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Abstract— In recent years, with the widespread popular-
ity of the Internet, social media has become an indispens-
able part of people’s lives. People regard online social media
as an essential tool for interaction and communication. Due
to the convenience of data acquisition from social media,
mental health research on social media has received a lot
of attention. The early detection of psychological disorder
based on social media can help prevent further deteriora-
tion in at-risk people. In this paper, depression detection
is performed based on non-verbal (acoustics and visual)
behaviors of vlog. We propose a time-aware attention-based
multimodal fusion depression detection network (TAMFN)
to mine and fuse the multimodal features fully. The TAMFN
model is constructed by a temporal convolutional network
with the global information (GTCN), an intermodal feature
extraction (IFE) module, and a time-aware attention multi-
modal fusion (TAMF) module. The GTCN model captures
more temporal behavior information by combining local and
global temporal information. The IFE module extracts the
early interaction information between modalities to enrich
the feature representation. The TAMF module guides the
multimodal feature fusion by mining the temporal impor-
tance between different modalities. Our experiments are
carried out on D-Vlog dataset, and the comparative experi-
mental results report that our proposed TAMFN outperforms
all benchmark models, indicating the effectiveness of the
proposed TAMFN model.

Index Terms— Depression, vlog, non-verbal behaviors,
automatic detection, time-aware attention-based multi-
modal fusion depression detection network (TAMFN).

I. INTRODUCTION

DEPRESSION is a common and high incidence of mental
disorders [1]. According to the World Health Organi-

zation (WHO) research on depression [2], there are about
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350 million people with depression worldwide, and the inci-
dence is increasing year by year. According to epidemiological
studies, the lifetime prevalence of depression was 6.9% [3].

The main symptoms of depression are long-term low mood,
loss of interest and pleasure, however, severe depression
patients may self-harm and commit suicide [4]. Depression
not only brings grave harm to the life of patients but also
brings a burden to society [5]. Early detection of depression
is beneficial in reducing the loss of individuals and society [6].
Therefore, early detection and intervention of depression are
essential.

Currently, the typical clinical diagnosis methods of depres-
sion are mainly based on patients’ self-evaluation and psy-
chiatrist’ clinical diagnoses. At present, the commonly used
clinical diagnostic tools mainly include the Diagnostic and
statistical manual of mental disorders (DSM-5) [7], Hamil-
ton Depression Scale (HAMD) [8], Beck Depression inven-
tory (BDI) [9], and Patient Health Questionaire - 9 items
(PHQ-9) [10]. In the hospital, doctors mainly communicate
with patients and make diagnosis according to the inter-
viewer’s performance, which is highly dependent on the doc-
tor’s communication style and clinical experience. Because
patients with depression have a sense of stigma and are
unwilling to communicate with others, this will interfere
with psychiatrist’ judgment [11]. The diagnosis method of
depression based on consultation and questionnaire filling
is subjective, and diagnosis result is primarily influenced
by personal factors such as self-symptom description with
patients, communication ability of psychiatrist, and clin-
ical experience [12]. According to the survey report of
Bishop et al. [13], the number of psychiatrists in the United
States is constantly declining, and there is only one psychiatrist
for every 100,000 residents in the hospital referral area. Due
to the high misdiagnosis rate of depression and the shortage of
psychiatrists, it is of great significance to explore and develop
an additional diagnostic tool that can objectively evaluate
depression accurately.

In recent years, the method of automatic detection of
depression based on physiological signals has attracted many
researchers’ attention. Physiological signals are divided into
internal and external ones. The internal physiological signals
mainly include heart rate [14], [15], EEG [16], [17], galvanic
skin [18], [19], nuclear magnetic [20], [21] and other sig-
nals. The external physiological signals mainly include eye
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Fig. 1. The growth trend of vlog users in China.

movement [22], [23], gait [24], [25], speech [26], [27] and
facial expression [28], [29], etc. The acquisition of these
physiological signals above requires a lot of human and
material resources and is not easy to promote. Nowadays, over
2 billion users worldwide use social media [30], among which
vlog is popular. According to iiMedia Research Group’s report
(Fig. 1), the number of vlog users in China has increased
from 2018 to 2021. As social media data are readily avail-
able, more and more researchers have begun to pay atten-
tion to the research on depression detection based on social
media [31], [32].

In this paper, non-verbal (acoustic and visual) features
in vlog data are used to detect depression. The following
challenges are faced with depression detection in vlog data:
1) How to mine more helpful information from multi-modal
data and obtain rich feature representations; 2) How to obtain
efficient fusion feature representation. Therefore, this paper
proposes a time-aware attention-based multimodal fusion net-
work (TAMFN). The TAMFN model consists of the following
modules: (i) Temporal convolutional network with global
information (GTCN) module. The temporal convolutional net-
work (TCN) can learn long-term information dependence by
dilated convolution, but the receptive field is limited by the
size of the convolution kernel using the convolution feature
extraction method. To obtain more comprehensive tempo-
ral information, we propose the GTCN, which focuses not
only on modeling local information but also on changes in
global information. (ii) Intermodal feature extraction (IFE)
module. To fully extract the interaction information between
the early modalities, an additional GTCN model branch is
adopted to fuse the acoustic and visual intermediate fea-
tures extracted by the two GTCN models to improve the
feature interaction between different modalities and increase
the diversity of features. (iii) Time-aware attention multimodal
fusion (TAMF) module. We thoroughly mine the temporal
interaction information between different modalities to obtain
the efficient fusion feature representation. Firstly, the temporal
attention vector of each modality is constructed. Then the
knowledge of the temporal attention vector between modalities
is mixed by the sparse multi-layer perceptron. Finally, the
hybrid temporal attention vector guides the feature fusion of
multi-modalities.

II. RELATED WORK

A. Depression Detection of Social Media Users Based
on Single Modality

Hiraga et al. [33] explored the influence of different
linguistic features on depression detection and found that
depressed people like to use words such as ‘become’, ‘get
tired’ and ‘die’, while healthy people like to use words such
as ‘go up’, ‘understand’ and ‘read’. Sadeque et al. [34] used
the features based on depression vocabulary and a unified
medical language system to achieve a better performance
in the early detection of depression. Orabi et al. [35] pro-
posed a word embedding optimization method, which achieved
good performance in the depression detection task based
on Twitter posts. Aragon et al. [36] proposed a new social
media document representation method that automatically uses
sub-word embedding to generate sentiment representations.
Burdisso et al. [37] proposed a text classification supervised
learning model named SS3. SS3 supports incremental classi-
fication and learning, which not only has good performance
on the task of early depression detection but also has better
interpretability. ALSAGRI et al. [38] extracted features such as
self-centeredness, word usage, and emotion from users’ posts
to describe users’ behaviors. The experimental results show
that the more descriptive features used, the more accurate the
detection of depressed users. Chiong et al. [39] proposed text
preprocessing and text-based feature method for depression
detection and proved the universality of their approach through
cross-database experiments. Lara et al. [40] proposed the
DeepBoSE model, which can extract the lexical sentiment
information of user posts and utilize the attributes of deep
learning models while retaining interpretability. Agirrezabal
and Amann [41] integrated pre-trained BERT, RoBERTa, and
XLNET models to extract text features and vote for depression
detection. Kayalvizhi et al. [42] proposed a standard dataset
for depression detection in social media, detecting depression
levels from user posts. To solve the problem of sample imbal-
ance, they introduced Word2Vec vectorized data augmentation
technology.

B. Depression Detection of Social Media Users Based
on Multimodality

De Choudhury et al. [43] constructed a probabilistic model
through the user’s social activities, emotions, and language
signals and used the model to introduce the social media
depression index to evaluate the user’s depression level.
Shen et al. [44] constructed a multimodal learning dictionary
for depression detection by extracting features related to
depression. They found that the first-person pronouns in the
posts of depressed users were nearly 200% higher than those of
healthy people. Vedula et al. [45] collected clues such as user
language style, emotional signals, and user engagement on
Twitter. They found that depression users published posts with
stronger negative emotions, frequent self-focused pronouns,
and less communication engagement. Lin et al. [46] proposed
the SenseMood system, which uses the pre-trained Bert and
CNN models to extract the features of pictures and texts
posted by users, respectively, and then uses a multimodal
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Fig. 2. The detailed structure of TAMFN.

feature learning method to integrate the features of images and
texts. Hussain et al. [47] analyzed whether the user suffered
from depression by mining the user update status of the
user account, the content of the pages the user liked, and
the content of the groups the user joined. Mann et al. [48]
extracted image and text features through ResNet and ELMo,
respectively, fused the two modalities’ information through a
fusion module and found that the model combination had the
best performance. Shatte et al. [49] used the behavior, emotion,
language style, and discussion topics of posts on Reddit
to describe the risk of developing postpartum depression.
Zogan et al. [50] proposed the depression-net model to detect
Depression by combining user behavior, release history, and
activity. Safa et al. [51] proposed a method for automatic col-
lection of self-reported statements and evaluation of postings,
and proposed a multimodal framework to process textual and
visual features to describe the user’s depression level in a
lexicographical way. Cheng et al. [52] used the T-LSTM model
to analyze the importance of each user’s post for depression
detection by taking the text, image, and time posted by the
user as input features.

III. PROPOSED METHOD

To improve the depression detection ability of vlog data on
social media, we proposed the TAMFN model. The structure
of TAMFN is shown in Fig. 2. TAMFN model is mainly
composed of three core modules: GTCN, IFE, and TAMF. The
GTCN model is used to extract acoustic and visual features,
the IFE module integrates early acoustic and visual interaction
features, and the TAMF module fuses multiple modal features
through time-aware attention. The detailed structure of each
module is described below.

A. GTCN Model

The temporal convolutional network (TCN) [53] is a struc-
ture based on the convolutional neural network, which can

effectively extract features for time series and avoid gradient
disappearance or gradient explosion. Dilated convolution in
TCN allows the convolution kernel to sample at intervals
and adjusts the receptive field of the convolution kernel by
changing the expansion coefficient so the TCN model can
flexibly receive historical information. Causal convolution can
make the information of the previous layer of the model
closely related to the knowledge of the next layer. The
transmission of information is strictly one-way, and the output
of each moment is only affected by the previous historical
information. However, TCN is based on the structure of the
convolutional network. The receptive field of the convolution
kernel limits the range of feature extraction at each step
of the TCN model, so the TCN model fails to capture the
time series’ global information. Furthermore, we propose a
temporal convolutional network with the global information
(GTCN), which introduces a branch of global information
extraction into the residual block of TCN to supplement the
global information to TCN.

Fig. 3 shows the structure of the GTCN model and the
residual block of the GTCN model. The residual block consists
of three branches. This module is composed of three branches.
GTCN retains two branches of TCN model – branch 1
and branch 3, and adds branch 2 on the basis of TCN.
Since the dilated causal convolution in branch 1 extracts
features in a sliding window, the range of feature extraction
in each step is limited by the size of the convolution kernel,
leading to a lack of global information in TCN. Therefore,
we introduce branch 2 to extract global information. In the
first layer of branch 2, AdaptiveAvgPool is used to map the
dimension (N, C, L) of time series to (N, C, 1), and
the global feature representation is obtained by aggregating
the time axis information of the sequence, where N represents
Batch, C represents the number of channels, and L is the time
series length. In the case of underfitting due to high data
complexity in the D-Vlog dataset, we therefore do not use the
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Fig. 3. The detailed illustration of the GTCN model (top) and the residual
block of the GTCN model (bottom).

dropout regularization technique here. The feature extraction
steps for the GTCN residual blocks are specified as follows:

1) For the input sequence FI nput , branch 1 adopts two
dilated convolution layers to extract features. The first
dilated convolution layer DCC1 extracts the first-level
feature M1, and the second dilated convolution layer
DCC2 extracts the second-level feature M2.

M1 = Relu(Weight Norm(DCC1(FI nput ))) (1)

M2 = Relu(Weight Norm(DCC2(M1))) (2)

2) Branch 2 uses a convolutional layer with an expansion
coefficient of 1. First, the information on the time
series is aggregated through adaptive averaging pooling
AdaptiveAvg Pool, and then the global information is
extracted through two convolutional layers with the size
of convolution kernel 1 to obtain M5. Finally, the time
dimension of feature M5 is extended to be consistent
with the input FI nput time dimension through the fully
connected layer FC .

M3 = AdaptiveAvg Pool(FI nput ) (3)

M4 = Relu(Weight Norm(Conv1(M3))) (4)

M5 = Relu(Weight Norm(Conv2(M4))) (5)

M6 = FC(M5) (6)

3) With greater network depth, the GTCN network can
capture longer temporal dependencies. To maintain the
stability of the network, identity mapping, namely

branch 3, is added. If the channel dimension ChannelI n

of the input sequence is inconsistent with the channel
dimension ChannelOut of the output sequence, one-
dimensional convolution Conv3 with convolution kernel
size 1 is used for dimensional transformation. If they are
consistent, the convolution operation is not selected.

M7 =
{

FI nput , i f ChannelI n ==ChannelOut

Cov3(FI nput ), esle

(7)

4) By adding the outputs of branch 1, branch 2 and
branch 3, and then by Relu activation function, the final
residual block output FOutput can be obtained.

FOutput = Relu(M2 + M6 + M7) (8)

Facing the problem of depression detection based on vlog,
we need to fully use local context-dependent and global
information to evaluate the depression state more reasonably
and accurately. The GTCN model can aggregate the histor-
ical knowledge of a long time span through multiple layers
of dilated causal convolution and model the information of
different time segments. At the same time, the GTCN model
also supplements the global information and improves the
depression detection ability of the model.

B. IFE Module

Most of the current multimodal fusion studies usually use
multiple encoders to extract multiple modal features sepa-
rately, and then fuse them based on the extracted high-level
semantic features [54], [55], [56]. These studies lack the inter-
active modeling of the features of each phase in the encoder
of each modality and cannot fully exploit the complemen-
tary relationship between the modal information. Therefore,
we propose an inter-modal feature extraction (IFE) module that
fuses the semantic features of each phase in the encoders of
multiple modalities to further mine the inter-modal interaction
information.

The intermediate module in Fig. 4 is the IFE module. The
IFE model is also a GTCN model in essence, but the input of
this module consists of two GTCN models extracting acoustic
and visual multi-stage features, respectively. The input features
of the first layer of the IFE module are acoustic and visual fea-
tures of the first layer extracted by GTCN. The input features
of the other stages of the IFE module are features extracted
from the previous layer of IFE, acoustic characteristics of the
same stage, and visual characteristics of the same stage. The
specific expression of the process is as follows:

I F E (i)
I nput =

{
A(1) + V (1), i f i == 1

A(i) + V (i) + I F E (i−1)
Output , esle

(9)

Among them, I F E (i)
I nput represents the input of the i-th layer

of the IFE module; A(i) and V (i) and describe the acoustic
and visual features of the i-th layer extracted by GTCN,
respectively; I F E (i−1)

Output is denoted as the output feature of
the i-1th layer of the IFE module.
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Fig. 4. The structure of the IFE module.

C. TAMF Module

In the vlog-based depression detection task, the contribution
of different modalities at different times to depression detec-
tion is often different. To obtain more efficient multimodal
fusion characteristics, we propose a time-aware attention
multimodal fusion (TAMF) module, which can model the
interaction between different modalities through the temporal
importance between modalities and then guide the fusion of
different modalities. The TAMFN model extracts a total of
three modalities using two modules, GTCN and IFE, which are
acoustic feature, visual feature and early fusion feature. Based
on this, the modality pairs with different combinations of these
three modalities are fused by the TAMF module respectively.
The structure of the TAMF module is shown in Fig. 5. The
TAMF module consists of three main steps: temporal feature
extraction for each modality, mixed attention vector extraction,
and modal pair feature fusion. The module first extracts
the long-term context dependencies of each modality using
LSTM, and then further extracts the temporal vectors of each
modality. After that, the sparse MLP [57] is used to mix the
information of the temporal importance of the two modalities
to obtain the attention vector with interaction information.
Finally, the attention vector with interaction information is
used to guide multimodal feature fusion. For the fusion of
a pair of modalities, the processing flow of the TAMF module
is as follows:

1) For any two modalities F1 and M1, use two LSTM mod-
els with a layer number of 1 to learn the timing informa-
tion of the two modalities respectively and concatenate
the outputs of different modalities at each moment to
obtain the features F2 and M2. By using the adaptive
averaging pooling AdaptiveAvg Pool, the information
of hidden layer representation dimension of F2 and
M2 features is aggregated; that is, the time dimension
is retained, and the temporal feature representation F3

and M3 are obtained.

F2 = LST M1(F1) (10)

M2 = LST M2(M1) (11)

F3 = AdaptiveAvg Pool(F2) (12)

M3 = AdaptiveAvg Pool(M2) (13)

2) The temporal features of the two modalities are concate-
nated to obtain the concatenated vector Concat_vector .
To interact with the timing information of the two
modalities, we mix the information in the vertical
and horizontal directions of the concatenated vector
Concat_vector through weight sharing and sparse con-
nection in the sparse MLP [57], respectively, to obtain
the mixed attention vector x_mi x .

Concat_vector = Concat (F3, M3) (14)

x_v = proj_v(Concat_vector) (15)

x_mi x = proj_h(x_v) (16)

3) The mixed attention vector x_mi x are separated, and the
temporal attention vectors F4 and M4 with interactive
information of two modalities are obtained, respectively.
Then the temporal attention vectors F4 and M4 are
applied to modal features F1 and M1 by element-wise
multiplication. Then the two weighted modal features
are added to obtain the final fusion feature Fusion.

F4, M4 = Spli t (x_mi x) (17)

Fusion = F4 × F1 + M4 × M1 (18)

The TAMF module differs from the method that only
focuses on the time series importance modeling on a single
modality. TAMF models the importance of different modalities
at different times from a global perspective, fully considering
the interaction of different modalities. The TAMF module
rationally and effectively fuses features from different modal-
ities through interactive attention vectors.

IV. EXPERIMENTAL SETUP

A. Dataset

The vlog data used was derived from the D-Vlog data-
set [58] collected from YouTube, which contains 961 videos
from 816 different people, including 322 males and
639 females, and 555 depression and 406 non-depression
individuals. The source data for the D-vlog was obtained
from YouTube, and Yoon et al. [58] analyzed posted videos
between January 1, 2020 and January 31, 2021 to collect
vlogs based on keywords. the keywords for the depression vlog
were ‘depression daily vlog’, ‘depression journey’, ‘depression
vlog’, ‘depression episode vlog’, ‘depression video diary’,
‘my depression diary’, and ‘my depression story’, while the
keywords for non-depression vlogs are ‘daily vlog’, ‘grwm
(get ready with me) vlog’, ‘haul vlog’, ‘how to vlog’, ‘day
of vlog’, ‘talking vlog’ and so on. To effectively label down-
loaded videos, Yoon performed two tasks. First, check to see
if the downloaded video is in “vlog” format, that is, if a
person is speaking directly to the camera. Videos that are
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Fig. 5. The structure of the TAMF module.

TABLE I
SAMPLE ALLOCATION OF TRAIN, VALIDATION AND

TEST SET OF D-VLOG DATASET

not in “vlog” format (for example, a group of people or
no faces on the video) will be deleted. Second, videos with
automatically generated text were watched and analyzed to
determine if the speakers in the vlogs were depressed. After
the above two tasks, the labeled vlogs is obtained, and Yoon
et al. [58] splited the dataset into the train, validation, and test
sets with a 7:1:2 ratio, and the specific allocation is shown
in Table I. To avoid leakage of privacy of vlog photographers,
D-Vlog provides two non-intuitive features, low-level descrip-
tor features extracted by OpenSmile [59] and facial landmark
features extracted by Dlib [60].

B. Settings

This paper uses the pytorch framework [61] to implement
our model, and models in this paper run on on NVIDIA

PCIE A100 graphics card with 40G memory. In this paper,
the Adam optimizer [62] is used to optimize the weight
update of the model. The learning rate, weight decay and
eps of the Adam optimizer are set to 1e-4, 5e-4 and 1e-8,
respectively. We optimize the model parameters based on the
validation set and use the weighted average f1 score as the
evaluation index of the validation set. The weighted averaged
f1 score is calculated by taking the mean of all per-class
f1 scores while considering each class’s support, where support
refers to the number of actual occurrences of the class in
the dataset. In addition, the weighted average precision and
recall are calculated in a similar way to the weighted average
F1 score. At the same time, the early stop mechanism is used
to avoid over-fitting, and the patience parameter is set to 4. The
acoustic and visual feature representation length in vlog is 596,
the batch size is set to 32, and the epoch is set to 30. The
model’s performance is comprehensively evaluated for the
testing phase by the weighted average precision, recall, and
f1 score. In addition, the number of GTCN layers in TAMFN
model is 5, and the number of channels in each layer is 128.
The number of layers of LSTM model used to learn the
temporal characteristics of each modality is 1.
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TABLE II
PERFORMANCE COMPARISONS BETWEEN BENCHMARK MODELS AND THE PROPOSED MODEL

V. EXPERIMENTAL RESULTS

A. Compared With the State-of-the-Art Models

To verify the effectiveness of the TAMFN model, we com-
pared all the benchmark models proposed by Yoon et al. [58].
Table II shows the performance of all the benchmark models
and the TAMFN model on the D-Vlog dataset. The weighted
average precision, recall, and f1 of the TAMFN model reached
66.02 (×10−2), 66.50 (×10−2), and 65.82 (×10−2), respec-
tively. It can be seen that the performance of the TAMFN
model is better than that of all the benchmark models. The
benchmark model is divided into traditional machine learning
and deep learning. The machine learning models include
Logistic Regression (LR), Support Vector Machines (SVM),
Random Forest (RF), and K-Nearest Neighbors based Fusion
(KNN-Fusion). The traditional machine learning inputs are
features flattened and concatenated by acoustic and visual
features. These four machine learning models perform poorly,
indicating that the acoustic and visual features in vlog data
are highly complex and difficult to distinguish. Deep learning
models are Bi-directional LSTM (BLSTM), Tensor Fusion
Network (TFN), and Depression Detector. Yoon et al. [58]
used Concat, Add and Multiply feature fusion methods to
replace the multimodal Transformer encoder in Depression
Detector and added three more benchmark fusion models.
Depression Detector stands out among benchmark models
among deep learning models due to its powerful ability to
capture multimodal data. However, our model performed better
than Depression Detector. Compared with the Depression
Detector model, the TAMFN model improved the weighted
average precision, recall, and f1 score by 0.94%, 1.4%, and
3.6%, respectively. From the performance of the comparison
experiment, it can be observed that the proposed TAMFN
model can effectively evaluate the depression state in the vlog-
based data, which indicates that the TAMFN model has strong
ability to extract and fuse the temporal information.

B. Ablation Study

In the previous subsection, our proposed TAMFN
model achieved the best performance on the D-Vlog
dataset compared to the current models. In this subsection,
we will explore the impact of each sub-module in TAMFN
on the model’s depression detection ability. We designed five
model structures to explore the importance of each module

in TAMFN: (i) Temporal Convolutional Network (TCN).
We used two TCN model structures with five layers and
128 channels to extract features, then concatenate all the
features by channel, and finally Ordinary Fusion Module
(OFM) is used for depression detection. The OFM model is
composed of a convolution kernel with size 1 and number
of output channels 1 combined with a fully connected layer;
(ii) TCN+TAMF, the model uses TCN The model extracts
multimodal features, and combines the multimodal features
with the TAMF module to detect depression; (iii) GTCN,
this model uses the GTCN model to extract features, then
concatenates the features, and finally uses the OFM structure
for depression detection; (iv) GTCN+IFE, this model uses
GTCN as the benchmark model to build a three-stream net-
work structure extraction model, concatenate all features by
channel, and then uses OFM module for depression detection;
(v) TAMFN, a model composed of three modules GTCN, IFE,
and TAMF.

Table IV describes the depression detection performance
of five different structural models. TCN has poor depression
detection performance, possibly due to the sparsity of dilated
causal convolution. Although the receptive field is expanded,
it leads to the loss of continuous neighborhood information.
Next, we investigate the role of each module in the TAMFN
network by comparing each two model pairs, i.e., TCN with
TCN+TAMF, TCN with GTCN, and GTCN with GTCN+IFE.
As can be seen in Table IV, the TCN+TAMF, GTCN, and
GTCN+IFE models all show some degree of improvement in
performance over their respective control groups, indicating
the effectiveness of the TAMF, GTCN, and IFE modules.
For the TAMFN model, GTCN and IFE modules, as feature
encoders, can effectively extract the features of a single
modality and the interaction between modalities, respectively.
On the basis of obtaining effective feature representation and
combining with useful TAMF fusion module, the depression
detection performance of TAMFN model is greatly improved.

C. Feature Analysis in TAMFN Model

The previous section’s ablation experiment shows that the
TAMF module’s introduction has dramatically improved the
depression detection performance of the TAMFN model.
In this section, we explore the changes in practical information
contained in the features before and after the fusion of different
modalities. We use the Principal Component Analysis (PCA)
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TABLE III
CLUSTERING EFFECT EVALUATION OF DIFFERENT FEATURES

TABLE IV
PERFORMANCE OF DIFFERENT STRUCTURAL

MODELS ON D-VLOG DATASET

method to reduce high-dimensional feature representation in
TAMF to two-dimensional representation and visualize them.
Fig. 6 shows the visual results of visual feature, acoustic
feature, early fusion feature, fusion representation of visual
and acoustic feature, fusion representation of acoustic and
early fusion feature, and fusion representation of visual and
early fusion feature. We found that the features of depression
and healthy people are challenging to distinguish after dimen-
sionality reduction. The reason is that depression detection
based on vlog data is difficult, which can be seen from
the unsatisfactory performance of the ten benchmark models
provided by Yoon et al. [58].

Further, we try to evaluate the quality of the features
extracted by each submodule in the TAMFN model using two
clustering evaluation metrics, Silhouette coefficient [63] and
Davies bouldin score [64]. Silhouette Coefficient combines
intra-cluster distance and nearest-cluster distance to evaluate
the clustering results of extracted features, and the higher the
value, the higher the quality of the features. The davies bouldin
score is defined as the average similarity measure of each
cluster with its most similar cluster, where similarity is the
ratio of within-cluster distances to between-cluster distances,
and the lower value indicates the better quality of the extracted
features. In addition, we leverage the trained TAMFN model
to extract features from the test set of D-Vlog. The silhouette
coefficient and davies bouldin score of the features extracted
by each submodule of the TAMFN model are shown in
Table III. It can be seen that the value of silhouette coefficient
of the extracted acoustic features is higher than that of visual
features, and the davies bouldin score is lower than that of
visual features, which indicates that the quality of acoustic
features is better than that of visual features. Moreover, the
silhouette coefficient and davies bouldin score of the early
fusion features extracted by the IFE module are close to
those of the acoustic features, indicating that the IFE module
is effective. Then, the value of the silhouette coefficient of
the fusion features (Acoustic + Early fusion, Visual + Early
fusion and Acoustic + Visual) obtained by the corresponding

Fig. 6. Feature dimensionality reduction visualization of different mod-
ules in TAMFN. In the figures, the blue points denote the dimensionally
reduced characteristics of depressed people, and the green points
denote the dimensionally reduced characteristics of healthy people.

TAMF module increases to some extent and the davies bouldin
score decreases to some extent compared to the original
features (Visual, Acoustic and Early fusion). For example,
the value of the silhouette coefficient for Visual + Early
fusion feature increases and the davies bouldin score decreases
compared to the Visual feature. These results demonstrate
that the TAMF module effectively extracts the interaction
information between the modalities and improves the quality
of the fused features.

D. Performance of TAMFN Model for Depression
Detection Task in Other Scene

To further evaluate the effectiveness of the TAMFN model,
we conduct an extended experiment based on the EATD-
CORPUS dataset, which is not the same scene as vlog. the
EATD-CORPUS dataset is constructed by Shen et al. [56],
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TABLE V
RESULTS OF EXPERIMENTS ON EATD-CORPUS

who develop an app that uses a virtual interviewer to ask
three questions to interviewees at random while collecting
their audio responses. The interviewees can submit their cor-
responding data online, and in addition, the interviewees have
to complete an SDS questionnaire [66], whose scores indicate
depression severity. Currently, they have collected information
from 162 interviewees. By assessing the scores of the SDS
questionnaire, 30 interviewees are considered depressed and
132 interviewees are non-depressed. Shen et al. [56] obtain the
audio data of the interviewees and performed data preprocess-
ing, first, removing the muted audio, the audio less than 1 sec-
ond, and the muted segments at the beginning and end of
each recording. Then background noise is removed using
RNNoise [67] with default parameters. After that, Kaldi [68]
is used to extract texts from the audio. Finally, all texts are
manually checked and corrected.

Shen et al. [56] evaluate the model performance on
EATD-CORPUS dataset by three-fold cross-validation, taking
F1 Score, Recall and Precision as evaluation indicators. For the
data imbalance problem, they expanded the depressed dataset
by resampling method, i.e., reordering the three responses and
resampling these reordered responses to create new training
samples. Because there are 6 ways of response rearrangement
for each individual, the size of the depressed class can be
enlarged 6 times. We use NetVLAD [69] and ELMo [70] to
extract the features of audio and text respectively, and then use
the features of audio and text as the input of TAMFN model.
The parameters of TAMFN model are consistent with the
parameter settings shown in Subsection IV, Part B. In addition,
the average result of three-fold cross-validation of TAMFN
model for ten times on EATD-CORPUS dataset are reported.

Table V shows the performance of different models on the
EATD-CORPUS dataset. It can be seen that among the uni-
modal model performances, the GRU/BILSTM-BASED model
proposed by Shen et al. [56] achieves the best performance in
comparison to other models on audio and text features, respec-
tively. Although the SVM achieves a recall value of 1.00 for
text-based feature prediction, the precision value is low, i.e.,
depression detection performs poorly. However, in the depres-
sion detection based on Fusion feature, our proposed TAMFN
model outperforms the GRU/BILSTM-BASED model [56]
and the Multi-modal LSTM model [65]. In particular, the
precision of the TAMFN model reaches 0.69, which is 11.2%

higher than the GRU/BILSTM-BASED model, indicating that
our proposed TAMFN model has better depression detection
ability.

VI. CONCLUSION

In this paper, we propose a time-aware attention multimodal
fusion network (TAMFN). The TAMFN model consists of
three modules, GTCN, IFE and TAMF. The GTCN module
is used for temporal feature extraction of each modality, the
IFE module is used to extract acoustic and visual interaction
features, and the TAMF module guides the fusion of multiple
modal features through the time-aware attention mechanism.
The ablation experiments show that the three submodules
GTCN, IFE and TAMF in the TAMFN model have a positive
impact on the generalization ability of the TAMFN model,
verifying the effectiveness of our proposed submodules. Mean-
while, we conducted experiments on the D-Vlog dataset, and
the TAMFN model achieved the best performance compared to
all benchmark models. In addition, we conducted an extended
experiment to evaluate the performance of the TAMFN model
on the EATD-CORPUS dataset, which is not the same scene
as vlog. The results show that the TAMFN model also has
great performance of depression detection.

Due to the high complexity and noise of non-verbal features
in vlog data, the data distribution of the training set and
test set may be quite different, making it difficult for current
methods to achieve satisfactory depression detection results.
In future work, we will introduce a test-time adaptation (TTA)
technique, which aims to utilize the unlabeled test set for
inverse computation, which allows the model’s weights to be
updated during the test phase. The variation of the potential
distribution between the training set and the test set can be
overcome by the TTA technique, and the TTA technique has
certain application prospects for the vlog-based depression
detection task.
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