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Abstract— The traditional polysomnography (PSG)
examination for Obstructive Sleep Apnea (OSA) diagnosis
needs to measure several signals, such as EEG, ECG, EMG,
EOG and the oxygen level in blood, of a patient who may
have to wear many sensors during sleep. After the PSG
examination, the Apnea-Hypopnea Index (AHI) is calculated
based on the measured data to evaluate the severity
of apnea and hypopnea for the patient. This process is
obviously complicated and inconvenient. In this paper,
we propose an AI-based framework, called RAre Pattern
Identification and DEtection for Sleep-stage Transitions
(RAPIDEST), to detect OSA based on the sequence of
sleep stages from which a novel rarity score is defined to
capture the unusualness of the sequence of sleep stages.
More importantly, under this framework, we only need EEG
signals, thus significantly simplifying the signal collection
process and reducing the complexity of the severity
determination of apnea and hypopnea. We have conducted
extensive experiments to verify the relationship between
the rarity score and AHI and demonstrate the effectiveness
of our proposed approach.

Index Terms— Apnea-Hypopnea Index (AHI), EEG signal,
machine learning, Obstructive Sleep Apnea (OSA).
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I. INTRODUCTION

THE Obstructive Sleep Apnea (OSA) is a disorder, where a
person experiences periodic disruptions in breathing dur-

ing sleep. OSA may result in major health implications, such
as excessive daytime sleepiness, nonrestorative sleep, memory
impairment, depression, and serious cardiac arrhythmias [1].
For the diagnosis of sleep apnea and hypopnea, each patient
(or the examinee) has to sleep in a laboratory setting and wears
various devices to monitor the electroencephalography (EEG),
the electrooculogram (EOG), the electromyogram (EMG), the
electrocardiography (ECG), the oxygen level in blood, heart
rate and breathing pattern, as well as eye and leg move-
ments during sleep [2]. This process is called the overnight
polysomnography (PSG) examination. Obviously, the signal
process is very complicated and inconvenient to patients.

After the PSG examination, the technicians calculate the
Apnea-Hypopnea Index (AHI) [3], which is used to evaluate
the severity of apnea and hypopnea: (1) Normal: AHI < 5;
(2) Mild sleep apnea: 5 ≤ AHI < 15; (3) Moderate sleep
apnea: 15 ≤ AHI < 30; and (4) Severe sleep apnea: AHI
≥ 30. AHI is obtained by dividing the number of apnea and
hypopnea events by the number of hours of sleep, where an
apnea event is defined as the absence of airflow for at least
10 seconds, and a hypopnea event is a 30% or greater decrease
in airflow lasting at least 10 seconds with oxygen desaturation
of at least 4%. The details of the AHI evaluation can be found
in [3]. Based on the standard definition [4], when a patient has
AHI ≥ 15, the patient is known as an OSA patient.

However, the long-term monitoring of upper airway airflows
may make patients feel uncomfortable and inconvenient. The
AHI evaluation heavily relies on visualized pattern recognition
by experts or doctors, which is time consuming and requires
effort [5]. Hence, how to extract features from more accessible
physiological signals to infer the upper airway airflows has
attracted intensive attention [6].

Previous works proposed algorithms to automatically
detect OSA based on different signal measurements with-
out involving experts or doctors. The signal measurements
include airflow sensing signals [7], [8], rib cage move-
ments together with abdomen movements [9], blood oxy-
gen saturation (SaO2) [10], EMG together with EOG [11],
ECG [12], and EEG [13]. In the following, we have a literature
survey for the existing works that used these signals for OSA
detection.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-7265-5298
https://orcid.org/0000-0001-7103-5516
https://orcid.org/0000-0002-1079-3871


388 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Obviously, the most intuitive way to detect OSA is to use
the pattern of the respiratory signals and oxygen desaturation
index. For example, based on the airflow signal measured
overnight, Lakhan et al. [7] proposed a Deep Neural Network
(DNN)-based method to classify the Sleep Apnea-Hypopnea
Syndrome (SAHS) patients into 4 classes: no SAHS, mild
SAHS, moderate SAHS, and severe SAHS. One of the typical
sensors to measure the airflow of a patient is the airflow ther-
mal thermistor. Behbehani et al. [8] designed an automatic pos-
itive airway pressure (APAP) device, which allows a patient to
set an initial pressure while awake, and automatically elevates
mask pressure during sleep when OSA is detected. However,
a patient may not feel comfortable to wear these kinds of
sensors while sleeping. Abdomen and rib cage movements
can be acquired by Respiratory Inductive Plethysmography
(RIP), which includes two belts to obtain both abdomen and
rib cage signals. Staats et al. [9] used rib cage and abdomen
motion obtained from PSG examination signals to classify the
type of disorder breathing event including obstructive apnea,
obstructive hypopnea, mixed apnea, and central apnea. The
blood oxygen saturation (SaO2) can be measured on the finger
using a pulse oximeter directly. Alvarez et al. [10] used SaO2
to classify the subjects into normal or OSA. The EOG signals
can be measured by pairs of electrodes placed above and below
the eye. The EMG signals can be obtained by attaching small
disk electrodes to the skin surface over the muscle. Kalevo
et al. [11] used EEG, EOG, and EMG signals to identify the
four OSA severity levels (i.e., normal, mild OSA, moderate
OSA, and severe OSA) in home sleep apnea testing. The
ECG signals can be collected by ten electrodes placed on
the patient’s limbs and the surface of the chest. Hilmisson
et al. [12] used ECG signals to classify the subjects into four
OSA severity levels.

The measurement of EEG signals from a patient can be
easily done through small electrodes attached to the scalp [14],
and it is more comfortable for a patient to wear small elec-
trodes during sleep. There also exist portable or wireless small
electrodes [15], which can easily acquire EEG signals at home.
However, most of the existing works (e.g., [16], [17], [18],
[19], and [20]) focused on using the EEG signal to identify
sleep apnea events during the overnight PSG examination,
which cannot be applied to detect whether a patient has OSA
or not according to the standard definition [4]. There are
seldom works that used the EEG signals for OSA detection.

We discuss the following existing work that used EEG
signal for OSA detection: In [13], based on the EEG signal
and the corresponding sleep stages (manually labeled by the
sleep medicine physicians), the authors extracted the Analysis
of Brain Recurrence (ABR) features, and then applied Fisher’s
Linear Discriminant Analysis (LDA) to classify the patients
into mild OSA (i.e., with 5 ≤ AHI < 15) or moderate
OSA (i.e., 16 < AHI ≤ 30). However, in the approach
in [13], it requires to determine the sleep stages by the
sleep medicine physicians. The process is time-consuming and
labor-intensive, which results in that the proposed approach
in [13] cannot be applied for online OSA detection.

Most of the signals discussed above (e.g., EEG, ECG, SaO2,
EMG, and EOG) can be obtained from the sensors attached

on the patients (i.e., wearing-comfortability). However, among
these different signals, only the EEG signal can be used not
only for OSA detection but also for sleep stage classification
(to be elaborated later). That is, the EEG signal can be used to
evaluate sleep stages and sleep quality [16]. Other signals can
be used only for OSA detection. For the above reasons, we are
motivated to identify whether there exists any relationship
between the sequence of sleep stages and OSA.

The EEG signals recorded during the overnight can be
utilized to identify what sleep stage a patient experiences
during sleep. The American Academy of Sleep Medicine
(AASM) classifies the sleep stages into five categories [21]:
Awake, Rapid-Eye-Movement (REM), N1, N2, and N3. The
proportion of the sleep entering the N3 and REM stages has
been proved to be associated with the physical and mental
health [22], particularly in fatigue recovery [23], memory
consolidation [24] and emotional distress [25]. Based on the
changes in sleep stages, doctors can evaluate the effect of
the medical treatment on the quality of sleep, which could
serve as a reference for the subsequent treatment plan. The
identification of the sleep stages using the signals obtained
from the PSG examination has been discussed in many
previous works [26], [27], [28]. AI technologies have also
been widely adopted to classify the sleep stages using the
EEG signals. It has been shown [29], [30], [31], [32] that
AI technologies can significantly improve the accuracy of
the sleep stage classification. For example, using the dataset
provided by St. Vincent’s University Hospital and University
College Dublin (UCDDB), Zhang and Wu [33] showed that the
overall accuracy of the sleep stage classification could reach
90.8% when using a convolutional neural network (CNN).

In this paper, based on EEG signals, we propose an AI-based
framework, namely RAre Pattern Identification and DEtec-
tion for Sleep-stage Transitions (RAPIDEST), to analyze the
sequence of sleep stages for OSA detection. We discover that
there exists rare patterns indeed in the sequence of sleep stages.
The rare pattern appears in the sequence of sleep stages of
healthy patients with lower probability. On the other hand,
the rare pattern appears in the sequence of sleep stages of
OSA patients with higher probability. With this assumption,
we define a scoring function to evaluate the unusualness of a
sequence of sleep stages for a patient, based on which we
obtain a novel rarity score for a patient. For OSA detec-
tion, we use the rarity score to detect OSA for a patient.
In the proposed framework, we treat the OSA detection as
a semi-supervised anomaly detection problem. That is, based
on a training set of only normal data, we identify anomalies for
the future. We only use data collected from healthy patients
in the training phase, and then we classify the patients into
healthy or OSA classes in the testing phase. To the best of our
knowledge, no prior studies have examined semi-supervised
anomaly detection for OSA classification. In this way, we can
significantly reduce the complexity and overhead for the
severity determination of apnea and hypopnea.

The remainder of this paper is organized as follows.
In Section II, we introduce the proposed CNN-based method
for sleep stage classification and the proposed framework
RAPIDEST for rarity evaluation of sequence of sleep stages
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and OSA detection. Section III conducts the performance of
the proposed algorithm. We conclude this paper in Section IV.

II. RAPIDEST: RARE PATTERN IDENTIFICATION AND

DETECTION FOR SLEEP-STAGE TRANSITIONS

In this section, we propose our AI-based framework, RAre
Pattern Identification and DEtection for Sleep-stage Transi-
tions (RAPIDEST), to determine the rarity score for OSA
detection. The execution of the proposed RAPIDEST consists
two phases: the training phase and online detection phase.

The training phase exercises as follows: Given a training
dataset DT containing Nt patients, their corresponding EEG
signals, and their AHI values. The EEG signals for each patient
are already labeled with a sequence of sleep stages by experts.
Suppose that among the Nt patients, there are Nt,h healthy
patients and Nt,o OSA patients, i.e., Nt = Nt,h + Nt,o. The
training phase consists of the following two steps, and the
details can be found in Sections II-A and II-B, respectively.

Step T-1: Sleep Stage Classification. We randomly select
nt,h,1 healthy patients and nt,o,1 OSA patients from
the dataset DT (where nt,h,1 < Nt,h and nt,o,1 <
Nt,o). The data of the nt,h,1 healthy patients and
the nt,o,1 OSA patients forms a subset d1 ⊂ DT .
In this step, we use a Convolutional Neural Networks
(CNN) to build up a sleep stage classifier using the
EEG signals of the subset d1.

Step T-2: OSA Detection Model. Let the subset d2 = DT −
d1. For every patient in the subset d2, we transform
the original EEG signals to a sequence of sleep stages
using the sleep stage classifier built in Step T-1. Then
based on the sequences of sleep stages of the patients
in d2, we build up the OSA detection model (that
consists of a sleep pattern table with two parameters,
θ and η).

As shown in Fig. 1 (a), the online detection phase exercises
as follows: Given a testing dataset DD containing Nd patients,
their corresponding EEG signals, and their AHI values, DD ∩
DT = ∅. Suppose that among the Nd patients, there are Nd,h >
0 healthy patients and Nd,o > 0 OSA patients, i.e., Nd =
Nd,h + Nd,o. In this phase, we execute the following two steps
to determine whether a patient in DD has OSA or not, based
on his original EEG signals E .

Step D-1. We transform the EEG signals E to a sequence of
sleep stages XE using the sleep stage classifier built
in Step T-1.

Step D-2. Based on the OSA detection model built in Step T-
2, by referencing the sleep pattern table, we calculate
a rarity score for the patient by scanning the sequence
of the sleep stages XE . We determine the patient as
a healthy patient if his rarity score is smaller than η.
Otherwise (i.e., his rarity score is larger than or equal
to η, the patient is determined as an OSA patient.

A. Step T-1: Sleep Stage Classification

In this section, we elaborate on the sleep stage classification
in our RAPIDEST. In [29], [30], and [34], the authors applied

neural networks to perform feature learning for the classifica-
tion of the five sleep stages. The overall accuracy was demon-
strated to be 74.8% using the Sleep-EDF SC∗ dataset. In [29],
Supratak et al. proposed a deep learning model, DeepSleepNet,
where Convolutional Neural Networks (CNN) is applied to
extract features, and bidirectional Long Short-Term Memory
(LSTM) is used to learn the stage transition rules from EEG
epochs. The DeepSleepNet algorithm could achieve the state-
of-the-art 82.0% of overall accuracy using the Sleep-EDF
SC∗ dataset. In this paper, we also use a CNN model as the
classification algorithm. Through the experiments, we justify
that the CNN model does function well, and show that our
CNN model has less computation complexity.

During sleep, a patient experiences at different sleep stages
as time goes on. The transitions of sleep stages form a sleep
stage transition sequence. A sleep stage can be determined by
using a 30-second EEG signal (also known as “30-s epoch”).
We set the length of a time slot as 30 seconds. Let T (i) be the
total number of time slots during a sleep period for patient ui .
To simplify our discussion, we denote the sleep stages Awake,
REM, N1, N2, and N3, as A, R, 1, 2, and 3, respectively.
The set of sleep stages is denoted as S = {A, R, 1, 2, 3}.
We denote the sequence of sleep stages during sleep for
patient ui as X (i) = �x (i)

1 , x (i)
2 , . . . ., x (i)

T (i)	 = �x (i)
t 	T (i)

t=1, where

x (i)
t ∈ {A, R, 1, 2, 3}, and t is the index of the time slot from

1 to T (i).
Fig. 1 (b) shows the EEG signal measured from a patient

during sleep for eight hours. The whole EEG signal are divided
into multiple records of 30-second period, i.e., the time is
divided into multiple 30-s epoches. In the dataset d1, the EEG
signals of every 30-second record are labeled with a stages.
The label is the ground truth for the sleep stage classification.
The sleep stage classification processes the EEG signals of all
patients d1 by executing the following three steps as shown
in Fig. 2:

Step T-1-1: Feature Extraction (see 1� in Fig. 2). We trans-
form each 30-s epoch to two types of features includ-
ing local features and global features. The details can
be found in Section II-A.1.

Step T-1-2: Feature Normalization (see 2� in Fig. 2). We nor-
malize the extracted features to build up the CNN
model, as shown in Section II-A.2.

Step T-1-3: Sleep Stage Classification (see 3� in Fig. 2).
We use the CNN model to classify the sleep stages at
each time slot. Then we can generate the sequences
of sleep stages by the results of the classification,
as shown in Section II-A.3.

The details for the three sub-steps are given in
Sections II-A.1, II-A.2 and II-A.3, respectively.

1) Step T-1-1: Feature Extraction: The feature extraction in
our proposed framework is a general procedure widely used
in CNN-based models in the previous works (e.g., [35]).
It includes the local feature extraction and the global feature
extraction. In general, the local feature is the input of each
kernel function in the convolutional layer, and the global fea-
ture is the input of the fully-connected layer. Thus, we extract
the local features for each shorter time window. The global
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Fig. 1. (a) The online detection flow chart of our proposed RAPIDEST; (b) The EEG signal for a patient recorded for one night.

Fig. 2. Feature extraction and CNN architecture.

feature is the statistical results of the whole 30s EEG signals,
which does not contain the time information of the original
signals. Let E be the set of sampling points in an 30-s epoch
EEG signal, and let the sampling rate for the EEG signals be
a Hz. There are total 30 × a sample points. We denote ei as
the i -th sampling point in E. Let Ei, j (where i ≤ j ) be the
subset of E, i.e., Ei, j contains ei , ei+1, …, e j .

In the local feature extraction, we apply the sliding window
to scan the EEG signal in a 30-s epoch as shown in 1� in
Fig. 2. A 30-s epoch EEG signal is further divided into 30 1-
second frames. We scan the 30-s epoch EEG signal frame by
frame, and set a local window with window size wl equal to
2 frames. We can obtain 29 local windows, i.e., E1,2a , Ea+1,3a,
E2a+1,4a, …, E28a+1,30a.

For the EEG signals in each window Ex,y (where x =
ia + 1, y = (i + 2)a, and i = 0, 1, 2, 3, . . . , 28), we use
the Hamming window function [31] (denoted as H(X)|X=Ex,y )
to reduce spectral leakage, and then apply the Fast Fourier
Transform (denoted as F(Y)|Y=H(X)) to each window. Then
for X = Ex,y , we obtain a vector of � y−x+1

2  dimensions,
e.g., Vx,y = F(H(X))|X=Ex,y for each window, and Vx,y =
(v1, v2, v3, . . . , v� y−x+1

2 ). Then we take the square of the mag-
nitude to estimate the corresponding power spectral densities

(�v1�2, �v2�2, . . . , �v� y−x+1
2 �2) (1)

for each window, which is used as the local feature for
each window. For a 30-s epoch EEG signal, there are total
29 corresponding local feature vectors.

Following [36] and [37], from a 30-s epoch EEG signals,
we extract the features as shown in 2� in Fig. 2, including
power spectral density [31], coefficients of AutoRegressive
(AR) model [37] and statistical features [36].

We obtain the power spectral density by using the same
procedure as that in local feature extraction. We extend
the widow size to 30 frames, i.e., a window contains
E1,30a , and obtain the vector V1,30a = F(H(X))|X=E1,30a ,
and the corresponding power spectral densities
(�v1�2, �v2�2, . . . , �v15a�2).

The coefficients of the AR model can be obtained as
follows. Let p be the order of the AR model, êt be the
prediction value of et (where p + 1 ≤ t ≤ 30a) based on
et−i (where i = 1, 2, . . . , p). Then we define the AR model
with coefficients αi and β as êt = ∑p

i=1 αi et−i + β where αi

and β are the coefficients of the AR model. We attempt to find
the coefficients αi and β such that (êt − et )

2 is minimized.
Based on the Bayesian Information Criterion [38], we set the
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order of the AR model p to 28. There are total 29 coefficients
of AR used as global features.

The four standard statistical features, including mean, stan-
dard deviation, minimum and maximum, are also used as
the global features, which are obtained by mean(E) =

1
30a

∑30a
i=1 ei ; std(E) =

√
1

30a−1

∑30a
i=1 (ei − mean(E))2;

min(E) = min1≤i≤30a(ei ); max(E) = max1≤i≤30a(ei ).
To summarize, for a 30-s EEG signal, we extract the global

features including 15a power spectral densities, 29 coefficients
of AR, and 4 statistic features. Then we combine those features
as one global feature vector:
(�v1�2, �v2�2, . . . , �v15a�2, α1, . . . , , α28, β,

mean(E), std(E), min(E), max(E)) (2)

2) Step T-1-2: Feature Normalization: We perform the feature
standardization [39] on each feature vector, including 29 local
feature vectors (see Eq. (1)) and a global feature vector (see
Eq. (2)).

3) Step T-1-3: Sleep Stage Classification: In this section,
we propose our Convolutional Neural Networks (CNN) archi-
tecture (Fig. 2) for the sleep stage classification, which con-
sists of three convolutional layers and three fully-connected
(FC) layers. The input to the proposed CNN as shown in
3� in Fig. 2 includes 29 normalized local feature vectors

(i.e., Eq. (1)) and one normalized global feature vector (i.e.,
Eq. (2)). The numbers of filters of the first three convolutional
layers are 64, 128, and 256, respectively, and the filter sizes
are 8, 4, and 2, respectively, with the same stride size equal
to 1. Two max-pooling layer are followed by the first two
convolutional layer with pooling size of 2. An average pooling
layer is followed by the last convolutional layer. The output
vector of the average pooling layer and the normalized global
feature vector are concatenated to a new vector, and the
three FC layers are followed by the concatenated vector. The
numbers of neurons of the three FC layers are 512, 256,
and 5, respectively. Finally, the softmax activation function is
applied in the last FC layer to output the probabilities of the
five sleep stages. Following [40], the scaled exponential linear
units (SeLU) is applied to the output of every convolutional
layer and FC layer. The alpha dropout [40] is applied to the
output of every pooling layer and first two FC layers with
dropout rate 0.25, 0.25, 0.25, 0.25, and 0.5, respectively. The
weights of the convolutional layer and FC layer use the same
random initialization described in [40]. For the hyperparameter
selection, we follow the setups in [29] and [41] and try many
different setups (including the number of layers, the number
of filters, the filter size, the learning rate, and the activation
function). We randomly select a patient from the training
dataset d1 for validation, and we fine-tune the hyperparameters
based on the loss of the validation. Due to the page limitation,
we omit the details of the setups, and only present the results
of the best performance.

B. Step T-2: OSA Detection Model

Given a training dataset d2, there are nt,h,2 = Nt,h − nt,h,1
healthy patients (who form the subset d2,h) and nt,o,2 = Nt,o−
nt,o,1 OSA patients (who form the subset d2,o).

Fig. 3. An example of the sleep patterns.

To simplify our description, we suppose that d2,h consists
of N patients (i.e., N = nt,h,2). We perform the sleep stage
classification using the sleep stage classifier built in Step T-1,
to obtain the sequence of the sleep stages for each patient in
d2,h . Then we have the data set HX = {X (1), X (2), . . . , X (N)},
where X (i) is the sequence of the sleep stages for patient ui .
Define a sleep pattern as a subsequence of X (i) of length
L, denoted as A(i)

k = �x (i)
t 	k+L−1

t=k , where t = k is the
start index of the subsequence, and t = k + L − 1 is
the end index of the subsequence. There are a total of
T (i) − L + 1 sleep patterns in X (i). Denote the set AL(X (i))
of all sleep patterns of length L in the sequence X (i) as
AL(X (i)) = {A(i)

1 , A(i)
2 , . . . , A(i)

T (i)−L+1
}. Then we have the

set HA = ⋃
h∈HX

AL(h), which contains all sleep patterns
of length L in HX . Fig. 3 shows an example for the sleep
patterns. In this figure, for the sequence of sleep stages X (i) =
�A, R, R, 1, 2, 1, 3	 with T (i) = 7, there are 3 sleep stage
patterns of length L = 5, namely, A(i)

1 = �A, R, R, 1, 2	,
A(i)

2 = �R, R, 1, 2, 1	, and A(i)
3 = �R, 1, 2, 1, 3	.

We apply the lookahead pair method [42] to define the rare
sleep patterns. A “lookahead” pair �x, y	k exists if there is a
sleep pattern a = �at 	L

t=1 ∈ HA such that the two sleep stages
x, y ∈ S appears in a, and y occurs at the k-th location after
x . In other words, given a sleep pattern a = �at 	L

t=1 ∈ HA,
�x, y	k exists if the following rule holds:
∃m, n, k ∈N, 1 ≤ m, n, k ≤ L,� x = am, y = an, k = n − m.

(3)

Given a sleep pattern a, let Blo(a) be the set containing all
lookahead pairs by checking Eq. (3), i.e.,

Blo(a) = {�am, an	k : ∃m, n, k ∈ N

such that 1 ≤ m, n, k ≤ L and k = n − m} (4)

Fig. 4 shows an example, where all lookahead pairs in a
sleep pattern �W, R, W, R	 are �W, R	1, �R, W	1, �W, W	2,
�R, R	2, and �W, R	3. Then we have

Blo(�W, R, W, R	)
= {�W, R	1, �R, W	1, �W, W	2, �R, R	2, �W, R	3}

We search the sleep stage sequences in the HA to find all
lookahead pairs in HA. Then we count the number (denoted
by C(�x, y	k , HA)) of occurrences of sleep patterns containing
lookahead pair �x, y	k in HA by:

C(�x, y	k , HA) = |{a : a ∈ HA and �x, y	k ∈ Blo(a)}| (5)
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Fig. 4. An example of all lookahead pairs in the sleep pattern
�W,R,W,R	.

For example, C(�W, R	1, {�W, R, W, R	, �W, W, W, W	}) =
|{�W, R, W, R	}| = 1. We maintain a lookahead pair table
that stores the numbers of occurrences for all lookahead pairs
�x, y	k in

⋃
a∈HA

Blo(a).
Based on the lookahead table with a predefined threshold

θ (0 ≤ θ < 1), we identify whether a sleep pattern x is
a rare sleep pattern or not, and the result is stored in the
flag f (x). A rare sleep pattern is one that occurs in the
sequences of sleep stages with low probability. We design
and implement the following function fr (·) for the rare
sleep pattern identification. Given a sleep pattern x and the
threshold θ ,

fr (x) =
{

1, if |{l : l ∈ Blo(x) and C(l,HA)
|HA | < θ}| > 0;

0, otherwise.
(6)

fr (x) = 1 implies that x is a rare pattern, and fr (x) =
0 implies that x is a normal pattern. Note that the calculation
of fr (x) is based on the data of all patients in d2,h and the
threshold θ . We generate a sleep pattern table that stores the
flag fr (x) for all sleep pattern x of the patients in d2,h , where
we can set a small value for θ (e.g., θ = 0.00001).

Based on fr (·), given a sequence of sleep stages x for
a patient, we design and implement a scoring function
V (x, fr , L), called rarity score, to evaluate the rarity of the
sequence of sleep stages of a patient, where 0 ≤ V (x, fr , L) ≤
1. The rarity score V (x, fr , L) is defined as:

V (x, fr , L) = 1

|x| − L + 1

∑
a∈AL (x)

fr (a) (7)

We calculate the rarity score for every patient in d2 using
the sequence of sleep stages of the patient. The dataset d2
contains both healthy patients (i.e., the subdataset d2,h) and
OSA patients (i.e., the subdataset d2,o). Thus we compare the
rarity scores of every patients in d2, then set a threshold η.
If a patient with the rarity score > η, the patient is predicted
as an OSA patient. Otherwise (i.e., the patient with the rarity
score ≤ η), he is predicted as a healthy patient.

We execute the following steps to fine-tune the parameters
θ and η. Let � be the set of all candidate parameters θ , and H
be the set of all candidate parameters η. Let the set of all (θ, η)
pairs be � × H = {(θ, η) : θ ∈ � and η ∈ H }. For each pair
(θ �, η�) in �× H , we use the θ � to obtain fr and generate the
corresponding sleep pattern table. Then we calculate the rarity
scores for all patients in d2. We calculate the number eh of the

patients in d2,h with rarity score > η� and the number eo of the
patients in d2,o with rarity score ≤ η�. Let e(θ �, η�) = eh + eo.
We select the pair (θ �, η�) ∈ �× H with lowest (θ �, η�) as the
parameters θ and η of the OSA detection model.

III. PERFORMANCE STUDY

In this section, we study the performance of our RAPIDEST,
in terms of the accuracy for sleep stage classification, and the
accuracy of OSA detection. We also study the relationship
between the rarity score and AHI.

A. Datasets

In this paper, to evaluate the performance of our
RAPIDEST, we use the following three open datasets: the
Sleep-EDF dataset [34], the University College Dublin Sleep
Apnea Database (UCDDB) dataset [34], and Wisconsin Sleep
Cohort (WSC) dataset [43], which are available from the
public repository PhysioNet [44], [45] and National Sleep
Research Resource [46], [47].

The Sleep-EDF dataset contains two subsets denoted as
SC∗ and ST∗, respectively. The subset SC∗ was obtained
from the healthy patients without any sleep-related medication,
which contains the Fpz-Cz/Pz-Oz EEG signals recorded from
10 males and 10 females without any sleep-related medication.
The age range of the patients is 25-34 year-old. There are
two approximately 20-hour recordings per patient except one
patients who has only a single recording. EEG signals were
recorded during two consecutive nights at the patients’ home.
The sampling rate is 100 Hz.

The subset ST∗ was obtained in a study in 1994, which
studied the temazepam effects on the sleep of patients with
mild difficulty in falling asleep. It contains the Fpz-Cz/Pz-
Oz EEG signals recorded from 7 males and 15 females, who
had mild difficulty in falling asleep. The EEG signals were
recorded in the hospital for two nights. The sampling rate
is 100 Hz.

In the SC∗ and ST∗ subsets, each 30-s epoch of the EEG
signals has been annotated into the classes Awake, REM, N1,
N2, N3, and N4, respectively. The epochs corresponding to
movement and unknown stages were excluded and the epochs
labeled by N4 are merged to N3 according to the AASM
standard.

The UCDDB dataset contains the overnight PSG recordings
of 25 patients with sleep-disordered breathing [34], including
of 21 males and 4 females with an average age of 50. Each
recording contains two EEG channels and an annotation file
with detailed onset time and duration of every hypopnea event.
The sampling rate of the EEG signals is 128 Hz.

The WSC dataset consists of the overnight PSG recordings
of 1123 patients, including 608 males and 515 females with
an average age of 56. The patients in the WSC dataset are
random samples of the general population [43]. Each recording
contains the two EEG channels, namely, C3-M2 and O1-M2,
and the sleep stages for each 30-s epoch. The sampling rate
of the EEG signals is 100 Hz. The dataset contains AHI value
for each recording. We randomly select 269 patients (including
77 patients with AHI ≥ 15 and 192 patients with AHI < 15)
from the WSC dataset.
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B. Performance Study for Sleep Stage Classification

We evaluate the sleep stage classification performance for
RAPIDEST by adopting the Leave-One-Out Cross-Validation
(LOOCV) scheme [48]. The LOOCV scheme exercises as
follows: In each run of the experiment, we use the EEG
signals of one patient as the testing dataset. The EEG signals
of other patients are used to train the classification model.
The experiment terminates until all patients are tested. Then,
we calculate the performance metrics for the sleep stage
classification. For example, if there are 20 patients in the data
set, the experiment is run for 20 runs.

There are significant differences between EEG signals of
different patients. In this study, we use the EEG signals from
different patients for testing (i.e., to classify the sleep stages
for a new arrival patient from a given dataset that the sleep
stages are already annotated) by which the performance can
approximate that in the real-world scenario as the ground truth.

We measure the performance in terms of the confusion
matrix M ∈ R

5×5 [49]. To simplify our discussion, we denote
Sleep Stages A, R, 1, 2, 3 as the 1st class, the 2nd class,
the 3rd class, the 4th class, and the 5th class, respectively.
Let mi, j be the element at the i th row and the j th column of
the confusion matrix M , where 1 ≤ i, j ≤ 5. mi, j is obtained
from the classification results for the EEG signals of the testing
patient. mi, j is the number of 30-s EEG signals that are labeled
as the i th class in the original data set, but are classified as
the j th class by the classification model.

There are many performance metrics in assessing a clas-
sification model [50]. In this paper, we will adopt the fol-
lowing few metrics suitable for our problem. Following [50],
we start with precision (n p(i)), recall (nr (i)), and then we
have F1-score (nF1(i)) for the i th class:

n p(i) = mi,i∑5
j=1 m j,i

; nr (i) = mi,i∑5
j=1 mi, j

;

nF1(i) = 2n p(i)nr (i)

n p(i) + nr (i)
.

The precision n p(i) measures correct classification among
all samples that are classified into the i th-class. The recall
nr (i) measures the ratio of the number of the samples in the i th
class that is correctly classified into the i th class to the number
of the samples in the i th-class to be classified. The F1-score
nF1(i) is the harmonic mean of n p(i) and nr (i) for the i th
class. Furthermore, we obtain the overall accuracy ACC, the
macro F1 score Macro-F1 and the Cohen’s kappa coefficient
κ as follows [50], [51]:

ACC =
∑5

i=1 mi,i∑5
i, j=1 mi, j

; Macro-F1 = 1

5

5∑
i=1

nF1(i). (8)

Let EA be the expected accuracy, which is given by [51]

EA =
∑5

i=1

(∑5
j=1 mi, j

)
×

(∑5
j=1 m j,i

)
(∑5

i, j=1 mi, j

)2 .

Then we obtain the Cohen’s kappa (κ) coefficient by

κ = ACC − EA

1 − EA
. (9)

TABLE I
SLEEP STAGE CLASSIFICATION PERFORMANCES RESULT FOR THE

DATASETS SLEEP-EDF SC∗, SLEEP-EDF ST∗, UCDDB, AND WSC

The Macro-F1 is the average F1-score nF1(i) of all classes.
The Cohen’s kappa coefficient κ measures the consistency
between the classification results and the labels. A higher κ
implies that the classification result and the label are more
consistent. The Cohen’s kappa coefficient is more useful than
overall accuracy for imbalanced data.

1) Performance Study for Sleep Stage Classification of RAPI-
DEST: We run experiments based on the datasets, Sleep-EDF
SC∗, Sleep-EDF ST∗, UCDDB, and WSC, and we have 20, 22,
25, and 269 LOOCV runs for the four datasets, respectively.
Table I shows the per-class performance metrics, n p(i), nr (i)
and nF1(i), and the corresponding ACC, Macro-F1, and κ ,
for the datasets Sleep-EDF SC∗, Sleep-EDF ST∗, UCDDB,
and WSC. As shown in Table I, our RAPIDEST has the
highest ACC (82.%), Macro-F1 (74.79%), and κ (76.4%) for
the Sleep-EDF SC∗ dataset. The patients in the Sleep-EDF
SC∗ dataset do not have any sleep-related medication, some of
the patients in the Sleep-EDF ST∗ dataset have mild difficulty
in falling asleep, and all patients in the UCDDB dataset have
sleep apnea. The WSC dataset contains random samples from
the general population, and the patients may be healthy or
have sleep apena. We conclude that the RAPIDEST has the
best ACC performance on the sleep stage classification for the
dataset Sleep-EDF SC∗ that contains patients who do not have
any sleep-related medication. For the other datasets, Sleep-
EDF ST∗, UCDDB, WSC, our RAPIDEST has ACC higher
than 70%.

2) Performance Comparison With Existing Works for Sleep
Stage Classification: We also compare the sleep stage clas-
sification performance of our RAPIDEST with two existing
sleep stage classification algorithms, including the diffusion
map [52] and the DeepSleepNet [29]. Due to page limitation,
we do not offer the details of the two existing algorithms. For
more details, readers may refer to [29] and [52].
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TABLE II
PERFORMANCE COMPARISON BETWEEN RAPIDEST, DIFFUSION MAP,

AND DEEPSLEEPNET FOR THE SLEEP-EDF SC∗ DATASET

The diffusion map and DeepSleepNet have shown their cor-
responding ACC, Macro-F1, and Cohen’s kappa performances
in [29] and [52] for the Sleep-EDF SC∗ dataset. Based on
the performance results in [29] and [52], Table II compares
our proposed RAPIDEST, diffusion map, and DeepSleeNet in
terms of ACC, Macro-F1, and κ . We observe that the ACC,
Macro-F1, and κ performances of the three algorithms fall
into the ranges 82.01%-83.68%, 74.69%-77.11%, and 75.7%-
78.14%, respectively. To conclude, the three algorithms have
similar performance for the sleep stage classification.

Based on the Sleep-EDF SC∗ dataset, we have also studied
the average execution time performance for the sleep stage
classification for our RAPIDEST, diffusion map, and Deep-
SleepNet. We have acquired the code directly from the authors
for the diffusion map [52] implemented using MATLAB.
We obtain the source codes of the DeepSleepNet implemented
using python from the open link [53] as shown in [29].
We implement our RAPIDEST using python. We set up a
PC as the computation environment with OS: Ubuntu 22.04;
CPU: Intel(R) Core(TM) i7-6700 CPU@3.40GHz (4 cores);
and Memory: 32GB.

As shown in Table II, the average execution times taken
to classify the sleep stages for a patient using RAPIDEST,
diffusion map, and DeepSleepNet are 0.81s, 27.88s and
1.97s, respectively. Obviously, among the three algorithms, our
RAPIDEST has the best performance in terms of the execution
time. To summarize, in terms of the stage classification, our
RAPIDEST, diffusion map, and DeepSleepNet have similar
performance, but our RAPIDEST has the best performance in
complexity.

3) Effects of OSA and Insomnia on Sleep Stage Classification
in RAPIDEST: We also study how the OSA and the insom-
nia affect the sleep stage classification performance of our
RAPIDEST. We set up the following experiment to study the
effects. Based on the WSC dataset, we obtain the following
sub-datasets:

• The SN dataset: We include the 104 patients (who have
neither OSA nor insomnia) in the WSC dataset into the
SN dataset.

• The SN1 and SN2 datasets: We form the SN1 dataset
by randomly selecting 70 subjects from SN . The
remaining 34 patients in the SN dataset form the SN2
dataset.

• The SO dataset: There are a total of 77 patients (who
have OSA but do not have insomnia) in the WSC dataset.
We accommodate the 77 patients into the SO dataset.

• The SI dataset: There are a total of 129 patients (who
have insomnia but do not have OSA) in the WSC dataset.
We include the 129 patients into the SI dataset.

• The SO,I dataset: There are a total of 41 subjects (who
have both OSA and insomnia) in the WSC dataset. We put
the 41 subjects into the dataset SO,I dataset.

By applying our RAPIDEST, we build up a sleep stage
classification model (i.e., Step T-1) using the SN1 dataset.
We run the sleep stage classification model to test the four
datasets, SN2, SO , SI , and SO,I . We investigate the overall
accuracy ACC performance (i.e., Eq. (8)) for the four datasets.
The ACCs for SN2, SO , SI , and SO,I are 75.5%, 76.2%,
75.6%, and 74.6%, respectively, which shows that the effects
of OSA and insomnia on the sleep stage classification in our
RAPIDEST are minor.

For the effects of other kinds of sleep disorder (e.g., the nar-
colepsy, etc.) on the sleep stage classification performance of
our RAPIDEST, because currently we cannot find the datasets
that contain labels for the other kinds of sleep disorder, we do
not come out the study of this part, and we will treat it as a
future work.

In the next section, we will study the performance for the
OSA detection in the proposed RAPIDEST, and show that
OSA detection in our RAPIDEST works well when there
exists errors in the sleep stage classification.

C. Performance Study for OSA Detection

In this section, we first investigate the performance of
our RAPIDEST for OSA detection. Then we investigate
the relationship between the rarity score and AHI. Finally,
we study the effects of the sleep stage classification on the
OSA detection.

1) OSA Detection: Based on the datasets, UCDDB and
WSC, we set up experiments to study the performance of OSA
detection. We label the patients (with AHI ≥ 15) in UCDDB
and WSC as the OSA class. For those with AHI < 15, they
are labeled as the healthy class. We evaluate the performance
of our RAPIDEST for OSA detection in terms of accuracy,
recall, and precision. We treat OSA class as positive class and
healthy class as negative class. We define True Positive (T P),
False Positive (F P), True Negative (T N), and False Negative
(F N) as:

• T P: the number of the patients of the OSA class that are
correctly classified as the OSA class;

• F P: the number of the patients of the healthy class that
are incorrectly classified as the OSA class;

• T N : the number of the patients of the healthy class that
are correctly classified as the healthy class;

• F N : the number of the patients of the OSA class that are
incorrectly classified as the healthy class.

The accuracy, recall, and precision are obtained by
T P+T N

T P+F P+T N+F N , T P
T P+F N , and T P

T P+F P , respectively.
We set up the following two experiments using UCDDB

and WSC, respectively.
Experiment I (UCDDB): There are 11 healthy patients

and 14 OSA patients in UCDDB. We randomly select
5 healthy patients and 5 OSA patients to form the
testing dataset, DD , i.e., Nd,h = 5 and Nd,o = 5.
The remaining 6 healthy patients and 9 OSA patients
form the training dataset, DT , i.e., Nt,h = 6 and
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Nt,o = 9. We randomly select nt,h,1 = 2 healthy
patients from the Nt,h = 9 healthy patients and
randomly select nt,o,1 = 5 OSA patients from the
Nt,o = 6 patients to form dataset d1, and the dataset
d2 = DT − d1.
Based on the training dataset DT , we build up the
OSA detection model with θ = 0.0354 and η =
0.0337.

Experiment II (WSC): There are 192 healthy patients
and 77 OSA patients in WSC. We randomly select
47 healthy patients and 47 OSA patients to form the
testing dataset, DD , i.e., Nd,h = 47 and Nd,o = 47.
The remaining 145 healthy patients and 30 OSA
patients form the training dataset, DT , i.e., Nt,h =
145 and Nt,o = 30. We randomly select nt,h,1 =
30 healthy patients from the Nt,h = 145 healthy
patients to form dataset d1, i.e., nt,o,1 = 0
Based on the training dataset DT , we build up the
OSA detection model with θ = 0.032 and η =
0.0308.

Table III shows the performance result for OSA detection
for the datasets, UCDDB and WSC. We observe that the
recall, precision, and accuracy for UCDDB are 100%, 71.43%,
and 80%, respectively. Obviously, our RAPIDEST has good
OSA detection performance for the UCDDB dataset. However,
for the WSC dataset, the recall, precision, and accuracy are
80.85%, 65.52%, and 69.15%, respectively. The performance
is not as good as the UCDDB dataset. As mentioned in
Section III-A, the patients in the WSC dataset are random
samples of the general population [43]. On the other hand,
the patients in the UCDDB are with sleep disorder [34], [54].
Our RAPIDEST has better OSA detection performance for the
patients who have sleep disorder.

2) Relationship Between Rarity Score and AHI: We have also
studied the relationship between Rarity Score and AHI. The
points (xi , yi ) represents the rarity score xi and the AHI value
yi of every patient. We use the Pearson’s correlation coefficient
to measure the strength of the relationship between the rarity
score and AHI. The Pearson’s correlation coefficient ρ [55] for
the n pairs of samples {(x1, y1), . . . , (xn, yn)} is calculated by

ρ =
∑n

i=1 (xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi .

Figs. 5 and 6 show the scatter plots for 10 patients in DD

of the UCDDB dataset (Experiment I) and 94 patients in DD

of the WSC dataset (Experiment II), respectively. As shown
in [55], a ρ > 0.7 implies a high positive correlation between
the rarity score xi and the AHI value yi , i.e., the higher
rarity score implies the higher AHI. In this study, we observe
that the Pearson’s correlation coefficient is 0.87 for UCDDB,
which implies a positive correlation between the rarity score
and AHI. For the WSC dataset, the Pearson’s correlation
coefficient is 0.576 for the 94 patients, which implies a
moderate positive correlation between the rarity score and
AHI. The result for UCDDB may not be convinced because
of fewer number of patients in UCDDB. This phenomenon

TABLE III
PERFORMANCE OF OSA DETECTION FOR THE DATASETS,

UCDDB AND WSC

Fig. 5. Scatter plot of rarity score and AHI of the 10 patients for the
UCDDB dataset.

Fig. 6. Scatter plot of rarity score and AHI of the 94 patients for the WSC
dataset.

shows that our proposed PAPIDEST can offer a rarity score
that reflects the severity of sleep disorder (i.e., AHI) of a
patient especially when the patient has sleep disorder.

3) Effects of Sleep Stage Classification on OSA Detection:
In addition, we run experiments to study how the sleep stage
classification performance affects OSA detection performance.
Based on Experiment I (UCDDB dataset), we use the ground
truth of the sequence of sleep stages (that has been labeled) in
the original dataset d2 to construct the OSA detection model.
Then using the OSA detection model and the ground truth of
the sequence of sleep stages (that has been labeled) in DD ,
we have OSA detection on the patients in the dataset DD .
We obtain that the recall, precision, and accuracy are 100%,
83.33%, and 90%, respectively. Comparing the results with
that shown in Table III (UCDDB), we observe that using the
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ground truth for sleep stage classification improves both the
precision and the accuracy by about 10%.

IV. CONCLUSION

In this paper, we have designed and implemented
RAPIDEST: a rare pattern identification and detection for
sleep stage transitions that only uses the EEG signals for OSA
detection, which can significantly reduce the complexity of
signal collection and the overhead for OSA diagnosis. In our
RAPIDEST, we define a rarity score to evaluate the unusual-
ness of sequences of sleep stages for a patient, and identify
the relationship between the rarity score of sequence of sleep
stages and AHI. We have run experiments to thoroughly eval-
uate the performance of our RAPIDEST in terms of the sleep
stage classification and the OSA detection. Our study shows
that our RAPIDEST (1) has good performance for the sleep
stage classification with lower computation time complexity,
(2) offer a rarity score that has a positive correlation with
the severity of sleep disorder (i.e., AHI) of the patient, and
(3) has good performance for OSA detection for the patients
who has sleep disorder. Since only EEG signals are needed in
the OSA detection and the resulting metric (the rarity score)
has close correlation to the well-known AHI, our rarity score
can serve as a potential effective metric for OSA detection
with much more convenient data collection process, potentially
revolutionizing the OSA detection technologies.

Unfortunately, our proposed framework RAPIDEST is only
to identify rare patterns in the sequence of sleep stages. When
it comes to different types of sleep disorders, our proposed
RAPIDEST cannot determine what type the disorder is. If we
could acquire sufficient data for sleep disorders labeled with
types, we could extend our framework to provide such a
function, which forms a promising research direction. It is also
hard to find the rarity score of individual segment because we
compute the rarity score over the whole-night sleep stages.
Since a healthy patient may also contain some rare patterns
in the sequence of sleep stages over a longer period, rarity
score obtained from the whole-night EEG signals may cause
significant false alarm. To overcome this problem, we may
need the dataset labeled with anomaly event to determine
the rarity score for EEG signals for each 30-s epoch, which
demands further research.
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