
2174 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Computer Vision Based on a Modular Neural
Network for Automatic Assessment of Physical

Therapy Rehabilitation Activities
João A. Francisco and Paulo Sérgio Rodrigues

Abstract— Physical rehabilitation techniques during the
treatment of clinical pathology are one of the most challeng-
ing areas for the medical structure, patients, and families.
In large and continental countries, remote monitoring of
this treatment is essential. However, equipment and medical
follow-up during exercises still have high costs. With the
improvement of computer vision and machine learning tech-
niques, some computational, less expensive alternatives
have been proposed in the literature. However, monitor-
ing patients during physical rehabilitation exercises with
the help of artificial intelligence by a health professional,
especially from the capture of visual signals, is still a chal-
lenge and poorly explored in the scientific-technological
literature. This work aims to propose a new methodology
based on computer vision and machine learning for remote
tracking of the body joints of patients during physiotherapy
rehabilitation exercises. As a new contribution, this work
presents a modular neural network architecture composed
of two modules: one for detecting physical exercises and
another for measuring how much is correct. Another contri-
bution is a strategy for expanding databases, considering
that generic databases for this type of exercise are rare
on the internet. The results showed that both modules
obtained more than 90% of accuracy in recognition and their
respective validation.

Index Terms— Modular neural network, OpenPose, phys-
ical therapy.

I. INTRODUCTION

THE development of machine learning combined with
Artificial Intelligence is mainly due to the vast applica-

tion areas, with engineering, biology, and healthcare as great
examples [4]. Despite undeniable advances, a critical issue
for the importance of Artificial Intelligence [19] is the use of
low-cost technologies for the operation of predictive models,
such as standard cameras and IMU (Inertial measurement unit)

Manuscript received 5 May 2022; revised 2 November 2022;
accepted 27 November 2022. Date of publication 2 December
2022; date of current version 5 May 2023. (Corresponding author:
Paulo Sérgio Rodrigues.)

João A. Francisco Jr. is with the Electrical Engineering Depart-
ment, Centro Universitário FEI, São Bernardo do Campo, São Paulo
09850-901, Brazil (e-mail: joao_junior174@outlook.com).

Paulo Sérgio Rodrigues is with the Computer Science Depart-
ment, Centro Universitário FEI, São Bernardo do Campo, São Paulo
09850-901, Brazil (e-mail: psergio@fei.edu.br).

Digital Object Identifier 10.1109/TNSRE.2022.3226459

sensors for methodologies that use digital signals as input on
the network.

The health area is one of the fields that most benefits from
the use of artificial intelligence, such as cancer treatment with
Convolutional Neural Networks [21]; the treatment of chronic
diseases such as diabetes [6]; the prevention of falls [16]; the
rehabilitation of patients who had a stroke [14], to name a
few examples. The results of such studies are promising, and
the accuracy of the models can be comparable to treatments
performed by health professionals. Nowadays, there is a hybrid
treatment of patients in which the professional uses method-
ologies that employ machine learning to assist in the procedure
and follow-up of the patient [14].

In recent times, with the advancement of artificial intelli-
gence, cheaper sensors and promising results in the literature
have accomplished a new field of study for treating people who
had a stroke, especially in recognizing rehabilitative exercises.
Using cameras in an indoor environment or sensors attached to
the patient’s body, It is now possible to monitor rehabilitative
movements more precisely [3]. Under these technologies,
healthcare professionals can efficiently monitor their patients
with increasing quantitative and qualitative analysis. This
technology allows patients to perform their treatment entirely
remotely [18].

However, there are still many challenges in rehabilitation
using Artificial Intelligence (AI). Many methodologies do not
consider the severity of the patient’s pathology. In contrast, the
assessment by the AI models does not distinguish between
a patient with a severe or mild stroke, which makes the
quantitative and qualitative evaluation relatively poor. The
lack of disease specificity can be important information to
the health professional during the patient’s treatment. There
are also challenges when the healthcare professional wants to
evaluate each step of the rehabilitative activity. One challenge
occurs when the AI model shows the moment when the
exercise is performed incorrectly and what could be done to
improve the rehabilitation movement.

The work proposed here presents two main contributions.
The first is a modular neural network for recognizing and
assessing the assertiveness of physical therapy activities.
The other is data augmentation of the databases used in
the first contribution. As far as we know, neither of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9346-2225
https://orcid.org/0000-0003-3258-0794

FRANCISCO AND RODRIGUES: COMPUTER VISION BASED ON A MODULAR NEURAL NETWORK 2175

two contributions has ever been presented in the related
literature.

As a future impact, these two contributions allow the con-
struction of intelligent computational systems to aid distance
physical therapy and further studies of therapies related to
previous pathologies whose treatment indicated the aforemen-
tioned physical therapy exercises.

II. FUNDAMENTALS OF THE PROPOSED METHODOLOGY

The general idea of the proposed methodology is to use pop-
ular videos available on the internet of people performing three
types of AROM-type (Active Range of Motion) rehabilitative
physical exercises: squat, hip extension, and knee flexion.
After capturing the exercises, the body joint’s identification
and validation are carried out. Then, to identify the body joints
of the person performing the exercises, an AI-based library
called Openpose is used. The Openpose is a well-known
library developed by [5], which uses neural network concepts
to identify 25 human body joints. It is commonly used in the
literature for gesture recognition.

Four angles, studied as sufficient to describe the exer-
cises, were extracted: from the armpits, hip, knee, and lower
limbs, [13], [15], [20]. These angles were stored in two action
banks. Finally, to validate the exercises, two modules with a
back-propagation network were built, the Detection Module
and the Measure Module. Therefore, this section explains the
concepts used to develop the methodology further presented
in Section III. The concepts presented here are: AROM-
type exercises; Openpose; Action Banks; and Modular Neural
Networks.

A. AROM-Type Exercises

The AROM (Active Range Motion) is a category of ther-
apeutic exercises where the health professional measures the
distance in which a joint of the human body can be moved
from two points. These exercises help keep the joints flexible,
reduce pain and improve balance and strength. Before starting
treatment, the physical therapist usually measures the patient’s
range of motion [8]. Three types of exercises were selected
for this article: squat, knee flexion, and hip extension. Each
of these exercises has specific angles to consider. Physical
therapists determine such angles in empirical tests in clinics,
as the work of [20] shows.

1) SquatExercise: This exercise is accomplished by bending
the knees to a specific angle and slightly bending the hips.
The degree of knee flexion angle will determine the type
of squat exercise, which is generally classified as mini-squat
(140◦ − 150◦), semi-squat (120◦ − 140◦), half squat
(80◦ − 110◦) and deep squat (<80◦). Such exercise is mainly
performed to strengthen the lower parts of the body, including
the thighs, hips, and buttocks. It is usually performed with
bare hands, called body-weight squats, or it can be performed
with the help of weights and dumbbells [20]. The Fig. 1(a)
show this type of exercise.

2) Knee Flexion Exercises: These exercises have no prede-
fined angles, which depend on the patient’s dynamic and the
severity of the pathology [15]. However, there are rules that

Fig. 1. Angle of each joint that characterizes a squat-type, knee
flexion-type and hip extension-type exercises. Each angle has specific
values to consider or are more flexible to changes [13], [15], [20].

the patient needs to follow for the exercise to be classified as
knee flexion. Fig. 1(b) shows example angles that the exercise
should consider.

3) Hip Extension: These exercises also have no predefined
angle, depending on the patient’s ability to perform the exer-
cise correctly. The angle between the lower limbs must be
close to 60◦ to perform correctly [13]. Fig. 1(c) demonstrates
how the exercise should be performed.

B. Openpose

Openpose is an application proposed by [5] to recognize
joints in the human body using AI. It is a real-time approach
to detecting the body joints of multiple people in an image or
video. The Openpose method uses a non-parametric represen-
tation, referred to as PAFs (Part Affinity Fields), to learn to
associate human body joints with individuals in the image.

The network architecture includes several 7 × 7 convolu-
tional layers preserving the receptive field. The output of each
layer kernels is concatenated, following a similar approach to
DenseNet [10]. The method has six steps: input image, trust
maps; affinity maps; bipartite combination; and merging of the
results. The algorithm detects 25 points of articulations that
coordinate, specifying the pixel and the probability of that
pixel corresponding to that articulation.

Our work uses the Openpose proposed by [5] as an initial
method for the methodology proposed here.

C. Action Banks

The representation by Action Bank was first proposed
by [17]. The objective was to propose a new representation
of human action in the video. The action bank exploits a large
set of action detectors that behave like the foundations of a
high-dimensional action space that, combined with a simple
linear classifier, can form the basis of a semantically rich
representation for activity recognition. Fig. 2 illustrates the
input images to form the Action Bank.

The action bank representation is a concatenation of max
pooling features in the network used in the volumetric detec-
tion of input images. Each of these networks is called Detector.
Fig. 3 shows the general taxonomy of the formation of the
active bank. The SVM (Support Vector Machine) classifier
detects action according to the feature vector.

2176 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 2. Exercises captured and grouped by class and frames used for
training the networks [17].

Fig. 3. General taxonomy of the formation of the action bank with max
pooling and SVM classifier applied to features extracted [17].

Fig. 4. Output image of the detection module taken from [1]. The
entries are an attention mask and the original image. The type of object
presented in the original is the output.

The Action Bank representation is used in this paper, but
with some modifications. Instead of using the feature vector
after max pooling, the Openpose feature vector will be used
after extracting the kinematic data. Fig. 3 shows the blue part
that the Openpose feature vectors will replace.

D. Modular Neural Networks

Modular neural networks separate large tasks into small
sub-tasks representing a different neural network, called mod-
ules. This structure was first presented in the article by [1]
and later extended to [2]. The main idea is to decompose
big questions into linguistic substructures and dynamically
instantiate modular networks with reusable components for
recognizing objects. In the first paper by [1], all modules
were trained together with five distinct modules: attention,
re-attention, combination, detection, and measure.

The detection module receives an image and an attention
mask. The output is the expected response of the object
or required action. Fig. 4 shows an example of calling this
module.

Fig. 5. Output image of the measure module taken from [1]. The input is
an attention mask, and the output is the response of a boolean sentence
as a question to the network.

Fig. 6. Pipeline of the proposed methodology.

The measure module receives an attention mask and returns
a distribution over labels. Fig. 5 shows an example.

III. THE PROPOSED METHODOLOGY

This section aims to show the proposed methodology
and the description of each module of Fig. 6. Each step is
described in a specific subsection, and each subsection presents
the purpose, input, and output for a given step.

A. General Explanation of Methodology

The methodology starts in step (A) when a patient performs
a set of exercises for lower limbs, and a standard camera in
step (B) captures their movements. In step (C), the Openpose
(Section II-B) identifies the body’s joints in each frame.
In step (D), kinematic data are captured, like the joint’s angles
built in the previous step. In steps (D), (E), and (F), these
kinematics data are stored in the action bank used for testing
and training. In step (F), new movement variations were added
to expand the actions of the previous step. This expansion
allows the measure module to detect exercises performed
incorrectly. This strategy is further described in more detail
in Subsection III-A.6.

1) Step A: Exercises: In this step, the user performs exer-
cises in an environment monitored by a standard camera.
Patients with stroke may have poor mobility of the lower
or upper limbs, depending on the severity [12]. If it is high
severity, passive rehabilitative exercises are prescribed for the
patient; that is, there is the help of the physical therapist.
However, for patients who had little impact on limb movement,
active exercises are prescribed in which the patient performs
them alone [11]. Therefore, in this paper, active exercises
were considered. The main objective is to evaluate how these
exercises would be recognized in people who have some
pathology and need to perform this set of activities.

FRANCISCO AND RODRIGUES: COMPUTER VISION BASED ON A MODULAR NEURAL NETWORK 2177

Fig. 7. Side view of the camera. All exercises must be performed
orthogonally to the camera.

The exercises established for this work are of the type
AROM, as explained in Section II-A. For selecting the three
types of exercises, we follow the literature presented in
Section II.

The first exercise is squat, as shown in Fig. 1(a). Knee
angles were adopted as approximately 40◦, as discussed in
Section II-A with arms straight and extended forward and
hips flexed over the knees. The second movement flexes the
knee, as shown in Fig. 1(b). The knee angle was adopted to
be approximate 100◦ to 120◦. For the correct execution of this
exercise, the lower limbs must perform the movements alter-
nating with each other. The last movement is hip extension,
as shown in Fig. 1(c). This exercise can be performed with or
without support. The angle between the lower limbs can range
from 50◦ to 100◦.

2) Step B: Camera: Since the database used to train the
networks presented here is built with popular databases found
on the internet, the camera chosen for this step can be a
simple standard camera. In this work, the user must perform
the movements in the orthogonal perspective of the camera,
as illustrated in Fig. 7.

3) Step C: OpenPose: This step aims to collect the frames
captured from input camera and estimate the user’s joints
performing the exercise. Then, the OpenPose is used here. The
program’s output represents the body articulation of the person
performing the activity in the captured frames. Furthermore,
a matrix of the size of the frame is generated, where each
position (i, j) corresponds to the probability of the point (i, j)
in the frame belonging to a possible articulation. After filtering
the pixels with the highest probabilistic value, a vector of
25 positions is obtained. Each (i, j) position stands for a 2D
point containing the coordinates i and j of that pixel in the
input image of the OpenPose.

4) Step D: Extraction of Kinematic Features: From the kine-
matic data, the angles between the joints are calculated.
Fig. 8 shows a scheme for calculating angles according to

Fig. 8. Calculation of joint angle. Equation (1). The same type of
triangulation is done for all other joints.

Fig. 9. Structure of the Action Bank.

the coordinates obtained in the previous step. Let D3 be
the Euclidean distance between points (x1, y1) and (x3, y3),
D2 the distance between (x1, y1) and (x2, y2) and D1 a
distance between (x3, y3) and (x2, y2). Then, the angle A is
calculated using the Law of Cosines by Equation (1).

D2
3 = D2

2 + D2
1 − 2.D2.D1.cos A (1)

5) Step E: Action Bank: The action bank aims to store the
vectors of angles obtained with the 25 points extracted from
OpenPose. Fig. 9 illustrates the storage structure.

Each column of Fig. 9 shows the type of exercise a user
performs. Each line stands for the moment at which the first
frame was captured. After reaching an exercise state, the
second frame is captured, until the last frame N , representing
the end of the physical activity. Each matrix position in Fig. 9
shows an angle of the user’s joints in a specific exercise.
The present work uses publicly available databases of people
undergoing physical therapy exercises.

The number of frames varies according to the video’s
size. After identifying the joints of a human body, only the
angles are stored and used to train the detection and measure
networks. Here, only four angles are considered and stored
in each action bank position: armpit angle; knee; hip; and
the angle between lower limbs, extracted using the strategy
shown in Fig. 8. For example, a video containing 300 frames
of a person performing squat exercises results in 300 vectors
containing four angles each, which describe the type of
exercise throughout the video. This data will be stored in a
text file containing the four frames’ four angles.

2178 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 10. Detection module model. The initial network has four input
neurons, eight in the hidden layer with ReLU as the activation function
and three in the output with sigmoid as the activation function.

6) Step F: Action Bank + Variation: This step stands for
storing a copy of the action bank. This action bank aims to
train the measure module, which is responsible for showing
the region in which the exercise is being performed incorrectly.
However, in order to expand the database and the assertiveness
of the proposed architecture here, random noise was added to
the angle values. More details about this expansion can be
further seen in Section IV-A.1.

The network trained with this action bank outputs kinematic
values regarding the angles of each user joint outside the
ground truth, which are the data before adding the random
variations. As far as we know, such an approach is not found
in the literature, so this method is one of our contributions.

The angles considered incorrect are parameters further
changed according to who uses the methodology and wants to
classify it as an invalid exercise. In order to select the incorrect
angles for this work, the angles are analyzed based on the
Openpose method. Then, this work proposes the values of the
parameters that would cause an incorrect exercise.

For the squat exercise, two joints are selected to change
the angles of the arms and hips. For each N frame, angles
between 123◦ and 170◦ are generated; squat-type exercises
cannot be performed with the arms raised. For the hip, angles
are generated between 170◦ and 180◦, implying that the spine
cannot be erect. In knee flexion, the angle of the lower limbs
should be at most 27◦. The hip extension exercise has several
ways to be performed. Therefore, the exercise of this type is
incorrect if it becomes knee flexion; that is, it is classified as
knee flexion with the lower extremities at an angle above 27◦.

7) Step G: Detection Module: This step aims to receive the
angles of the exercises performed by a user and associate them
with the corresponding class in the action bank. The model
presented in Fig. 10 was proposed.

The module Input corresponds to the four angles that
describe the proposed exercises. Initially, only one hidden
layer contains eight neurons (h1, h2, h3, . . . , h8). ReLU is the
activation function of each hidden layer. As an output, there
are three neurons, each representing a class of exercise. The
activation function of the last layer was sigmoid. The weight
of the network is initialized using the He method [9].

The input data to train this network comes from the action
bank. The input network is a four-position vector, such as
[30, 30, 30, 60], representing the angles of the armpits, knee,

Fig. 11. Measure module. The initial network has seven input neurons,
seven in the hidden layer with ReLU as the activation function and six in
the output with sigmoid as the activation function.

hip, and lower limbs. The output is a three-position vector
representing the type of exercise being performed. The vector
[0, 0, 1] represents the class of squat exercises, the vector
[0, 1, 0] the hip exercises, and the vector [1, 0, 0] for knee
flexion.

More hidden layers were added to verify which model
was more accurate during training, testing, and generating the
results. However, it is not enough to recognize all types of
exercises based only on the action bank without variations.
As in Step F (Section III-A.6), here in Step G, random noises
were added to the angles to expand the database. More details
about this expansion can be further seen in Section IV-A.1.

8) Step H: Measure Module: This step has the objective of
assessing whether the exercise performed by the person is
being performed correctly. If it is incorrect, it will show which
member is in error. The model of this network can be seen in
Fig. 11.

The network has seven input neurons, the first three being
the network output of the detection module and the last four
being the small random angles corresponding to the angles of
the armpit, hip, knee, and lower limbs. For example, the vector
[0,0,1,32,32,32,62], which describes a squat-type exercise with
two degrees added as a variation, considering that the correct
vector would be [0,0,1, 30,30,30,60].

There is also a hidden layer containing seven neurons, with
ReLU as the activation function. The output layer also has the
sigmoid activation function and six output neurons. The net
weight was also initialized with the He method [9].

The input data to train this network of measure module
comes from the action bank plus variation (Fig. 6 (H)). The
output of this module is a six-dimensional vector. The first
dimension of the output vector only indicates whether the
exercise is right or wrong. The next five dimensions only indi-
cate which type of error occurred in case the first dimension
indicates that there was an error in the exercise performed
by the user. Empirical tests were carried out to decide the
number of hidden layers of each architecture (detection or
measurement modules).

This network also changed the number of hidden layers
during training, testing, and generating the results. Empirical
tests were performed to determine the number of hidden layers
of each architecture.

FRANCISCO AND RODRIGUES: COMPUTER VISION BASED ON A MODULAR NEURAL NETWORK 2179

9) Step I: Visual Action Response and Correction: This step
displays the results of the network output of the measure and
detection modules. The results are presented in an image,
superimposing in the captured video, the type of exercise,
and the status. If it is being performed wrongly, a correction
recommendation will appear.

IV. RESULTS AND DISCUSSION

This section presents the experiment strategies and the
results obtained after applying them. Therefore, this section
is divided into two subsections: experimental strategy
(Section IV-A) and obtained results (Section IV-B).

A. Experimental Strategy

The experimental strategy of this work is divided into five
main steps: action bank database building, detection module
training; measure module training; metrics; and hardware used.
All are described in more detail in the following sections.

1) Action Bank Database Building: Section III presents the
three classes of exercises: squat, knee flexion, and hip exten-
sion. On the other hand, this work used public videos of
physical exercises to build the stock bank. Each database class
has twelve videos containing between 100 and 500 frames,
thus producing 36 videos with 3600 to 6000 frames. This first
database is denoted here in our work as Base-Original.

The detection module recognizes the exercise even if it
is incorrect. However, as all test examples are of people
performing the exercises correctly, there is expected to be an
error in the classification.

Also, a simple data-augmentation technique was cre-
ated where small random oscillations were added to the
Base-Original in the following body’s articulation: armpit,
hip, and lower limbs (legs). Thus, 36 new videos were
obtained with oscillations in the angles, generating 72 videos:
36 without oscillations and 36 with oscillations. Therefore,
the added random oscillations extrapolate these limits, creat-
ing new artificial videos and a second database denoted as
Original-Oscillation.

Thus, an algorithm was developed to collect the exercises’
original data and generate random angles in each frame. For
the squat exercise, random angles were generated between
140◦ and 170◦ and between 30◦ and 50◦ for the hip. In the
case of armpits, angles between 20◦ and 90◦ and between 90◦
and 140◦ were generated. For knee flexion, angles between 0◦
and 27◦ were generated in the lower limbs. For hip extension,
angles between 20◦ and 90◦ and between 90◦ and 140◦ were
generated for the armpits.

To create the training and testing database of the mea-
sure module, random oscillations with errors were added to
the 36 original videos, following the strategy of Subsec-
tion III-A.6, thus creating a third database denoted here as
Oscillation-Errors.

Thus, three databases were used for the training and testing
phases: The Base-Original, with 36 original videos (used to
train the detection module); The Original-Oscillation, with
72 videos (36 with random oscillation and 36 without such
oscillation), also used to train the detection module; and

Oscillation-Errors with 36 videos with random error oscilla-
tions. Thus, in the entire experiment, 108 videos were used.

2) Detection Module Training: As presented in Section III,
the detection module is a back-propagation neural network
containing three input neurons, initially with one hidden layer
with eight neurons and three output neurons. This network
was denoted as Network-Detection. In order to validate this
network, the results were generated using the Base-Original
and Original-Oscillation databases.

Nine architectures were generated to test the Base-Original
and Original-Oscillation databases and validate which one
obtains greater accuracy in the detection module. Setting epoch
and batch size values: The first architecture has one hidden
layer with eight neurons; the second architecture has one
hidden layer with 12 neurons; the third architecture has two
hidden layers; the fourth architecture has three hidden layers,
and so on until the sixth architecture. The amounts of hidden
layers were kept from the seventh to the ninth architectures,
but this time only varying the epoch and batch size values.
The number of neurons in the hidden layers from the third to
the sixth architecture was empirically determined.

To perform tests, 10% of the data from both databases were
considered (Base-Original and Original-Oscillation) for testing
and 90% for training. It is expected that the accuracy of the
architecture trained with the Original-Oscillation database will
be higher when compared to the accuracy of the architecture
obtained with the Base-Original database, making it possible
to recognize the exercises being performed incorrectly

3) Measure Module Training: As described in Section III,
the measure module is a back-propagation neural network
containing seven input neurons, initially one hidden layer with
eight and six output neurons. This network was denoted as the
Network-Measure. In order to validate this architecture, results
were generated using the Oscillation-Errors database.

As in the Network-Detection training, the Network-Measure
also varied the parameters: number of hidden layers, epochs,
and batch size. The total of generated architectures was also
nine. Under constant epoch and batch size values, the first
architecture has one hidden layer, the second architecture has
two hidden layers, the third architecture has three hidden
layers, and so on until the eighth architecture. The amounts
of hidden layers were maintained in the eighth and ninth
architectures, again varying the epoch and batch size values.

After the training step, we performed tests with videos
that make up 10% of the selected database to validate the
Network-Measure with the Oscillation-Errors database.

4) Metrics Used to Validate the Results of the Detection and
Measure Modules: Two metrics were used to validate the
accuracy of the detection and measure modules: confusion
matrix and area under the ROC curve. The best architecture
with Original-Oscillation database was used for training, and
the best architecture with the Oscillation-Errors database was
used for the measure module. Six confusion matrices were
generated for each class of the Network-Detection and six
others for each Network-Measure class.

5) Hardware Used to Perform the Experiments: The Python
language was used to develop the entire methodology. The
library Keras, Numpy, Scikit-Learn, and Tensorflow were used

2180 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE I
NINE ARCHITECTURES TRAINED WITH BOTH BASE-ORIGINAL

AND ORIGINAL-OSCILLATION DATABASES

to build the two modules. In order to run the Openpose
program, the version compiled for Windows was selected. The
computer used to run Openpose, train, and test modules have
the following specifications: AMD Ryzen 5 3600 CPU; B450
AORUS M motherboard; Dedicated RTX 2060 GPU; 16 GB
of memory and 256 GB of SSD. The code in python and
videos of this article can be found in the GitHub repository.1

B. Results

1) Detection Module: The first test was accomplished with
the Base-Original and the Original-Oscillation databases.
Thus, nine architectures were developed, with 90% of data
used for training and 10% for testing in each database.

The nine types of architectures are summarized in Table I.
The first column represents the types of built architecture.
There are nine architectures, so they were numbered 1-1
through 9-1. The Neurons per Hidden Layer column indicates,
for each architecture, the number of hidden layers and the
number of neurons in each one. For example: in architecture
1-1, there is a hidden layer with eight neurons; architecture 4-1
has three hidden layers, with respectively 10, 8, and 10 neurons
in each. The Epochs column contains the learning iterations
and the Batch Size, the amount of data trained per iteration.

In architecture 2-1, the number of neurons in the first hidden
layer was 10. The results were satisfactory, but new layers
were added from architecture 3-1 to architecture 6-1, varying
the number of neurons between 10 and 8 to improve the pre-
diction. After architecture 6-1, it was noticed that adding more
hidden layers did not improve the results, generating many
false positives. Therefore, the number of epochs and batch size
were changed. In turn, architecture 9-1 achieved satisfactory
accuracy before over-fitting. The same strategy was used to
train the architectures with the Original-Oscillation database.

The accuracy of the architectures trained with the
Base-Original and Original-Oscillation databases are shown
in Table II. Accuracies of architecture 9-1 are similar for both
databases. Observing the graphs shown in Fig. 12 (training
with the Base-Original database, blue line with circles, and
training with the Original-Oscillation database, red line with
asterisks), we can note that the architectures, with each change,
tended to increase the value of their accuracy.

Architecture 9-1 for both databases obtained the best results,
besides being similar. Thus, it was taken to be the default

1https://github.com/joaoJunior174/mestrado

TABLE II
ACCURACY OBTAINED AFTER TRAINING THE NINE ARCHITECTURES

WITH TWO TYPES OF DATABASES: BASE-ORIGINAL AND

ORIGINAL-OSCILLATION

Fig. 12. Accuracy obtained for architectures 1-1 to 9-1 after training
the networks using the Base-Original database (blue line with circles);
Accuracy obtained for architectures 1-1 to 9-1 after training the networks
using the Original-Oscillation database (Red line with asterisks).

Fig. 13. Final model of the detection module: the network has five
hidden layers with ReLU as the activation function and three neurons in
the output with sigmoid as the activation function.

architecture of the detection module. Fig. 13 presents the
network model of this architecture.

When comparing the accuracy of architecture 9-1 for
Base-Original and Original-Oscillation in Table II, we can
note that the results for Base-Original are superior. However,
even with a decrease in accuracy, the results of architecture 9-1
after training its network model with the Original-Oscillation
database are more acceptable, as the network identified the
type of exercise even with small oscillations. The image
of Fig. 14 shows the result of the detection module with
architecture 9-1 after training the network with the Base-
Original.

In the upper left corner, the classification of the exercise as
knee flexion is incorrect when it should be a squat. The reason
is that all the training examples are of people performing the
exercise correctly. Thus, if there is an example of someone

FRANCISCO AND RODRIGUES: COMPUTER VISION BASED ON A MODULAR NEURAL NETWORK 2181

Fig. 14. Squat exercise detection failed with architecture 9-1 after training
the network with Base-Original.

Fig. 15. Failure to detect knee flexion exercise.

doing the exercise incorrectly but still within the exercise class,
the classification may present not coherent results.

The same occurred for an exercise of another class,
as shown in the image of Fig. 15. Also, the upper left corner
indicates the classification as a hip extension when it should
be knee flexion.

However, new acceptable results are generated when train-
ing the architecture 9-1 network with the Original-Oscillation
database. The image in Fig. 16 shows the result of the squat
exercise, indicating in the upper left corner it is incorrect.
Although its execution is incorrect, the function of the detec-
tion module uniquely identifies only the exercise type. The
same occurs for the knee flexion exercise, as shown in the
image of Fig. 17. Also, in the upper left corner, we can see
the correct detection of the exercise.

Fig. 16. Correct detection of the squat exercise.

Fig. 17. Correct detection of knee flexion exercise.

Fig. 18. Correct detection of knee flexion exercise.

More results were generated to validate the accuracy of
architecture 9-1 with the Original-Oscillation database. The
images in Fig. 18 and 19 show these results.

2) Measure Module: Nine new architectures were
built to test the measure module due to the following
factors:

2182 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 19. Correct detection of hip extension exercise.

TABLE III
NINE ARCHITECTURES TRAINED WITH THE

OSCILLATION-ERRORS DATABASE

• The number of input neurons changed;
• The type of exercise performed also represents the angles

with oscillations;
• The output is five neurons that describe the joints;

Thus, both input and output influence the input architecture.
The Oscillation-Errors database was used to train the net-

works of the new architectures. Table III was generated to
summarize the nine types of architectures and their respective
accuracy.

The strategy to build these new architectures was the same
for the detection module. Then, layers were randomly added to
each architecture, varying the number of neurons in each hid-
den layer. The best result was obtained with architecture 9-2.
The graph in Fig. 20 summarizes the accuracy according to
the presented architectures. Architecture 9-2 achieved the best
results. Therefore, it was chosen to be the default architecture
of the measure module. Fig. 21 presents the network model
of this architecture.

More results were generated to validate the accuracy of
architecture 9-2 with the Oscillation-Errors database. The
images in Fig. 22 and 23 show these results.

3) Confusion Matrix and ROC Curve: Based on the confusion
matrix and the ROC curve, the following considerations were
accomplished: the used threshold, 0.1, is in the range of
[0, 0.5]; in the networks of the detection and measure modules,
the cut-off threshold was 0.5; the area under the curve was
calculated; since all graphs showed the same pattern, the
formula side multiplied by height, in this case, specificity

Fig. 20. Accuracy obtained for architectures 1-2 to 9-2, after training the
networks using the Oscillation-Errors database.

Fig. 21. Final model of the measure module. The network has eight
hidden layers, with all hidden layers with ReLU as the activation function
and three neurons in the output with sigmoid as the activation function.

Fig. 22. Correct detection of knee flexion exercise.

TABLE IV
AREAS UNDER THE CURVE FROM CONFUSION MATRICES OF EACH

TRAINING CLASS IN BOTH MODULES (DETECTION AND MEASURE)

multiplied by sensitivity, was used; For the detection module,
the architecture 9-1 was used with its network trained with the
Original-Oscillation database; and for the measure module,
architecture 9-2 was used with its network trained with the
Oscillation-Errors database.

As shown in Table IV, all classes with architectures 9-1
and 9-2 presented satisfactory results. As explained in [7], the

FRANCISCO AND RODRIGUES: COMPUTER VISION BASED ON A MODULAR NEURAL NETWORK 2183

Fig. 23. Correct detection of squat exercise.

closer the area under the curve is to 1 (100% assertiveness),
the more assertive the network. This leads architectures 9-1
and 9-2 to have approximately 90% accuracy.

V. CONCLUSION

This work contributes to the scientific literature on recogniz-
ing and evaluating rehabilitative physical exercises, capturing
videos of people performing physical activities with a standard
RGB camera. A nine-step methodology is proposed to capture
videos of a person performing rehabilitative activities such as
a squat, hip extension, and knee flexion. Two neural networks,
called detection and measure modules, were developed. Both
modules are responsible for recognizing and validating the
type of exercise. The final step is responsible for presenting
the results in the text on the video.

Based on the results, we can note that the accuracies
for architectures 9-1 and 9-2, trained respectively with
Original-Oscillation and Oscillation-Errors, were approxi-
mately 90%. It is possible to notice that the area under the
curve of all classes comes close to the ground truth. With
the areas under the curve being close to the ground truth,
it is evident that the architecture 9-1 and 9-2 networks are
classifiers with satisfactory accuracy.

The proposed methodology can help in two lines of
research. First, it can deal with extracting information from
physical therapy exercises. Then, it is possible to further sta-
tistical analysis, allowing the construction of artificial agents
that can assist health professionals in reaching conclusions
regarding diagnoses and treatments. The second line can be
the construction of artificial agents that accompany the patients
and help them in real-time to execute the exercises correctly.

ACKNOWLEDGMENT

The authors would like to thank the CNPq and CAPES,
the Brazilian agencies for Scientific Financing, FAPESP

(Sao Paulo Research Foundation), as well as to FEI (Ignacian
Educational Foundation) a Brazilian Jesuit Faculty of Science
Computing and Engineering for the support of this work.

REFERENCES

[1] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Deep com-
positional question answering with neural module networks,” 2015,
arXiv:1511.02799.

[2] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Learning to compose
neural networks for question answering,” in Proc. HLT-NAACL, 2016,
pp. 1–10.

[3] F. Ayoubi, S. Chamouni, O. Zein, and A. R. Sarraj, “Virtual reality
movement therapy for post-stroke upper limb rehabilitation trial,” in
Proc. 5th Int. Conf. Adv. Biomed. Eng. (ICABME), Oct. 2019, pp. 1–3.

[4] J. P. R. Caicedo, J. Verrelst, J. Muñoz-Marí, J. Moreno, and
G. Camps-Valls, “Toward a semiautomatic machine learning retrieval
of biophysical parameters,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 7, no. 4, pp. 1249–1259, Apr. 2014.

[5] Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose:
Realtime multi-person 2D pose estimation using part affinity fields,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1, pp. 172–186,
Jan. 2021.

[6] H.-C. Chan, J.-C. Chen, S.-W. Chien, Y.-F. Chen, and C.-T. Bau,
“Evaluation of intelligent system to the control of diabetes,” in Proc.
Int. Symp. Comput., Consum. Control, Jun. 2012, pp. 585–588.

[7] G. A. Diamond, “ROC steady: A receiver operating characteristic curve
that is invariant relative to selection bias,” Med. Decis. Making, vol. 7,
no. 4, pp. 238–243, Dec. 1987.

[8] L. A. Elrefaei, B. Azan, S. Hakami, and S. Melebari, “JCAVE: A
3D interactive game to assist home physiotherapy rehabilitation,” Int.
J. Multimedia Appl., vol. 11, no. 2, pp. 1–20, Apr. 2019.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1026–1034.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[11] I. Indrawati, K. Sudiana, and M. Sajidin, “Active, passive, and active-
assistive range of motion (ROM) exercise to improve muscle strength
in post stroke clients: A systematic review,” in Proc. 9th Int. Nursing
Conf. SciTePress, 2019, pp. 329–337.

[12] W. Ling, G. Yu, and Z. Li, “Lower limb exercise rehabilitation assess-
ment based on artificial intelligence and medical big data,” IEEE Access,
vol. 7, pp. 126787–126798, 2019.

[13] D. A. Neumann, “Kinesiology of the hip: A focus on muscular
actions,” J. Orthopaedic Sports Phys. Therapy, vol. 40, no. 2, pp. 82–94,
Feb. 2010.

[14] N. Norouzi-Gheidari, M. F. Levin, J. Fung, and P. Archambault, “Inter-
active virtual reality game-based rehabilitation for stroke patients,” in
Proc. Int. Conf. Virtual Rehabil. (ICVR), Aug. 2013, pp. 220–221.

[15] Y. Qi, C. Boon Soh, E. Gunawan, K.-S. Low, and A. Maskooki,
“Measurement of knee flexion/extension angle using wearable UWB
radios,” in Proc. 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Jul. 2013, pp. 7213–7216.

[16] J. P. Queralta, T. N. Gia, H. Tenhunen, and T. Westerlund, “Edge-
AI in LoRa-based health monitoring: Fall detection system with fog
computing and LSTM recurrent neural networks,” in Proc. 42nd Int.
Conf. Telecommun. Signal Process. (TSP), Jul. 2019, pp. 601–604.

[17] S. Sadanand and J. Jason Corso, “Action bank: A high-level represen-
tation of activity in video,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 1234–1241.

[18] Q. Sanders, V. Chan, R. Augsburger, S. C. Cramer, D. J. Reinkensmeyer,
and A. H. Do, “Feasibility of wearable sensing for in-home finger
rehabilitation early after stroke,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 28, no. 6, pp. 1363–1372, Jun. 2020.

[19] W. Zhang et al., “Distributed deep learning strategies for automatic
speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2019, pp. 5706–5710.

[20] M. A. Zulkifley, N. A. Mohamed, and N. H. Zulkifley, “Squat angle
assessment through tracking body movements,” IEEE Access, vol. 7,
pp. 48635–48644, 2019.

[21] M. Saric, M. Russo, M. Stella, and M. Sikora, “CNN-based method for
lung cancer detection in whole slide histopathology images,” in Proc.
4th Int. Conf. Smart Sustain. Technol. (SpliTech), Jun. 2019, pp. 1–4.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

