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Abstract— Quantitative evaluation of human stability
using foot pressure/force measurement hardware and
motion capture (mocap) technology is expensive, time
consuming, and restricted to the laboratory. We propose
a novel image-based method to estimate three key
components for stability computation: Center of Mass
(CoM), Base of Support (BoS), and Center of Pressure (CoP).
Furthermore, we quantitatively validate our image-based
methods for computing two classic stability measures,
CoMtoCoP and CoMtoBoS distances, against values
generated directly from laboratory-based sensor output
(ground truth) using a publicly available, multi-modality
(mocap, foot pressure, two-view videos), ten-subject human
motion dataset. Using Leave One Subject Out (LOSO) cross-
validation, experimental results show: 1) our image-based
CoM estimation method (CoMNet) consistently outperforms
state-of-the-art inertial sensor-based CoM estimation
techniques; 2) stability computed by our image-based
method combined with insole foot pressure sensor data
produces consistent, strong, and statistically significant
correlation with ground truth stability measures (CoMtoCoP
r = 0.79 p < 0.001, CoMtoBoS r = 0.75 p < 0.001); 3) our fully
image-based estimation of stability produces consistent,
positive, and statistically significant correlation on the
two stability metrics (CoMtoCoP r = 0.31 p < 0.001,
CoMtoBoS r = 0.22 p < 0.043). Our study provides promising
quantitative evidence for the feasibility of image-based
stability evaluation in natural environments.

Index Terms— Image-based, stability, base of support,
center of mass, center of pressure, deep learning.

I. INTRODUCTION

FALLS in the elderly are an important worldwide health
problem [1], and their frequency increases with age [2].

Therefore, frequent and accurate monitoring of human motion
stability, especially for the elderly, becomes more and more
necessary [3], [4], [5]. Three essential and commonly used

Manuscript received 13 July 2022; revised 20 October 2022;
accepted 9 November 2022. Date of publication 1 December 2022; date
of current version 1 February 2023. This research is supported in part by
NSF grant IIS-1218729, NSF grant IIS-1909315, and the Penn State Col-
lege of Engineering Dean’s office. (Corresponding authors: Jesse Scott;
Yanxi Liu.)

This work involved human subjects or animals in its research.
Approval of all ethical and experimental procedures and protocols was
granted by the IRB of Penn State University under Application No. IRB
STUDY8085. PSU-TMM100 was collected through Penn State University
IRB STUDY8085, originally approved on March 19, 2018. The dataset
was previously published in [10].

Jesse Scott, Robert T. Collins, and Yanxi Liu are with the School of Elec-
trical Engineering and Computer Science, Penn State University, Uni-
versity Park, PA 16802 USA (e-mail: jus121@psu.edu; rtc12@psu.edu;
yul11@psu.edu).

John Challis is with the Biomechanics Laboratory, Kinesiology Depart-
ment, Penn State University, University Park, PA 16802 USA (e-mail:
jhc10@psu.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2022.3226191, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2022.3226191

Fig. 1. Stability components and two stability metrics (CoMtoCoP
and CoMtoBoS) relative to localized foot pressure with CoP (red star),
CoM (blue star), BoS (green border), foot pressure (yellow/red/brown
gradations), and stability metrics (cyan lines) [10].

component measures for human stability assessment are: Base
of Support (BoS), Center of Pressure (CoP), and Center of
Mass (CoM) [6], [7] (Fig. 1). Accurate estimation of these
key components is currently expensive and time-consuming,
involving foot pressure/force plates, motion capture hard-
ware/software, and tedious post-processing of error-prone sen-
sor data [8], [9]. For these reasons, stability measurement
is usually restricted to a laboratory environment. A fully or
partially image-based method for stability monitoring would
be an attractive alternative for deployment in rehabilitation or
elder care facilities where unencumbered long-term monitoring
could have significant clinical value and allow for preventative
or timely corrective interventions to reduce falls.

In recent years, human pose extraction from images and
video has become an active research area in computer vision
and machine learning [11]. However, little work has been
done in image-based mapping of body kinematics (pose)
to dynamics (foot pressure/force). In an initial study [10],
we demonstrated the feasibility of predicting foot pressure
from images of human pose. We take a step further in this work
to explore the feasibility of predicting BoS, CoP, and CoM
measures from visual input, and of using these image-based
estimates to compute two classic human stability metrics:
CoMtoCoP and CoMtoBoS (Fig. 1, Table I).

Using Taiji (a.k.a. Tai Chi) performance data provided by
the PSU-TMM100 dataset [10], this work makes the following
main contributions:
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TABLE I
SELECTED BIOMECHANICAL STABILITY METRICS DETERMINED FROM

CoM, CoP, AND BoS

1) developing and validating an image-based machine learn-
ing algorithm for CoM estimation from image data;

2) assessing two stability metrics (Table I) with a thorough
comparison using component values CoP, BoS, and CoM
obtained from either image-based or sensor-based (ground
truth) measurements (23 = 8 combinations evaluated);

3) finding that a fully image-based approach (eliminating
the need for foot pressure sensors and motion capture) pro-
duces stability estimates that are positively correlated with
ground truth (CoMtoCoP r = 0.31 p < 0.001, CoMtoBoS
r = 0.22 p < 0.043); and

4) finding that insole foot pressure data combined with
image-based foot localization and CoM prediction (eliminating
need for motion capture hardware) produces stability estimates
that are strongly correlated with ground truth estimates (CoM-
toCoP r = 0.79 p < 0.001, CoMtoBoS r = 0.75 p < 0.001).

The paper is organized as follows: Section II covers
background information on stability components and metrics,
image-based estimation of dynamics, and the PSU-TMM100
dataset that provides ground truth sensor measurements in
this research. Section III covers calculation of the stability
components from ground truth data and image-based data,
while Section IV covers the stability metric calculations.
Section V quantifies and visualizes image-based estimates for
CoM, CoP, BoS, CoMtoCoP, and CoMtoBoS, and compares
them with sensor-based ground truth estimates. Section VI
summarizes the results.

II. BACKGROUND

In a review of video-based measurement for human move-
ment science, Seethapathi et al. [15] indicate that improving
kinematic accuracy and estimating dynamics (contact forces)
are the key to practical use of computer vision as a tool in bio-
mechanics. Upright human body stability is often investigated
by examining relative motion of the CoM compared to the
BoS or CoP, which requires measurement of pose and contact
forces. Currently, no research exists that uses standard RGB
video cameras to automatically determine human body stabil-
ity during complex actions. Our approach is novel in being the
first to use pose and ground force dynamics computed solely
from video for stability analysis.

A. Balance and Stability
Balance and stability are terms often used interchangeably

to describe how well an individual is able to keep from
falling. In kinesiology, balance describes maintaining static
position without significant movement; e.g., balancing on one
foot [6]. Stability describes continuing dynamic movement of

the body while preventing an uncontrolled fall or unplanned
movement [16]. Humans have a natural physiological ability to
sense their own balance and maintain stability [17], but there is
a difference between perception and physical ability that is not
easily determined [18]. Computational evaluation of quantified
stability uses specialized equipment like force plates to capture
3D foot forces and motion capture technology to measure body
movements [6], constraining research to a laboratory setting
and limiting its ecological validity.

B. Quantification and Metrics

A comprehensive review by Bruijn et al. [19] breaks
stability metrics into three categories: 1) ability to recover
from small perturbations, derived from dynamical systems
theory and biomechanics, 2) ability to recover from larger
perturbations, and 3) determining the maximum controllable
perturbation.

The size of the BoS determines the tolerable condition dur-
ing gait termination [20] and unexpected perturbation recovery
in upright stance [21]. King et al. identify a decrease in the
size of the functional BoS with increasing age [22]. Given that
the BoS is a determinant of upright stance balance and gait
stability, its quantification is an important feature during the
analysis of human movement. BoS boundaries are established
in [23] by subjects swaying in a circular fashion, defining
the boundary by the maximum CoP positions. Force plate
and motion analysis data are used to determine a BoS of
subjects walking in [24], but these testing conditions limit data
collection to a laboratory. Body segment inertial properties and
motion analysis data are used in [25] to generate estimates of
the CoP motion during gait, while CoP motion is determined
for sidestep movements by exploiting convolutional neural
network (CNN) models in [26].

Previous work has reported using the center of the hip
joints as an approximation for CoM; e.g., [27]. More recently,
Chebel et al. [28] present a state-of-the-art neural network for
3D CoM estimation using two subject height measurements
(head and hip) and 11 inertial sensors measuring joint angles as
input while subjects either squat in place or walk. They report
RMSE errors in a componentwise format that works out to
total 3D mean error of 18.1 mm for a full body model tested on
new subjects. In comparison, our CoMNet (Section III-B.1),
a neural network predicting 3D CoM trained on image-based
poses only and tested on unseen subjects, has a mean error of
17.6 mm.

C. Image-Based Dynamics Estimation

Previous work in computer vision and graphics has explored
estimation of ground contact forces from video and pose [29],
[30], [31], [32], [33], but these estimates tend to be simple
force vectors rather than the full foot pressure maps estimated
in our work.

Using an RGB-D camera to record objects with known
geometric and physical properties being manipulated by
hands, [34] and [35] estimate the distribution of forces among
the fingers in contact from vision-derived first and second
order object kinematics using a network learned from hours
of hand-object interactions. This approach shows progress in
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Fig. 2. PSU-TMM100 data collection. (a): Top-down view of motion capture environment. (b): 3D pose computed from two video camera views.
(c): Foot pressure recorded synchronously using insole sensors.

estimating dynamics from video, but it is constrained to hands,
requires sensing depth in addition to video, and is not ground
truth validated.

D. PSU-TMM100 Dataset

Ground truth (GT) data for training and evaluation in this
work is provided by simultaneously recorded video, motion
capture, and foot pressure sensor data (Fig. 2) from the PSU-
TMM100 dataset [10], where subjects perform approximately
five-minute-long Taiji sequences by moving continuously
through a set of complex body poses with a large range of joint
articulations and limb orientations. PSU-TMM100 is the only
available dataset that includes synchronized, sensor-measured
recordings of these three modalities, making it a unique
and valuable resource for learning to predict stability from
imagery. The dataset was collected using IRB-approved proto-
cols (Study8085, initial approval 03-19-2018) with informed
consent from all subjects. PSU-TMM100 demographics are
ten subjects (five male and five female) with a wide range of
experience performing Taiji (4–40 years, μ = 13, σ = 12)
and an average of ten performances (75,775–158,875 frames,
μ = 131, 535, σ = 26.749) sampled at 50 Hz from each
subject. As Taiji is a slow activity, all experiments use a
sub-sampling of data to 5 Hz, reducing the computational
resources needed for extensive training and testing on 5-minute
motion sequences. Subjects have a broad range of mass (52.5–
77.11 kg, μ = 63.70, σ = 6.95) and height (1.54–1.80 m,
μ = 1.66, σ = 0.08). Four performances (takes) of Subject 2
(Takes 7, 9, 10, and 11) contain corrupt foot pressure data due
to an insole sensor malfunction during recording. These outlier
takes were discarded from the dataset prior to performing any
evaluations reported in this paper.

1) Motion Capture: Ground Truth (GT) 3D pose in the
dataset is provided by a Vicon motion capture system. Fig. 3c
shows the 21 GT joints whose kinematics are generated by
the Vicon Plug-in Gait (PiG) model, which is based on the
Conventional Gait Model (CGM) [36], [37] originating from
generic body segment inertial properties originally derived by
Dempster from cadaver data [18], [38]. The PiG model also

generates the GT CoM. A study comparing CoM location
estimated by the Dempster parameters versus a more accurate
reaction board method indicates a difference of 1 % or less
expressed as a percentage of subject height (Fig. 5 of [39]),
which for this dataset is 16.8 mm.

2) Video Pose: Two HD video camera views spatiotempo-
rally synchronized with the mocap system provide the data
for estimating image-based pose (Fig. 2b). Four body joint
configurations, OpenPose (OP), Mocap (GT), BioPose (BP),
and HybridPose (HP), are used in this study (Fig. 3).

We use OpenPose, an open-source 2D human pose estima-
tor [40], [41] to predict 2D body joint locations, and two-view
triangulation [42] to reconstruct those 25 3D joint estimates
(Fig. 3a). Triangulation of two views requires synchronized
and calibrated cameras. While estimation of 3D pose from a
single camera view is desirable, state of the art in that area
is not yet mature, suffering from lower joint detection rates,
decreased joint position accuracy, and inaccurate estimation of
3D body orientation with respect to gravity [43].

There are 12 joints in common between GT (Fig. 3c) and
OP, and we train the BioPose correction network from [10],
[44] to predict those 12 common joints (OP 1-12), improving
their 3D biomechanical accuracy and generating BioPose
(BP) joints (Fig. 3d). Lastly, HybridPose (HP) (Fig. 3b) is
constructed by combining BioPose joints (BP 1-12) with the
13 remaining non-overlapping OpenPose joints (OP 13-25).

3) Insole Pressure Measurement: This research uses insole
pressure data spatiotemporally synchronized with the video
and motion capture data as the GT foot pressure (Fig. 2c) for
training and testing the dynamics estimation networks. Insole
sensors accurately measure foot pressure normal to the sensing
plane, but with slower response times than force plates [45],
although still fast enough for human movement [46].

III. STABILITY COMPONENTS

A. Ground Truth (GT) CoM, BoS, and CoP

1) Center of Mass (CoM): The CoM is the 3D point about
which the mass of a body is evenly distributed [47]. The 3D
CoM can be calculated for static and rigid objects, but the



SCOTT et al.: IMAGE-BASED STABILITY QUANTIFICATION 567

Fig. 3. Comparison of body joints. (a): OpenPose (OP) [40], [41].
(b): HybridPose (HP) joints = BP ∪ OP(13-25). (c): Ground Truth from
Vicon motion capture (GT). (d): BioPose (BP) = GT ∩ OP. BP joints are
common to all joint sets. HP is the 12 BP joints plus the remaining 13 OP
joints.

human body is much more complex with varying human tissue
masses, body shape, and articulated body pose. Ground truth
3D CoM is calculated by Vicon PiG and is available directly
from the motion capture portion of the dataset. Vicon PiG
lower body model has been medically validated [48], [49],
with [50] providing a thorough evaluation of PiG (and CGM)
establishing its widespread use as well as the model’s strengths
and weaknesses. For the purposes of this study, we treat PiG-
modeled joints and calculated CoM as ground truth, following
the precedent set by many biomechanical research laboratories
and commercial applications [51]. Specifically, the CoM is a
3D position; when projected onto the floor plane, it is referred
to as the 2D CoM.

2) Base of Support (BoS): BoS is the convex hull that
includes every point of contact that the subject makes with
the supporting surface, including body parts (feet or hands) or
support devices (crutches or walker) [52]. Ground truth BoS
is calculated from insole foot pressure maps after the feet are
spatiotemporally localized using the mocap position of the
ankles and toes to determine both location and orientation.

This localized pressure map is used to create a binary mask
of pressures above a minimum threshold (multiple thresholds
are evaluated in Fig. 5 and 6) from which a convex hull is
calculated (Fig. 8).

3) Center of Pressure (CoP): The CoP is the point at which
the ground reaction force vector intercepts the supporting
surface, calculated as the weighted sum of all forces acting
between a physical object and its supporting surface [53]. CoP
is calculated as a spatially weighted mean of all foot pressure
samples in the XY plane of the floor using the same localized
pressure map used in the calculation of BoS (Fig. 8).

B. Image-Based CoM, BoS, and CoP

Input for our image-based CoM, CoP, and BoS computation
begins with triangulated 3D poses calculated from two camera
viewpoints (Fig. 2b). All experiments use the same Leave One
Subject Out (LOSO) data segmentation for cross-validation,
ensuring that the subject being evaluated has not been used in
training.

1) CoM Prediction: We use a two-layer fully connected
neural network called CoMNet to predict the CoM on a
per-frame basis. CoMNet is trained to take 3D pose data
and regress a 3D CoM location relative to the hip center.
While CoMNet uses joint locations, it does not require the
joint velocities/accelerations, subject measurements (height or
weight), or the Dempster tables [38] to predict a CoM.

CoMNet training is completed on a Nvidia Quadro K4000
with an RMSE loss function and an Adam optimizer. The
network is empirically optimized to have 3072 wide fully
connected input and hidden layers using batch normaliza-
tion, a rectified linear unit, and 50 % dropout regularization.
CoMNet training takes approximately 2 hours for each of
the 10 LOSO cross-validations. It takes 25 epochs with an
initial learning rate of 5e − 4 and a piece-wise learning rate
drop factor of 0.25 every 5 epochs. The CoMNet network
and training weights will be available upon request following
publication.

2) CoP and BoS Prediction: We use the PressNet-Simple
3D (PNS3) network from [10] for image-based foot pressure
predictions. While OpenPose joint data are shown in [10] to
be the best input for predicting foot pressure, we evaluate
motion capture, HybridPose, and OpenPose data for foot
localization for all takes of PSU-TMM100. The calculation of
CoP and BoS follows the same calculation steps as the ground
truth process but replaces sensor inputs with image-based
data. CoP and BoS are used for comparing each image-based
configuration against ground truth motion capture and insole
pressure data. CoP accuracy is evaluated using Euclidean
distance between predicted and ground truth locations. BoS
is evaluated using the Intersection over Union (IoU) metric,
also known as the Jaccard Index [54].

IV. STABILITY METRICS

After a thorough review of the human balance and sta-
bility literature; e.g., [7], [12], [14], [19], [55], [56], two
well-established stability metrics were selected for evaluation
in this paper: CoMtoCoP and CoMtoBoS (Table I). These two
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metrics can be calculated from the available data modalities
and are well suited for a non-repetitive performance like
Taiji that focuses on maintaining biomechanical stability. Both
metrics are easily understandable and collectively use all three
stability components CoP, CoM, and BoS. A more extensive
set of experiments that include additional stability metrics
xCoMtoBoS, CoMvtoBoS, and TTC (time to contact) can be
found in the first author’s Ph.D. thesis [57].

A. CoMtoCoP

The Euclidean distance between a subject’s 2D CoM and
CoP measures the spatial difference between ground reaction
force and gravitational force (Table I, Equation 1) [12], [13].
Conceptually, the further apart these two points are, the greater
the potential for instability [7]. While keeping the two points
close together may seem advantageous, in dynamic tasks,
trained athletes can tolerate greater excursion compared to
those not trained [59], as can the young compared with the
old [60]. Therefore, subjects who are better at maintaining
their stability (perceptually and physically) can allow this
distance to become large while still being able to avoid
instability. CoMtoCoP is a nonnegative distance measurement
typically reported in millimeters, with values normally near
zero. A larger variance during a performance indicates subjects
with better stability control.

B. CoMtoBoS

The Euclidean distance from the 2D CoM to the border
of the BoS quantifies both the magnitude and condition of
mechanical imbalance (Table I, Equation 2) [14]. CoMtoBoS
magnitude is the distance from the CoM to the nearest point
on the BoS boundary; CoMtoBoS is positive if CoM is inside
the BoS and negative otherwise. Negative values indicate
imbalance/instability that requires intervention to prevent an
eventual fall while positive values indicate mechanical balance
and stability [14]. There is an inherent maximum positive
distance and no limit in the negative direction, but small
positive values indicate better stability control [7].

V. RESULTS

A. CoM Prediction

Fig. 4 evaluates CoM location estimates produced by vari-
ous configurations of CoMNet against Vicon PiG CoM esti-
mates (GT) provided with the dataset. HybridPose CoMNet,
that is, CoMNet trained to take HybridPose 3D joint estimates
as input, outperforms CoMNet trained on either BioPose or
OpenPose joints. HybridPose CoMNet is thus the best per-
forming variant using purely image-based inputs, with mean
(+/- std) location error of 17.6 (6.1) mm. Noting that GT
CoM locations provided by PiG are computed by a segmen-
tal method using Vicon Mocap joints and Dempster table
parameters, two additional baseline methods are evaluated.
“Dempster” is the Dempster segmental method applied to
image-estimated HybridPose 3D joints. The larger mean error
of 27.5 (13.0) mm indicates that CoMNet is compensating
for differences between 3D joints estimated by HybridPose
and Mocap. A second baseline, “Mocap,” is our CoMNet

Fig. 4. 3D CoM prediction error (mm) of CoMNet when input pose
comes from: OP, BP, HP (best), and Mocap (practical limit) as well
as Dempster [38] applied to HP joints and Chebel et al. [28]. Statistics
provided: mean (Std) and median (rStd) as compared to GT CoM derived
from Vicon PiG (Section II-D.1). Results are based on poses when all
body joints are detected. Robust standard deviation (rStd) = 1.4826 times
median absolute deviation (MAD) [58].

trained using GT Mocap joint data as input. The mean error
of 12.5 mm establishes a practical limit on CoMNet accuracy
when input joints are as accurate as possible.

ComNet HybridPose outperforms BioPose input joints,
indicating that useful information is learned by CoMNet
when the additional 13 OpenPose joints are combined with
BioPose joints. Additionally, all image-based configurations
produce similar and consistent results. Using only image-based
pose input, CoMNet establishes a state of the art better
than the mean Euclidean error of 18.1 mm achieved by
Chebel et al. [28] that requires subject measurements and
inertial sensors.

B. CoP

Fig. 5 shows results of the PNS3 network architec-
ture [10] on all valid performances in the dataset for over-
all mean/median (black solid/dashed) and per-subject mean
(colors) accuracy. We compare ground truth foot localization
with HybridPose and OpenPose localization to quantify the
performance of image-based localization. All three foot local-
ization plots show peak performance between 10 kPa [61]
and 15 kPa [62] (indicated by gray vertical lines), which are
commonly used threshold and peak accuracies, respectively.
There are three key observations:

1) HybridPose localization provides the best fully
image-based CoP results due to improved ankle
accuracy from the BioPose network, with 51.3/48.0 mm
(mean/median) error being a small increase from the
mocap localization error of 43.5/41.6 mm.

2) HybridPose does not uniformly improve CoP results
over OpenPose as Subjects 7 and 8 (light and dark blue
plots in Fig. 5) are better with OpenPose.

3) The all-performances results are similar to the one-take-
per-subject results reported in [10].



SCOTT et al.: IMAGE-BASED STABILITY QUANTIFICATION 569

Fig. 5. CoP �2 error (mm) relative to sensor-based GT (lower better). All results use PNS3 [10] predicted pressure distribution maps and foot
localization from (a) Mocap, (b) HybridPose, or (c) OpenPose, respectively. BioPose localization is excluded due to a lack of required joint locations,
toes and heels (Fig. 3d). HybridPose input (b) provides the best image-based result. The x-axis shows increasing thresholds (kPa) where pressures
below the threshold are set to zero.

Fig. 6. BoS accuracy using IoU relative to sensor-based GT (higher better). All results use PNS3 [10] predicted pressure distribution maps and foot
localization from (a) Mocap, (b) HybridPose, or (c) OpenPose, respectively. BioPose localization is excluded due to a lack of required joint locations,
toes and heels (Fig. 3d). HybridPose input (b) provides the best image-based result. The x-axis shows increasing thresholds (kPa) where pressures
below the threshold are set to zero.

C. BoS

BoS was also evaluated on all valid performances to
determine how different foot localization methods affect IoU
accuracy (Fig. 6). Foot localization accuracy affects IoU of
BoS more than CoP error as foot pressure pixels of small
magnitude can cause large changes in the size and shape of
the BoS while having little change on CoP. There are three
key observations:

1) HybridPose localization provides the best (higher
is better) image-based IoU results (improved ankle
accuracy from BioPose network) with 51.24/53.78%
(mean/median); a small decrease from the mocap local-
ization IoU of 61.76/64.32%.

2) HybridPose does not uniformly improve IoU results over
OpenPose as Subjects 7 and 8 (light and dark blue plots
in Fig. 6) are better with OpenPose.

3) The all-performances results of each subject are similar
to the one-take-per-subject results in [10], suggesting
those one-take results were statistically representative.

D. Stability Metrics

To evaluate image-based estimation of stability metrics,
CoMtoCoP and CoMtoBoS are calculated from combinations
of ground truth (GT) and image-based estimates (IM) over

three data channels (foot pressure, foot localization, and CoM)
for eight combinations total. The image-based estimates used
are: 1) PNS3 with OpenPose for foot pressure (shown in [10]
to be the state of the art); 2) HybridPose for foot localization
(shown in Fig. 5b and 6b to produce the best CoP and BoS
results); and 3) HybridPose CoMNet for CoM (shown in
Fig. 6b to provide the most accurate CoM estimate).

Stability metric values computed from each combination are
compared to fully ground truth estimates to determine correla-
tion coefficient (r-value) and statistical significance (p-value).
The mean and std of r-values across all ten Leave One Subject
Out (LOSO) experiments are reported in Table II. Using
sensor-based pressure measurements (GT) with image-based
inputs (IM) for localization and CoM (Table II blue ) pro-
duces correlation r-values of 0.79 and 0.75 for both CoMtoCoP
and CoMtoBoS, respectively. Using image-based localization
and CoM eliminates the need for motion capture hardware.
Switching to image-based foot pressure; i.e., fully image-based
stability (Table II green ), yields reduced but still positive
correlation coefficients of 0.31 and 0.22, respectively.

From Table II results, it is observed that image-based foot
pressure prediction has the largest effect on the r-values with
1.00 to 0.39 and 1.00 to 0.32 decreases relative to GT input for
CoMtoCoP and CoMtoBoS, respectively. Conversely, image-
based foot localization effects on r-values are relatively small
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TABLE II
COMBINATORIAL STUDY OF CORRELATION COEFFICIENT (R-VALUE) WITH MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION (STD) OF

DISTANCE FROM GT CALCULATIONS FOR BOTH COMTOCOP AND COMTOBOS COMPARED TO ALL GROUND TRUTH IN MM. COP AND BOS ARE

DIRECTLY COMPUTED BY COMBINING PRESSURE AND LOCALIZATION. INPUT COMBINATION ORDER: FOOT PRESSURE - FOOT LOCALIZATION -
CENTER OF MASS. DATA SOURCES ARE GROUND TRUTH (GT) OR IMAGE-BASED PREDICTIONS (IM). VALUES ARE THE MEAN FOR ALL TEN

LOSO EXPERIMENTS. KEY COMBINATIONS ARE ALL GROUND TRUTH , ONLY GT FOOT PRESSURE , AND FULLY IMAGE-BASED

CORRESPONDING TO FIG. 7. ONLY COMPLETE PERFORMANCES ARE INCLUDED AND ALL

RESULTS ARE P <= 0.001 EXCEPT P < 0.05(*) AND P > 0.05(+)

Fig. 7. Examples of CoMtoCoP results highlighting similar trends of all three combinations presented: fully ground truth (red), ground truth foot
pressure with all other inputs image-based (blue), and fully image-based (green). Based on CoMtoCoP r-value: Subject2 - Take6 (top) is the best
for Only GT Pressure and Subject9 - Take3 (bottom) is the best for Fully Image-based. Plots include image call-outs of key poses with video joint
overlay, mean, standard deviation, median, and r-value for each combination. Plot colors are related to highlighted columns of the comprehensive
results in Table II. The red line heavily occludes blue and green because of very strong correlation.

with 1.00 to 0.88 and 1.00 to 0.86 decreases, respectively,
while image-based CoM effects are also small with 1.00 to
0.88 and 1.00 to 0.83 decreases, respectively. These results
indicate that image-based foot pressure estimation has the
largest room for improvement at approximately five times the
r-value effect of image-based localization or CoM estimation.

Table II also reports the Mean Absolute Error (MAE) for
each of the eight combinations of stability estimates rela-
tive to GT. MAE consistently increases when the stability
metrics use more image-based input data, while standard
deviation increases primarily when image-based foot pressure
is included. The only minor difference between the two metrics
is that CoMtoBoS has both lower r-values and MAE across
most combinations when compared to CoMtoCoP. Since both

BoS and CoP derive from foot pressure, it is expected that
both metrics would have generally similar behavior (Fig. 5
and 6). Additionally, the overall lower values are expected
since CoMtoBoS has a data range that includes negative
values, unlike CoMtoCoP which has to be ≥ 0.

Fig. 7 visualizes CoMtoCoP stability metric results for
two performances by plotting a fully ground truth result
computed using motion capture and insole sensors com-
pared to two combinations that use some or all image-based
input data: 1) image-based localization and CoM predic-
tion with GT foot pressure, which eliminates the need for
motion capture sensor requirements and 2) fully image-based
predictions that eliminate both motion capture and foot
pressure sensor requirements. As compared to the red
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Fig. 8. Image-based stability results compared to GT of Subject 1 - Take 3 (Top) and Subject 9 - Take 3 (Bottom) representing the best performance
(based on r-value) for CoMtoCoP and CoMtoBoS, respectively. Each frame includes input images, motion capture, and foot pressure plus output
stability components and metrics. Samples include single foot leg lift (Left) and double foot lunge (Right) poses selected from full performances.
Results color map: Ground Truth (red), Image+Insole (blue), and Image-based (green).

curve showing ( All Ground Truth ) results, Subject 2 -
Take 6 represents the best r-value results for the blue
curve ( Only GT Foot Pressure ) while Subject 9 - Take
3 represents the best r-value results for the green curve
( Fully Image-based ). Each plot includes six keypose images
with detected joint overlay. Both plots show strong overlap
between the blue and red curves due to their strong correlation
(r = 0.97 and 0.87), while the green curves exhibit only
partial overlap with the red ground truth curves, reflecting only
moderate correlation (r = 0.40 and 0.50).

Fig. 8 focuses on the qualitative results of calculating
imaged-based stability components (CoP, BoS, and CoM) and
stability metrics (CoMtoCoP and CoMtoBoS). The frames
show two Taiji poses from performances by Subject 1 -
Take 3 (top) and Subject 9 - Take 3 (bottom), representing
the best r-value results (0.48 and 0.50, respectively) when
using Fully Image-based estimation with PNS3 (OpenPose)
foot pressure prediction, HybridPose for foot localization,
and CoMNet from HybridPose for CoM prediction (green in
Table II). These information-rich frames (Fig. 8) facilitate at
a glance a qualitative comparison of estimated components
CoM, CoP, BoS and stability measures CoMtoCoP and CoM-
toBoS computed from either all ground truth values (red),
using ground truth insole pressure but otherwise image-based
estimates (blue), or fully image-based estimation (green).

There are two key takeaways from this analysis. First,
a fully image-based approach (eliminating the need for foot
pressure sensors and motion capture) produces stability esti-

mates that are positively correlated with GT (CoMtoCoP
r = 0.31 p < 0.001, CoMtoBoS r = 0.22 p < 0.043).
Second, a hybrid approach using insole foot pressure sensor
data combined with image-based foot localization and CoM
prediction (eliminating need for motion capture hardware)
produces stability estimates that are strongly correlated with
GT estimates (CoMtoCoP r = 0.79 p < 0.001, CoMtoBoS
r = 0.75 p < 0.001).

E. Computational Costs

For each sampled time instance, all data processing and
analyses are performed in under 2 seconds using an 8 core
PC with 64 GB of RAM, without optimizing for speed of
processing. Of this time, over 1 second is used to estimate
the 3D image-based pose while the remaining time is used
for foot pressure and CoM estimation combined with stability
calculations.

F. Stability Trends Analysis

Based on the stability analysis completed at 5 Hz sam-
pling rate (Section II-D), low frequency content is modeled
using a zero-lag, low-pass filter (0.2 Hz). Fig. 7 stability
metric data are low-pass filtered to generate low frequency
stability trends (Fig. 9). The computed “Only GT Pressure”
and “Fully Image-based” curves for Subject 2 (r-values of
0.98 and 0.67 compared to low-pass filtered ground truth) and
Subject 9 (r-values of 0.88 and 0.62) illustrate similar trends;
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Fig. 9. Smoothed CoMtoCoP (left) and CoMtoBoS (right) stability and their derivative curves from Fig. 7 highlighting similar trends between ground
truth (red), image-based with insole sensor only (blue) of Subject 2 (top), and fully image-based (green) of Subject 9 (bottom). Gray circles highlight
when derivatives are well correlated.

i.e., upward/downward-sloping curves, indicating relative con-
sistency with GT stability measures.

VI. CONCLUSION

This work demonstrates that image-based stability quan-
tification is computationally feasible (Fig. 8). Using 2D pose
extracted from two RGB cameras, 3D pose is triangulated and
used to predict foot pressure and to compute CoM. The pre-
dicted foot pressure is further combined with image-based foot
localization to calculate BoS and CoP. These three stability
components (CoM, CoP, and BoS) are combined to calculate
image-based predictions of stability metrics CoMtoCoP and
CoMtoBoS, which are quantitatively shown in Section V-D
to have significant positive correlation with the GT stability
metric values. Stability metrics computed from image-based
pose combined with pressure sensors produce strong correla-
tions of 0.79 and 0.75, respectively. Fully image-based stability
estimates have lower yet positive correlations of 0.31 and
0.22 with ground truth, respectively, indicating the potential
feasibility for fully image-based stability estimation given
future improvements to image-based foot pressure prediction.

CoMNet predicts image-based 3D CoM from 3D pose with
a mean Euclidean error of 17.56 mm, outperforming the state-
of-the-art method using body-worn inertial sensors [28], and
predicting an error nearly as low as the expected error in
ground truth motion capture calculations [39] while using only
image-based data. Additionally, the work originally published
in [10] reporting CoP and BoS results for one-take-per-subject
sub-sampling is validated here for all valid dataset perfor-
mances (Fig. 5 and 6), confirming the sub-sampling in [10]
was a representative cross-section.

Computing quantified stability measures exclusively from
imagery substantially reduces the need for expensive, physi-
cally encumbering equipment that constrains data collection
to laboratory environments. The presented methods therefore
may enable smart health interventions in real-world conditions
based on timely image-based evaluation of human stability.
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