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Abstract— Musculoskeletal models have been widely
used for detailed biomechanical analysis to characterise
various functional impairments given their ability to esti-
mate movement variables (i.e., muscle forces and joint
moments) which cannot be readily measured in vivo.
Physics-based computational heuromusculoskeletal mod-
els can interpret the dynamic interaction between neural
drive to muscles, muscle dynamics, body and joint kine-
matics and kinetics. Still, such set of solutions suffers from
slowness, especially for the complex models, hindering the
utility in real-time applications. In recent years, data-driven
methods have emerged as a promising alternative due to the
benefits in speedy and simple implementation, but they can-
not reflect the underlying neuromechanical processes. This
paper proposes a physics-informed deep learning frame-
work for musculoskeletal modelling, where physics-based
domain knowledge is brought into the data-driven model
as soft constraints to penalise/regularise the data-driven
model. We use the synchronous muscle forces and joint
kinematics prediction from surface electromyogram (sEMG)
as the exemplar to illustrate the proposed framework.
Convolutional neural network (CNN) is employed as the
deep neural network to implement the proposed framework.
Simultaneously, the physics law between muscle forces and
joint kinematics is used the soft constraint. Experimental
validations on two groups of data, including one benchmark
dataset and one self-collected dataset from six healthy
subjects, are performed. The experimental results demon-
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strate the effectiveness and robustness of the proposed
framework.

Index Terms— Musculoskeletal modelling, deep neural
network, physics-based domain knowledge, muscle forces
and joint kinematics prediction.

|. INTRODUCTION

UMAN movements encompass complex interactions of

the neuromuscular system [1]. As a powerful com-
putational simulation tool, musculoskeletal model can be
applied for detailed biomechanical analysis to understand these
interactions, which would be beneficial to various applica-
tions ranging from evaluating rehabilitation treatment [2],
enhancing performance of athletes [3], [4], optimising robotic
design for impaired individuals [5], to surgical planning and
intervention [6].

Thus far, the majority of the musculoskeletal models are
based on physics-based modelling technique to interpret trans-
formation among neural excitation, muscle dynamics, and joint
kinematics and kinetics [7], [8], [9]. Via employing experimen-
tal recordings, e.g., electromyograms (EMGs), foot-ground
reaction forces (GRFs), and segmental body kinematics, these
models can provide non-invasive estimation for physiological
quantities, such as muscle forces and the joint moment [10].
However, these models often suffer from the redundancy issue
since the countless number of potential neural solutions can
be employed to execute a single movement. Thus, static
optimisation is commonly applied to solve this redundancy
problem, which involves the use of inverse dynamics to track
external joint moments and/or joint kinematics and estimation
of muscle forces to satisfy pre-selected objective criteria,
such as minimisation of the muscle activation squared [11],
[12]. An alternative approach is to use EMG-driven neuro-
musculoskeletal models, consisting of a neural-driven forward
dynamics model and static optimisation element [13], [14].
EMG can be used to calibrate musculotendon parameters of
the model to individual properties (i.e., tendon slack length and
optimal fiber length, etc.), via the optimisation procedure to
best match experimental and estimated joint moments. It also
enhances the joint torque estimation with static optimisation
by adjusting the experimental EMG signals and synthesising
the muscle excitations [15]. Although EMG-driven models
overcome the limitations of static optimisation and are readily
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available in the past years, they are time-consuming with high
running latency [16]. It thus limits the models’ utility for real-
time applications.

To address the time-consuming issues of physics-based
musculoskeletal models, data-driven models have also been
explored to establish relationships between movement vari-
ables and neuromuscular status, i.e., from EMGs to joint
kinematics and muscle forces [17], [18], [19], [20]. A major
advantage of these data-driven models over physics-based
models is speed. Although training may be lengthy, as infer-
ence involves a relatively simple forward pass through the
network, it is computationally inexpensive and thus very
quick. For instance, Hu et al. [21] utilised the long short-term
memory (LSTM) network to estimate grasping forces from
high-density surface EMGs (SEMGs). Geng et al. [22]
proposed a convolution with attention mechanism network
(CNN-Attention) for continuous finger kinematics prediction
from sEMGs. Rane et al. [23] employed a deep neural network
to learn the feature mapping from movement space to mus-
cle space, so musculoskeletal force could be predicted from
kinematics. Similar ideas were also reported in [24], [25],
[26], [27]. In addition to the muscle force or joint kinematics
prediction separately, there are some works predicting the
muscle forces and joint loading/movement simultaneously. For
example, Burton et al. [28] implemented four machine/deep
learning methods, including recurrent neural network (RNN),
convolutional neural network (CNN), fully-connected neural
network, and principal component regression, to predict trend
and magnitude of the estimated joint contact and muscle
forces. Johnson et al. [29] utilised CNN to predict ground reac-
tion forces and moments outside the laboratory setting. How-
ever, all these models are established without explicit physics
modelling of the underlying neuromechanical processes, and
they are essentially “black-box™ tools where all intermediate
functional relationships cannot reflect the mechanisms under-
lying the observed variables [30], [31].

To address the drawbacks above of both physics-based
and data-driven models, a physics-informed deep learning
musculoskeletal model framework is proposed in this paper,
which can seamlessly integrate the existing physics-based
domain knowledge into the data-driven models. It will there-
fore overcome limitations associated with both types of mus-
culoskeletal models while preserving their advantages. We use
the synchronous muscle forces and joint kinematics predic-
tion from sEMG as the exemplar to illustrate the proposed
framework. The main contributions can be summarized as:
1) a knowledge embedding data-driven framework is pre-
sented, which integrates the physics-based domain knowledge
into the data-driven model; 2) the physics-based domain
knowledge is regarded as soft constraints to penalise/regularise
the loss function of deep neural networks. Physics laws
relating to muscle forces and joint kinematics are applied in
our case. Without loss of generality, CNN is employed as the
deep neural network to implement the proposed framework
in this paper. To validate the proposed framework for muscle
forces and joint kinematics estimation, a benchmark dataset
involving vast walking trials and a self-collected dataset
involving wrist motion are employed. Results indicate that the

Physics-informed Component
Differentiation

Data-driven Component

MSE Loss

Physics-based
Loss

Minimize governing equation

Fig. 1. Main framework of physics-informed deep learning. In this study,
inputs of CNN are time steps and EMG signals, while outputs of CNN
are muscle forces F? and jointangles s (n=1,..., N t=1,..., 7.

Feature extraction with CNN

proposed framework with simpler neural network architecture
outperforms selected baseline methods, including CNN, mul-
tilayer extreme learning machine (ML-ELM), support vector
regression (SVR), and extreme learning machine (ELM).

The remaining of this paper is organised as follows:
Methodology is detailed in Section II, including the main
framework of the proposed physics-informed deep learning
method, architecture and training of CNN, and design of loss
functions. Material and experimental methods are presented in
Section III. Experimental results are reported in Section IV.
Finally, discussions are presented in Section V, followed by
conclusions in Section VI.

Il. METHODOLOGY

In this section, we first describe the main framework of
the proposed physics-informed deep learning method for mus-
culoskeletal modelling, in the context of muscle forces and
joint kinematics prediction from sSEMGs. We will elaborate
on the main framework, CNN architecture and training, and
the designed loss functions below.

A. Physics-Informed Deep Learning Framework

Fig. 1 depicts the main framework of the proposed
physics-informed deep learning method for musculoskeletal
modelling, in the context of muscle forces and joint kine-
matics prediction from sEMGs. To be specific, in the data-
driven component, CNN is utilised to automatically extract
the high-level features and build the relationship between
EMG signals and the joint motion/muscle forces, while the
physics-informed component entails the underlying physical
relationship between the joint motion and muscle forces.
In this manner, in the data-driven component, the recorded
EMG signals and time steps are first fed into CNN. With
the features extracted by CNN, the predicted muscle forces
and joint angles could be achieved. Such predictions should
also satisfy the physical equation of motion, which is then
taken as the soft constraint to penalise/regularise CNN. Finally,
a modified total loss function is constructed by integrating
the conventional mean square error (MSE) loss and the
physics-based loss for the training purpose.

B. Architecture and Training of CNN

To demonstrate the effectiveness of the proposed
physics-informed deep learning framework, a very simple
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architecture of CNN is employed in this paper. It only consists
of one convolutional block, two fully-connected blocks, and
one regression block. Specifically, the convolutional block has
a convolutional layer, a ReLU layer, a batch normalisation
layer, and a dropout layer. It utilises the kernel size of 3,
a boundary padding of 3, and a stride of 1 in the convolutional
layer. There are 128 kernels in the convolutional layer and
a ReLU layer is added subsequently to the convolutional
layer. The batch normalisation layer is also considered to
mitigate alternation made by the convolutonal layer. Similar
to the convolutional block, there are one ReLU layer, one
normalisation layer, and one dropout layer in each fully-
connected block. The number of hidden nodes is 128. Outputs
of the second fully-connected block are then fed into the
regression block for the muscle forces and joint kinematics
prediction.

In the model training phase, the batch size is set as 1, and
CNN is trained by stochastic gradient descent with momen-
tum. Additionally, the maximum iteration is 1200, the initial
learning rate is set as 0.01, and the dropout rate is 0.3.

C. Design of Loss Functions

Unlike state-of-the-art methods, the loss function of the
proposed framework consists of the MSE loss and the physics-
based loss. The MSE loss is to minimise the MSE of the
ground truth and prediction, while the physics-based loss pre-
serves the physical constraints during the movements. In this
paper, the optimised CNN parameters are achieved based on
the total loss below:

Liotat = Lr+ Lo+ Lp (D
Lr = MSE(F) 2)
Lo = MSE@®) 3)
Lp = O(F,0) 4)

where Lp denotes the loss of the muscle force, while Ly
denotes the loss of the joint angle, respectively. Lp repre-
sents the loss function imposed by the physics law, which
can penalise/regularise CNN for performance enhancement.
®(F, 0) denotes the function of predicted variables.

1) MSE Loss: MSE loss is calculated by

1 L& R
MSE(F) = - Z Z(F;’ — F"? (5)
=1 n=1
1 tT .
MSE(©) = — > (0 — 0’ ©)
t=1

where F/' represents the force of muscle n at time step ¢, and
6; denotes the joint angle at time step ¢, and 1:"[’ and 6, are their
corresponding predicted values from the network, respectively.
Additionally, T denotes the total sample number, and N is the
total number of muscles at the joint of interest.

2) Physics-Based Loss: Physics-based governing laws,
reflecting underlying relationships among the muscle force and
kinematics in the human motion, are converted to constraints
during the CNN training phase. In this paper, the equation of

motion is utilised to design the physics-based loss, which can
be mathematically represented as

T
O(F,0) = % Z(M(et)gt +C(6:,0,) + G©6) — Tt)2 @)
t=1

where M(8;), C(6;,6;), and G(6;) denote mass matrix, the
Centrifugal and Coriolis force, and the gravity, respectively. 6,
denotes the joint angle. 7; represents the joint torque, which
is calculated by the summation of the product of the moment
arm and muscle force:
N
o= raF ®)
n=1
where r, is the moment arm of the muscle n, which is exported
from OpenSim.

In this manner, along with the data-driven loss, the
physics-based domain knowledge actually plays a regularisa-
tion role that enhances the robustness of the created model,
and encoding such physical information into a deep neural
network could also strengthen the generalisation performance
of the proposed framework even when there are only a few
training data.

[1l. MATERIAL AND EXPERIMENTAL METHODS

Two datasets, including one benchmark dataset of walk-
ing trials and one self-collected dataset of wrist motions,
are utilised to demonstrate the feasibility of the proposed
framework.

A. Benchmark Dataset

The walking trails are retrieved from a real-world simu-
lation [32]. This experiment recruited six healthy subjects.
The mean age of these subjects was 12.9 £ 3.3 years old,
and the mean weight was 51.8 £ 19.2 Kg. Subjects were
informed to walking at four different walk speeds, including
very slow (0.53 £+ 0.04 m/s), slow (0.75 £ 0.10 m/s), free
(1.15 £ 0.08 m/s), and fast (1.56 £ 0.21 m/s) speeds.

The data, including GRFs and markers’ data, were first
band-pass filtered (20 Hz and 450 Hz), fully rectified, and
low-pass filtered (6 Hz), respectively. After that, a generic
musculoskeletal model with 23 DoFs (‘Gait2392’) was
used [33]. The experimental data were imported to OpenSim to
scale the generic musculoskeletal model for each subject [34].
The joint kinematics and joint torque were computed through
the inverse kinematic (IK) and inverse dynamic (ID) tools,
respectively. The muscle forces were computed using the
computed muscle control (CMC) tool to ensure the muscle
excitations followed the measured EMGs [35]. Each gait cycle
was normalised into 100 frames. We opt to estimate the joint
angle and muscle forces at the knee joint during different walk-
ing speeds from the EMGs. The biceps femoris short head
(BFS) and the rectus femoris (RF) are chosen as they are
the main flexor and extensor of knee joint [36].

Each walking trial is formed to a 100-by-7 matrix consisting
of the time step, gait cycle, enveloped EMG signals, and BFS
and RF muscle forces. All walking trials are concatenated for
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each subject to form a single long matrix for the proposed
framework.

B. Self-Collected Dataset

Approved by the MaPS and Engineering Joint Faculty
Research Ethics Committee of the University of Leeds (MEEC
18-002), six subjects were recruited to participate in this exper-
iment. All subjects gave signed consent. In the experiment,
subjects were informed to maintain a fully straight torso with
the 90° abducted shoulder and the 90° flexed elbow joint. The
continuous wrist flexion/extension motion was recorded using
the VICON motion capture system. The joint motions were
computed through the upper limb model using 16 reflective
markers (sampled at 250 Hz). Meanwhile, EMG signals were
recorded by Avanti Sensors (sampled at 2000 Hz) from
the main wrist muscles (n = 1,2,...,5), including the
flexor carpi radialis (FCR), the flexor carpi ulnaris
(FCU), the extensor carpi radialis longus (ECRL),
the extensor carpi radialis brevis (ECRB), and the
extensor carpi ulnaris (ECU). The electrodes were allocated
by palpation and evaluated by performing contraction while
looking at the signal before the experiment. Moreover, the
EMG signals and motion data were synchronised and resam-
pled at 1000 Hz. Five repetitive trials were performed for each
subject, and a three-minute break was given between trials to
prevent muscle fatigue.

The measured EMG signals were band-pass filtered (20 Hz
and 450 Hz), fully rectified, and low-pass filtered (6 Hz). Then,
they were normalised concerning the maximum voluntary
contraction recorded before the experiment, resulting in the
enveloped EMG signals. The markers’ data were used to
compute the wrist kinematics via the IK tool according to
the upper limb extremity model [37]. Then the joint torque
and wrist muscle forces were obtained from the ID and CMC
tools to ensure the computed motion was consistent with the
measured joint motion.

Each wrist motion trial, consisting of time steps, filtered
EMG signals, wrist muscle forces, and wrist joint angles,
is formed into a ¢ by 12 matrix.

C. Baseline Methods and Parameters Setting

To verify the effectiveness of the proposed physics-informed
deep learning framework, several state-of-the-art methods,
including CNN, ML-ELM [38], SVR [39], and ELM [40],
are considered as the baseline methods for the comparison.
Specifically, CNN has three convolutional blocks, three fully-
connected blocks, and one regression block. Stochastic gradi-
ent descent with momentum optimiser is employed for CNN
training, the batch size is set as 1, the maximum iteration is
set as 1200, and the initial learning rate is 0.01. ML-ELM has
five hidden layers, and the number of hidden nodes in each
hidden layer is determined by the grid search method. ELM
is a single hidden layer feedforward neural network, and the
Sigmoid function is utilised as the activation function.

D. Evaluation Criteria
To quantify the estimation performance of the proposed
framework, root mean square error (RMSE) is first used as

the metric. One-way analysis of variance (ANOVA) is also
conducted for statistical analysis of the proposed framework
and baseline methods. RMSE is the response variable. In spe-
cific, RMSE indicates the discrepancies in the amplitude and
between the estimated variables and the ground truth, which
can be calculated by

©)

where y; and y; indicate the ground truth and the correspond-
ing predicted value, respectively.

Pearson’s correlation coefficient (CC) is also employed as
another metric, which could be calculated by

T
> =G = 1)

=1
T T o
Z(J’t - W)z Z()A’t - )A’t)z
=1 t=1

where y; and ; are the mean of the ground truth and the
predicted value, respectively.

CcC =

(10)

IV. RESULTS

In this section, we verify the performance of the pro-
posed framework on knee joint and wrist joint scenarios via
comparing with selected baseline methods. Specifically, the
training process of the proposed framework is first illustrated.
Overall comparisons are then performed to demonstrate the
predicted results of the proposed framework and baseline
methods, including representative results of the predicted
muscle forces and joint angles, and detailed and average
predicted results of six healthy subjects. In addition, the
intrasession scenario and intersession scenario are also consid-
ered to evaluate the robustness and generalisation performance
of the proposed framework. Finally, the effects of training
dataset sizes, network architectures, and hyperparameters on
performance are investigated. The training of the proposed
framework and baseline methods is carried out using PyTorch
on a workstation with GeForce RTX 2080 Ti graphic cards
and 128G RAM.

A. Training Process of the Proposed Framework

To demonstrate the convergence of the proposed framework,
we illustrate the convergence process of the total loss of
wrist joint case during the training phase in Fig. 2 as the
exemplar. For the wrist angle and muscle forces prediction
of the wrist joint scenario, the total loss is very low after
200 iterations with small local oscillations as the iteration pro-
gresses and actually converges after 600 iterations. We con-
jecture that the main reason is that we set the batch size as
1 during training CNN. Such batch size could help CNN
learn the data distribution better, but it also causes local
oscillations. We also would like to point out that for the
knee joint case, the same convergence process has also been
achieved.
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TABLE |
RMSE AND CC OF THE PROPOSED FRAMEWORK AND BASELINE METHODS OF KNEE JOINT CASE

Subject | Methods | RF(V) BFS(N) Knee Angle(°) | Subject | Methods | RF(N) BFS(N) Knee Angle(°)
‘ Ours ‘ 18.19/0.92  14.16/0.99 5.69/0.99 ‘ ‘ Ours ‘ 21.51/0.95 15.95/0.99 7.07/0.99
s1 ‘ CNN ‘ 20.04/0.89 9.75/0.99 2.17/0.97 ‘ S4 ‘ CNN ‘ 31.66/0.94  16.34/0.99 7.59/0.99
‘ ML-ELM ‘ 25.31/0.86  17.96/0.92 6.01/0.97 ‘ ‘ ML-ELM ‘ 29.74/0.94  19.61/0.99 12.39/0.97
‘ ELM ‘ 35.93/0.82  23.85/0.90 16.82/0.94 ‘ ‘ ELM ‘ 35.80/0.91  26.58/0.93 15.97/0.93
‘ SVR ‘ 33.20/0.81  27.99/0.90 15.33/0.93 ‘ ‘ SVR ‘ 33.29/0.92  23.23/0.93 14.74/0.97
‘ Ours ‘ 17.15/0.94  19.83/0.93 4.30/0.99 ‘ ‘ Ours ‘ 13.24/0.97 15.52/0.94 4.71/0.99
s2 ‘ CNN ‘ 23.96/0.92  20.95/0.94 3.55/0.98 ‘ S5 ‘ CNN ‘ 15.31/0.95  15.39/0.94 6.97/0.99
‘ ML-ELM ‘ 21.37/091  29.62/0.91 9.28/0.94 ‘ ‘ ML-ELM ‘ 19.26/0.95  20.28/0.90 6.05/0.99
‘ ELM ‘ 29.21/0.88  36.25/0.83 17.66/0.91 ‘ ‘ ELM ‘ 30.98/0.90  23.92/0.91 10.22/0.96
‘ SVR ‘ 31.03/0.89  31.53/0.85 14.31/0.90 ‘ ‘ SVR ‘ 25.73/0.89  25.37/0.92 11.36/0.97
‘ Ours ‘ 15.51/0.94  13.27/0.92 5.13/0.98 ‘ ‘ Ours ‘ 18.71/0.95 15.47/0.95 5.63/0.98
s3 ‘ CNN ‘ 13.20/0.96  17.56/0.92 4.25/0.99 ‘ S6 ‘ CNN ‘ 19.73/0.96  12.55/0.94 7.37/0.98
‘ ML-ELM ‘ 16.77/0.93  21.38/0.93 7.99/0.97 ‘ ‘ ML-ELM ‘ 25.36/0.93  21.34/0.92 8.96/0.97
‘ ELM ‘ 26.35/0.90  26.78/0.90 19.66/0.94 ‘ ‘ ELM ‘ 29.75/0.93  22.53/0.92 12.31/0.94
‘ SVR ‘ 24.60/0.89  22.97/0.90 9.39/0.97 ‘ ‘ SVR ‘ 27.38/0.88  28.70/0.89 15.29/0.95
TABLE Il

RMSE AND CC OF THE PROPOSED FRAMEWORK AND BASELINE METHODS OF WRIST JOINT CASE

Subject ‘ Methods ‘ FCR(N) FCU(N) ECRL(N) ECRB(N) ECU(N) Wrist Angle(°) ‘ Subject ‘ Methods ‘ FCR(N) FCU(N) ECRL(N) ECRB(N) ECU(N) Wrist Angle(°)
‘ Ours ‘ 3.25/0.99 2.51/0.98 0.79/0.99 2.21/0.99 0.24/0.98 3.76/0.99 ‘ ‘ Ours ‘ 3.91/0.98 2.79/0.99 0.57/0.99 3.26/0.97 0.33/0.99 4.31/0.97
s1 ‘ CNN ‘ 2.81/0.99 2.32/0.99 0.90/0.99 1.66/0.99 0.16/0.99 2.30/0.99 ‘ s4 ‘ CNN ‘ 2.89/0.99 3.03/0.99 0.81/0.99 3.36/0.98 0.20/0.99 4.25/0.97
‘ ML-ELM ‘ 5.78/0.97 3.10/0.98 3.51/0.97 3.03/0.96 0.69/0.99 6.98/0.98 ‘ ‘ ML-ELM ‘ 6.33/0.98 4.93/0.97 1.38/0.99 4.90/0.97 0.88/0.99 5.89/0.97
‘ ELM ‘ 10.55/0.93  6.21/0.95 4.77/0.96 3.87/0.96 1.73/0.98 12.33/0.93 ‘ ‘ ELM ‘ 8.27/0.96 7.38/0.95 3.55/0.97 5.73/0.95 1.03/0.99 10.55/0.94
‘ SVR ‘ 6.34/0.97 7.92/0.95 5.32/0.93 5.10/0.96 0.99/0.97 8.57/0.94 ‘ ‘ SVR ‘ 9.36/0.95 7.62/0.95 4.30/0.97 5.46/0.96 1.52/0.99 9.33/0.93
‘ Ours ‘ 4.21/0.99 2.63/0.99 0.71/0.99 3.25/0.98 0.58/0.99 2.77/0.99 ‘ ‘ Ours ‘ 2.53/0.98 3.52/0.99 1.21/0.98 2.91/0.99 0.65/0.99 3.45/0.99
s2 ‘ CNN ‘ 4.29/0.99 3.96/0.99 0.99/0.99 2.98/0.99 0.37/0.99 2.59/0.99 ‘ S5 ‘ CNN ‘ 2.31/0.98 3.49/0.98 1.79/0.98 2.03/0.99 0.71/0.99 2.99/0.99
| ML-ELM | 7.30/098  327/0.98 238097  3.57/099  0.95/0.99 4300096 | | ML-ELM | 6.38/0.94  433/097 359/098  3.87/0.98  1.01/0.99 7.56/0.96
‘ ELM ‘ 11.25/0.94  7.99/0.98 2.95/0.97 7.98/0.98 2.09/0.99 7.62/0.96 ‘ ‘ ELM ‘ 9.22/0.94  6.27/0.93 8.26/0.97 5.66/0.98 2.89/0.99 10.30/0.92
‘ SVR ‘ 11.03/0.94  9.28/0.98 4.17/0.94 6.22/0.98 1.28/0.99 6.53/0.97 ‘ ‘ SVR ‘ 8.89/0.93 9.35/0.92 6.30/0.96 7.27/0.97 2.50/0.99 11.28/0.93
‘ Ours ‘ 5.18/0.98 3.77/0.98 0.97/0.99 4.96/0.97 0.41/0.99 4.30/0.97 ‘ ‘ Ours ‘ 6.20/0.98 4.17/0.98 0.91/0.99 3.89/0.99 0.33/0.99 5.81/0.97
s3 ‘ CNN ‘ 3.99/0.99  4.59/0.98 1.23/0.99 6.83/0.98 0.47/0.99 3.94/0.98 ‘ S6 ‘ CNN ‘ 4.27/0.98 5.35/0.96 0.99/0.99 5.36/0.97 0.56/0.99 6.21/0.98
‘ ML-ELM ‘ 7.89/0.96  4.51/0.97 4.37/0.98 7.31/0.96 0.92/0.99 6.88/0.99 ‘ ‘ ML-ELM ‘ 6.34/0.97 7.95/0.96 2.57/0.99 7.90/0.95 0.79/0.99 8.30/0.96
‘ ELM ‘ 12.33/0.93  8.26/0.95 6.25/0.95 7.15/0.96 2.02/0.99 9.37/0.94 ‘ ‘ ELM ‘ 10.28/0.94  9.21/0.96 4.43/0.98 5.21/0.95 2.37/0.98 10.22/0.96
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500 — T T Fig. 4, the predicted values of muscle forces and joint angles
” ] could fit the ground truths well, indicating the great dynamic
tracking capability of the proposed framework.
To quantitatively evaluate the performance of the proposed
300 . . .
W framework, detailed comparisons of all the subjects between
(2]
= the proposed framework and baseline methods are presented in
200
Table I and Table II. It should be noted that we use the data
ook with the same walking speed to train and test the proposed
framework and baseline methods in the knee joint case.
o According to Table I and Table II, the proposed framework
0 00 0 %00 a00 OB 800 700 00 800 1000 could achieve smaller RMSEs and higher CCs in most cases,

Fig. 2. lllustration of the total loss of wrist joint case.

B. Overall Comparisons

The overall comparisons between the proposed framework
and baseline methods are first performed. Fig. 3 and Fig. 4
depict the representative results of the proposed framework for
the knee joint case and the wrist joint case, including the knee
flexion angle, muscle force of RF, muscle force of BFS, wrist
flexion angle, muscle force of FCR, muscle force of FCU,
muscle force of ECRL, muscle force of ECRB, and muscle
force of ECU, respectively. As we can see from Fig. 3 and

which further verifies the robustness of the proposed frame-
work. To be specific, deep learning-based methods, including
the proposed framework, CNN and ML-ELM, achieve better
predicted performance than machine learning-based methods,
including SVR and ELM. Because these deep learning-based
methods could automatically extract high-level features from
the collected data. Among deep learning-based methods, the
proposed framework achieves the best predicted performance,
because the embedded physics law could penalise/regularise
CNN utilised in the proposed framework, its performance is
not only dependent on the conventional MSE loss, but also
can be enhanced by the physics-based loss.
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Fig. 3. Representative results of the knee joint case through the proposed physics-informed data-driven model. The predicted outputs of the knee
joint case include the knee angle, BFS muscle force, and RF muscle force.
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Fig. 4. Representative results of the wrist joint case through the knowledge embedding data-driven model. The predicted outputs of the wrist joint
case include the wrist angle, FCR muscle force, FCU muscle force, ECRL muscle force, ECRB muscle force, and ECU muscle force.

Aside from the overall comparisons of the five approaches,
we further carried out a pairwise analysis between the pro-
posed framework and each comparison method on the two
datasets. A post-hoc analysis using Tukey’s Honest Significant
Difference test is applied. The significance level is set at
p < 0.05. Fig. 5 illustrates the average RMSEs of the knee
and wrist joints of the proposed framework and baseline
methods across all the subjects. As observed from Fig. 5, the
proposed framework achieves satisfactory performance with
lower standard deviations, and its predicted results are with
smaller fluctuations. Moreover, with simple neural network
architecture, the proposed framework could achieve compara-
ble performance compared with pure CNN, which has a more
complex network architecture, by embedding the underlying
physical interactions between predicted variables into the data-
driven model. This motivates us to employ more constraints to
deeply integrate the knowledge of the musculoskeletal mod-
elling into the deep neural network to enhance the performance
in the future work.

C. Evaluation of Intrasession Scenario

The intrasession scenario is also considered to validate the
robustness of the proposed framework. For each subject, the
data with different walking speeds are fused into a whole

dataset, where 80% for training and the rest 20% for testing.
Fig. 6 depicts the corresponding experimental results, in which
the proposed framework outperforms most baseline methods.
According to Fig. 6, the proposed framework is not affected
by the walking speeds, but the predicted results of some
baseline methods are degraded. For instance, the predicted
performance of SVR for muscle force of RF prediction illus-
trated in Fig. 5(a) is better than that of ELM, but its predicted
performance becomes worse in the intrasession scenario due
to the effects of different walking speeds.

D. Evaluation of Intersession Scenario

To investigate the performance of the proposed framework
on the unseen data, we evaluate the proposed framework in the
intersession scenario. The training dataset consists of the data
from five subjects, and the 6th subject’s data construct the test-
ing dataset. Table III demonstrates the detailed results, we can
find that the proposed framework still can achieve satisfactory
performance, which indicates its great generalisation.

E. Effects of Training Dataset Sizes

To evaluate the effects of the training dataset sizes on the
prediction performance, we illustrate the normalised RMSEs
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Fig. 5. Average RMSEs across all the subjects in (a) knee joint
and (b) wrist joint scenarios, respectively. The proposed framework
achieves comparable RMSEs with simpler CNN architecture compared
with pure CNN. Compared with ML-ELM, ELM and SVR, the proposed
framework achieves better and more stable prediction performance.
The significance level is set as 0.05 (***p < 0.001,**p < 0.01, and
*p < 0.05).
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Fig. 6. Comparison results of intrasession scenario.

of the wrist joint case of the proposed framework and baseline
methods under different training dataset sizes in Fig. 7. The
normalised RMSEs of the proposed framework and baseline
methods become low with the increase of training dataset

TABLE IlI
COMPARISONS OF THE PROPOSED FRAMEWORK AND BASELINE
METHODS IN INTERSESSION SCENARIO (RMSE)

Variables ‘ Ours CNN ML-ELM ELM SVR
RF ‘ 2377 25.15 29.91 38.29 37.03
BFS ‘ 2230 2398 27.02 3099 31.21
Angle ‘ 7.82 7.76 10.65 14.51 13.29
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Fig. 7. Effects of the training dataset sizes on prediction performance
of the wrist joint case. The proposed framework achieves a faster
convergence speed with simpler network architecture.

sizes, but the proposed framework, on the other side, could
achieve lower normalised RMSEs with fewer training samples.
Experimental results indicate the proposed framework is less
sensitive to the training dataset size. Embedded physics-based
domain knowledge as the penalisation/regularisation term in
the loss function of CNN yields faster convergence speed and
reduces requirements in training data for a given performance.

F. Effects of Network Architectures

To further evaluate the proposed framework, we illustrate
the comparison results of the wrist joint case of the proposed
framework and CNN under the same network architecture, i.e.,
both CNN in the proposed framework and pure CNN have
three convolutional blocks, three fully-connected blocks, and
one regression block, in Fig. 8. According to Fig. 8, the pro-
posed framework could achieve better prediction performance
than CNN, further indicating the effectiveness of the physics
law embedded in the proposed framework.

To further investigate the effects of network architectures on
the performance of the proposed framework, we implement
the proposed framework with various network architectures,
including one convolutional block (named PINN-1), two con-
volutional blocks (named PINN-2), three convolutional blocks
(named PINN-3), four convolutional blocks (named PINN-4),
and five convolutional blocks (named PINN-5), for the knee
joint case. Table IV lists the detailed comparison results,
we can find that the proposed framework could achieve the
best performance with three convolutional blocks, and its
accuracy becomes better with the increase of the number
of convolutional blocks, this is because more representative
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Fig. 8.  Comparison results between the proposed framework and
CNN under the same network architecture. The proposed framework
achieves better predicted results without considering the effects of
network architecture.

TABLE IV
COMPARISONS OF THE PROPOSED FRAMEWORK UNDER VARIOUS
NETWORK ARCHITECTURES (RMSE)

Variables | PINN-1 PINN-2 PINN-3 PINN-4 PINN-5
RF | 19.32 15.51 13.39 15.01 21.89
BFS | 1527 8.82 7.93 8.95 12.72

Angle | 573 2.36 2.02 2.87 7.56

features can be extracted with appropriate number of convolu-
tional blocks (such as PINN-3), but the proposed framework
may be over-fitting if we continue to increase the number of
convolutional blocks (such as PINN-5).

G. Effects of Hyperparameters

We also investigate the effects of hyperparameters, includ-
ing learning rate, types of activation functions, and batch
size, on the performance of the proposed framework using
the wrist joint case, and the detailed results are shown in
Table V, Table VI, and Table VII. Specifically, we consider
three different learning rates, i.e., 0.01, 0.001 and 0.0001,
and the maximum iterations is set as 400. According to
Table V, we can find that the proposed framework achieves
better performance with smaller learning rate. Observed from
Table VI, the proposed framework with ReLU and Leaky
ReLU could achieve comparable performance, but better than
the one using Sigmoid as the activation function. In Table VII,
the performance of the proposed framework achieves better
performance with the increase of the batch size, this is because
the larger batch size can reduce the local oscillations during
the training process and guarantee the performance of the deep
neural network.

V. DISCUSSIONS AND FUTURE DIRECTIONS
In this section, we first discuss the flexibility of the proposed
framework, and essential advantages of physics-informed deep
learning in musculoskeletal modelling are then presented,
respectively. Finally, limitations of this work and future direc-
tions are considered.

TABLE V
COMPARISONS OF THE PROPOSED FRAMEWORK UNDER VARIOUS
LEARNING RATES (RMSE)

Learning Rates ‘ FCR FCU ECRL ECRB ECU Angle
0.01 | 1525 1251 10.79 12.21 3.24 10.06
0.001 \ 9.03 11.19 8.68 9.09 1.22 8.29

0.0001 | 6.69 9.76 8.52 8.67 1.92 6.51
TABLE VI

COMPARISONS OF THE PROPOSED FRAMEWORK UNDER DIFFERENT
TYPES OF ACTIVATION FUNCTIONS (RMSE)

Activation Functions ‘ FCR FCU ECRL ECRB ECU Angle

Sigmoid | 537 450 1.21 3.63 0.77 5.29

ReLU | 325 251 0.79 221 0.24 3.76

Leaky ReLU | 322 256 0.73 2.25 0.39 3.97
TABLE VIl

COMPARISONS OF THE PROPOSED FRAMEWORK UNDER
VARIOUS BATCH S1ZES (RMSE)

Activation Functions ‘ FCR FCU ECRL ECRB ECU Angle
1 | 325 251 0.79 2.21 0.24 3.76
32 | 317 232 0.65 2.01 0.20 3.55
64 | 319 229 0.66 1.97 0.21 3.37

A. Flexibility of the Proposed Framework

The proposed framework is a generic paradigm for incorpo-
rating mechanistic musculoskeletal constraints. In this paper,
we utilise a specific case, i.e., joint angle and muscle force
prediction, as the exemplar to demonstrate the feasibility
of this approach. Here, a CNN with simpler architecture
is used as the data-driven modelling technique to extract
feature maps from kinematics to muscle forces and EMG to
motion, respectively. However, we can also change the deep
network’s inputs and outputs to satisfy different application
scenarios, i.e., use EMG/kinematics to predict muscle force
and activation for robot-assisted rehabilitation, use kinematics
data to predict muscle force and activation for musculoskeletal
diseases diagnosis, and use EMG to predict kinematics for
prosthetic control.

In addition, all the components in the proposed framework
can be withdrawn or adjusted, and new components could
be incorporated into this framework depending on application
demands. For example, in addition to CNN, the deep neural
network in the data-driven component can be replaced by
CNN+LSTM when we want to extract spatial and temporal
representations from kinematic measurements [41], or gener-
ative adversarial network (GAN) when domain-independent
features are required [42]. Moreover, few-shot learning should
be considered when only a few training data are available [43],
or federated learning is preferred when addressing data privacy
issues [44].

For the physics-based component, we only used equation
of motion in this paper. However, the physics law can also be
further expanded. For instance, we can also incorporate the
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Hill muscle model into the proposed framework, the predicted
force should be equal to the Hill muscle model prediction,
which can be used as the second physics law in the network.
In addition, more soft constraints can also be imposed, i.e., our
body geometrical constraint, and multiple joints coordination,
etc., to enhance the deep neural network performance.

Although we only consider the wrist joint and knee joint
cases as the exemplar, and we would envisage that the pro-
posed framework would also be applicable to more complex
musculoskeletal models, such as full lower body model for
walking. The only difference would be to increase the network
input/output dimensions, and incorporate more physics laws in
the model.

B. Understanding Physics-Informed Data-Driven
Methods for Musculoskeletal Modeling

Machine/deep learning methods have been utilised for mus-
culoskeletal modelling, because they are conceptually intuitive
simple and fast to implement [23], [45], [46], [47]. However,
while they may fit kinematic measurements very well in the
training stage, their predictions may not satisfy the physics
associated with musculoskeletal biomechanics. This may lead
to poor robustness and generalisation. In addition, data-
driven methods provide limited interpretability from kinematic
measurements. In contrast, physics-informed deep learning
seamlessly integrates physics-based domain knowledge into
deep learning and hence informative constraints for perfor-
mance enhancement [48], [49], [50]. In physics-informed
deep learning, we incorporate domain knowledge that from
kinematic measurements and the physical understanding of the
neuromusculoskeletal coupling. In this manner, deep learning
methods are interpretable, reflecting physical or physiological
mechanisms, and more robust and generalise better even with
limited training data.

C. Limitations and Future Directions

In this study, we only consider the wrist joint and knee joint
cases as the exemplar to implement the proposed framework
and verify its feasibility. We will further investigate properties
of the physics-informed deep learning framework in muscu-
loskeletal modelling. For example, we are planning to explore
the effects of weights imposing on the two loss components on
the performance. We will also change the inputs and outputs
of the data-driven component of the proposed framework to
satisfy different application scenarios. Moreover, the reliability
and accuracy of the proposed framework will also be evaluated
via more complicated movement involving multiple joints
movements.

VI. CONCLUSION

This paper develops a knowledge embedding data-driven
framework, which seamlessly integrates the physics-based
domain knowledge into the data-driven model, for muscu-
loskeletal modelling. Specifically, the physics-based domain
knowledge is utilised as soft constraints to penalise/regularise
the deep neural network to enhance the robustness and gener-
alisation performance, and computational demands in model

building are significantly reduced. Comprehensive experiments
on two groups of data for muscle forces and joint angles
prediction indicate the feasibility of the proposed framework.
We envision that the proposed framework is a general method-
ology for both muscle forces and joint angles prediction,
and other applications in the musculoskeletal modelling field,
which may reduce the gaps between laboratory prototypes and
clinical applications.

REFERENCES

[1] A. Rajagopal, C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks,
and S. L. Delp, “Full-body musculoskeletal model for muscle-driven
simulation of human gait,” IEEE Trans. Biomed. Eng., vol. 63, no. 10,
pp- 2068-2079, Oct. 2016.

[2] J. Berning, G. E. Francisco, S.-H. Chang, B. J. Fregly, and
M. K. O’Malley, “Myoelectric control and neuromusculoskeletal mod-
eling: Complementary technologies for rehabilitation robotics,” Curr.
Opin. Biomed. Eng., vol. 19, pp. 1-7, Sep. 2021.

[3] R. Zaman, Y. Xiang, R. Rakshit, and J. Yang, “Hybrid predictive model
for lifting by integrating skeletal motion prediction with an OpenSim
musculoskeletal model,” [EEE Trans. Biomed. Eng., vol. 69, no. 3,
pp. 1111-1122, Mar. 2022.

[4] S. A. McErlain-Naylor, M. A. King, and P. J. Felton, “A review of
forward-dynamics simulation models for predicting optimal technique
in maximal effort sporting movements,” Appl. Sci., vol. 11, no. 4,
pp. 1450-1469, 2021.

[5] T. Akbas, R. R. Neptune, and J. Sulzer, “Neuromusculoskeletal simula-
tion reveals abnormal rectus femoris-gluteus medius coupling in post-
stroke gait,” Frontiers Neurol., vol. 10, pp. 1-10, Apr. 2019.

[6] L. S. Persad, B. I. Binder-Markey, A. Y. Shin, K. R. Kaufman, and
R. L. Lieber, “In vivo human gracilis whole-muscle passive stress—
sarcomere strain relationship,” J. Experim. Biol., vol. 224, no. 17,
pp. 1-9, Sep. 2021.

[71 Q.Zhang, W. H. Clark, J. R. Franz, and N. Sharma, ‘“Personalized fusion
of ultrasound and electromyography-derived neuromuscular features
increases prediction accuracy of ankle moment during plantarflexion,”
Biomed. Signal Process. Control, vol. 71, Jan. 2022, Art. no. 103100.

[8] M. K. Jung et al., “Intramuscular EMG-driven musculoskeletal mod-
elling: Towards implanted muscle interfacing in spinal cord injury
patients,” [EEE Trans. Biomed. Eng., vol. 69, no. 1, pp. 63-74,
Jan. 2022.

[9] Y. Zhao et al., “Computational efficient personalised EMG-driven mus-

culoskeletal model of wrist joint,” IEEE Trans. Instrum. Meas., early

access, Nov. 28, 2022, doi: 10.1109/TIM.2022.3225023.

K. J. Bennett et al., “EMG-informed neuromusculoskeletal models

accurately predict knee loading measured using instrumented implants,”

IEEE Trans. Biomed. Eng., vol. 69, no. 7, pp. 2268-2275, Jul. 2022.

[11] V. Chambers and P. Artemiadis, “A model-based analysis of supraspinal

mechanisms of inter-leg coordination in human gait: Toward model-

informed robot-assisted rehabilitation,” IEEE Trans. Neural Syst. Reha-

bil. Eng., vol. 29, pp. 740-749, 2021.

S. Park, G. E. Caldwell, and B. R. Umberger, “A direct collocation

framework for optimal control simulation of pedaling using OpenSim,”

PLoS ONE, vol. 17, no. 2, pp. 1-17, 2022.

[13] J. Zhao, Y. Yu, X. Wang, S. Ma, X. Sheng, and X. Zhu, “A mus-

culoskeletal model driven by muscle synergy-derived excitations for

hand and wrist movements,” J. Neural Eng., vol. 19, no. 1, Feb. 2022,

Art. no. 016027.

Y. Zhao, Z. Zhang, Z. Li, Z. Yang, A. A. Dehghani-Sanij, and S. Xie,

“An EMG-driven musculoskeletal model for estimating continuous wrist

motion,” [EEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 12,

pp. 3113-3120, Dec. 2020.

M. Sartori, D. Farina, and D. G. Lloyd, “Hybrid neuromusculoskeletal

modeling to best track joint moments using a balance between muscle

excitations derived from electromyograms and optimization,” J. Biome-

chanics, vol. 47, no. 15, pp. 3613-3621, Nov. 2014.

C. Pizzolato, M. Reggiani, D. J. Saxby, E. Ceseracciu, L. Modenese,

and D. G. Lloyd, “Biofeedback for gait retraining based on real-time

estimation of tibiofemoral joint contact forces,” IEEE Trans. Neural Syst.

Rehabil. Eng., vol. 25, no. 9, pp. 1612-1621, Sep. 2017.

G. Hajian and E. Morin, “Deep multi-scale fusion of convolutional

neural networks for EMG-based movement estimation,” IEEE Trans.

Neural Syst. Rehabil. Eng., vol. 30, pp. 486—495, 2022.

(10]

[12]

[14]

[15]

[16]

[17]


http://dx.doi.org/10.1109/TIM.2022.3225023

ZHANG et al.: PHYSICS-INFORMED DEEP LEARNING FOR MUSCULOSKELETAL MODELING

493

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

C. Wu, H. Zeng, A. Song, and B. Xu, “Grip force and 3D push-pull force
estimation based on SEMG and GRNN,” Frontiers Neurosci., vol. 11,
pp. 1-15, Jun. 2017.

C. G. McDonald, J. L. Sullivan, T. A. Dennis, and M. K. O’Malley,
“A myoelectric control interface for upper-limb robotic rehabilitation
following spinal cord injury,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 28, no. 4, pp. 978-987, Apr. 2020.

T. Bao, S. Q. Xie, P. Yang, P. Zhou, and Z.-Q. Zhang, “Toward
robust, adaptiveand reliable upper-limb motion estimation using machine
learning and deep learning—A survey in myoelectric control,” IEEE J.
Biomed. Health Informat., vol. 26, no. 8, pp. 3822-3835, Aug. 2022.
R. Hu, X. Chen, H. Zhang, X. Zhang, and X. Chen, “A novel myoelectric
control scheme supporting synchronous gesture recognition and muscle
force estimation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30,
pp. 1127-1137, 2022.

Y. Geng et al., “A CNN-attention network for continuous estimation of
finger kinematics from surface electromyography,” IEEE Robot. Autom.
Lett., vol. 7, no. 3, pp. 6297-6304, Jul. 2022.

L. Rane, Z. Ding, A. H. McGregor, and A. M. J. Bull, “Deep learning
for musculoskeletal force prediction,” Ann. Biomed. Eng., vol. 47, no. 3,
pp. 778-789, Mar. 2019.

T. Bao, S. A. R. Zaidi, S. Xie, P. Yang, and Z.-Q. Zhang, “Inter-subject
domain adaptation for CNN-based wrist kinematics estimation using
SEMG,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1068-1078,
2021.

Y. Huang et al., “Real-time intended knee joint motion prediction by
deep-recurrent neural networks,” IEEE Sensors J., vol. 19, no. 23,
pp. 11503-11509, Aug. 2019.

A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “Real-time,
simultaneous myoelectric control using a convolutional neural network,”
PLoS ONE, vol. 13, no. 9, pp. 1-13, 2018.

H. Su, W. Qi, Z. Li, Z. Chen, G. Ferrigno, and E. De Momi, “Deep
neural network approach in EMG-based force estimation for human—
robot interaction,” IEEE Trans. Artif. Intell., vol. 2, no. 5, pp. 404412,
Oct. 2021.

W. S. Burton, C. A. Myers, and P. J. Rullkoetter, “Machine learning
for rapid estimation of lower extremity muscle and joint loading dur-
ing activities of daily living,” J. Biomechanics, vol. 123, Jun. 2021,
Art. no. 110439.

W. R. Johnson, J. Alderson, D. Lloyd, and A. Mian, “Predicting athlete
ground reaction forces and moments from spatio-temporal driven CNN
models,” IEEE Trans. Biomed. Eng., vol. 66, no. 3, pp. 689-694,
Mar. 2019.

G. E. Karniadakis et al., “Physics-informed machine learning,” Nat. Rev.
Phys., vol. 3, no. 6, pp. 422-440, 2021.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
J. Comput. Phys., vol. 378, pp. 686-707, Feb. 2019.

M. Q. Liu, F. C. Anderson, M. H. Schwartz, and S. L. Delp, “Muscle
contributions to support and progression over a range of walking speeds,”
J. Biomech., vol. 41, no. 15, pp. 3243-3252, Nov. 2008.

S. L. Delp, J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and
J. M. Rosen, “An interactive graphics-based model of the lower extrem-
ity to study orthopaedic surgical procedures,” IEEE Trans. Biomed. Eng.,
vol. 37, no. 8, pp. 757-767, Aug. 1990.

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

A. Seth et al., “OpenSim: Simulating musculoskeletal dynamics and
neuromuscular control to study human and animal movement,” PLoS
Comput. Biol., vol. 14, no. 7, pp. 1-20, Jul. 2018.

D. G. Thelen, F. C. Anderson, and S. L. Delp, “Generating dynamic
simulations of movement using computed muscle control,” J. Biomech.,
vol. 36, no. 3, pp. 321-328, 2003.

Y. Ma, S. Xie, and Y. Zhang, “A patient-specific EMG-driven
neuromuscular model for the potential use of human-inspired gait
rehabilitation robots,” Comput. Biol. Med., vol. 70, pp. 88-98,
Mar. 2016.

D. C. McFarland, E. M. McCain, M. N. Poppo, and K. R. Saul, “Spatial
dependency of glenohumeral joint stability during dynamic unimanual
and bimanual pushing and pulling,” J. Biomech. Eng., vol. 141, no. 5,
May 2019, Art. no. 051006.

J. Zhang, Y. Li, W. Xiao, and Z. Zhang, “Non-iterative and fast
deep learning: Multilayer extreme learning machines,” J. Franklin Inst.,
vol. 357, no. 13, pp. 8925-8955, 2020.

H. Zhang, Y. Guo, and D. Zanotto, “Accurate ambulatory gait analysis
in walking and running using machine learning models,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 191-202, Dec. 2020.

J. Zhang, W. Xiao, Y. Li, and S. Zhang, “Residual compensation
extreme learning machine for regression,” Neurocomputing, vol. 311,
pp. 126-136, Oct. 2018.

T. Bao, S. A. R. Zaidi, S. Xie, P. Yang, and Z.-Q. Zhang, “A
CNN-LSTM hybrid model for wrist kinematics estimation using sur-
face electromyography,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-9,
2020.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Process., vol. 35, no. 1, pp. 53-65, Jan. 2018.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” ACM Comput. Surv., vol. 53,
no. 3, pp. 1-34, 2020.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50-60, May 2020.

J. Zhang, Y. Li, and W. Xiao, “Adaptive online sequential extreme
learning machine for dynamic modeling,” Soft Comput., vol. 25, no. 3,
pp. 2177-2189, Feb. 2021.

T. T. Dao, “From deep learning to transfer learning for the prediction
of skeletal muscle forces,” Med. Biol. Eng. Comput., vol. 57, no. 5,
pp. 1049-1058, 2019.

D. J. Saxby et al., “Machine learning methods to support personal-
ized neuromusculoskeletal modelling,” Biomech. Model Mechanobiol.,
vol. 19, no. 4, pp. 1169-1185, 2020.

S. Wang, X. Yu, and P. Perdikaris, “When and why PINNs fail to
train: A neural tangent kernel perspective,” J. Comput. Phys., vol. 449,
pp. 1-28, Jan. 2022.

A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, “Conservative
physics-informed neural networks on discrete domains for conservation
laws: Applications to forward and inverse problems,” Comput. Methods
Appl. Mech. Eng., vol. 365, pp. 1-27, Jun. 2020.

L. Von Rueden et al, “Informed machine learning—A taxon-
omy and survey of integrating knowledge into learning systems,”
IEEE Trans. Knowl. Data Eng., early access, May 12, 2021, doi:
10.1109/TKDE.2021.3079836.


http://dx.doi.org/10.1109/TKDE.2021.3079836


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


