracies
of features extracted in the 0-2.5 s time window were similar
to that in the 0-10 s time window for all the machine
learning algorithms used in this study, which indicated that
the functional connectivity in the reduced time window could
provide as much distinguishable information as that in the long
time window. This finding may be caused by the initial dip
[48] in the early HbO and HbR responses phase (0-2.5 s time
window). Initial dip is defined as an initial small HbR/HbO
concentration change related to specific neuronal activity after
functional stimulation [49]. The initial dip originated from the
early extraction of HbO by locally metabolized neurons from
the capillary network. Therefore, it is believed to be a faster
and better spatial localizer on the neuronal activity than the
hemodynamic response [50]. Because the initial dip might be
more sensitive to the neuronal activity than the hemodynamic
response, the synchronization of hemodynamic responses in
the 0-2.5 s time window (including initial dips) of different
brain regions provided as much distinguishable information
as that in 0-10 s time window. As shown in Fig. 6, more
connections with high F-scores concentrate on the left motor
cortex in the 0-2.5 s time window than that in the 0-10 s
time window which supports that the connection information
extracted from in the 0-2.5 s time window might be more
closely related to neuronal activity.

Compared with the existing speech imagery BCIs based on
fNIRS [6], [7], [8], [9], this is the first study to classify vowels
by decoding the imagery of simplified articulation movements.
The existing speech imagery BCIs based on fNIRS mainly
focus on using the information of acoustic and semantic
differences in the auditory cortex to decode the imagined
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speech. The binary classification accuracies of those BCIs
approximated or exceeded 70% which is comparable with
that of our study. Those results indicated that the imagery of
articulation movements could provide as much distinguishable
information as acoustic and semantic differences in speech
imagery. In the future, the decoding performance of the
speech imagery BCIs based on fNIRS might be improved
by combining both the articulation motor imagery infor-
mation with acoustic and semantic information in speech
imagery.

V. CONCLUSION

BCI based on speech imagery can help individuals with very
limited or no voluntary movements express their intention in
a user-friendly way. An fNIRS-based BCI was presented to
decode simplified articulation motor imagery of four vowels.
In this work, functional connectivity features extracted from
fNIRS signals were used to classify articulation motor imagery
of different vowels. In multiclass (four classes) settings, the
mean classification accuracies approximated or exceeded 40%
in the 0-2.5 s and 0-10 s time windows, respectively. In binary
settings, the mean classification accuracies exceeded 70% in
both the 0-2.5 s and 0-10 s time windows. These encouraging
results demonstrate that connection features extracted from
fNIRS signals can effectively differentiate articulation motor
imagery of different vowels, and are still valid even in a shorter
time window (0-2.5 s), which are significant for reducing
command generation time and feature extraction for fNIRS-
based BCIs. Further, simplified articulation motor imagery of
vowels can be distinguished using the information extracted
from the motor cortex, and therefore, speech imagery BCIs
based on fNIRS might achieve better performance by combin-
ing the acoustic and semantic information with the simplified
articulation movements imagery information.
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