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Modeling and Individualizing Continuous Joint
Kinematics Using Gaussian Process

Enhanced Fourier Series
Yongshan Huang , Honglei An, Hongxu Ma , and Qing Wei

Abstract— Prosthetic discrete controller relies on finite
state machines to switch between a set of predefined task-
specific controllers. Therefore the prosthesis can only per-
form a limited number of discrete locomotion tasks and
need hours to tune the parameters for each user. In con-
trast, the continuous controller treats a gait cycle in a
unified way. Thus it is expected to better facilitate nor-
mative biomechanics by providing a gait predictive model
to contribute a non-switching controller that supports a
continuum of tasks. Furthermore, a better method is to train
a personalized trajectory prediction model suitable for per-
sonal characteristics according to personal walking data.
This paper proposes a Gaussian process enhanced Fourier
series (GPEFS) method to construct a gait prediction model
that represents the human locomotion as a continuous
function of phase, speed and slope. Firstly the joint trajec-
tories are transformed into the Fourier coefficient space by
least square method. Then the relationship between each
Fourier coefficient and task input can be learned by multiple
Gaussian process regression (GPRs) model respectively.
Compared with directly using GPR to fit the joint trajectory
under multi task, our method greatly reduces the compu-
tational burden, so as to meet the real-time application
scenario. In addition, in Fourier coefficient space, the differ-
ence in all tasks between the Fourier coefficient of personal
data and the one of statistical data follows the same trend.
Therefore,a personalizedprediction model is built to predict
an individual’skinematics over a continuousrange of slopes
and speeds given only one personalized task at level ground
and normal speed. The experimental results show that the
gait prediction model and the personalizedprediction model
are feasible and effective.

Index Terms— Human locomotion, gaussian process
regression, Fourier series, gait predictive models, pros-
thetic limbs.

I. INTRODUCTION

OWING to the ability of injecting positive power for
activities of daily livings (ADLs), powered prosthesis
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can greatly improve the amputee’s life quality by restoring
normative biomechanics of many locomotion tasks [1]. There
are two main types of control paradigms of powered prosthesis
[2]: one is the discrete control paradigm in which a gait is
divided into multiple stages [3], [4], [5], [6], [7], [8], and the
other is the continuous control paradigm that treats a gait cycle
in a unified way [9], [10], [11], [12], [13]. Although the former
has achieved great success, its main disadvantages, such as
there are a large number of parameters need to be adjusted
manually, have hindered its large-scale clinical application [4].
On the contrary, the latter creates a unified controller for
the whole gait cycle. Thus it has no inherent drawbacks of
the discrete one as described above. Early continuous con-
trollers, such as the echo controller [9], [10], were time-based
preprogrammed and cannot reflect the movement intentions
of leg in prosthesis side. Recently, Gregg et al. [11], [12],
[13] developed a very attractive continuous control method
for prosthetics by introducing virtual constraints controller
(VCC) originally used for bipedal robot control. VCC in the
prosthetic field has two main steps: the first is to obtain phase
variables (PV) that can reflect wearers’ movement intentions;
and the second is to build the gait prediction models, which
will accept the input of PV to generate the desired trajectories
of the prosthetic joints under different modes of motion. With
respect to the constructing of PV, Gregg et al. initially used
the center of pressure (COP) of foot [11] and subsequently
used residual thigh movement information [12] to obtain PV.
It was reported that both of them all achieved promising
results.

With regard to building the gait prediction models, various
methods have been proposed to estimate joint trajectories
under level walking task with fixed or variable speed [14],
[15], [16], [17], [18]. However, it is a challenge to construct
a uniform gait prediction models to predict lower limb joints
trajectories under a task with continuously varying slopes and
speeds [22]. If it is required to generate personalized joint
trajectories according to different amputee wearers, which will
further complicate the problem. In general, we will train a
corresponding gait prediction model according to a specific
wearer under different walking tasks, it will not only require
a large amount of expensive data from individuals to train the
model, but also places high demands on the trial site.

A. Related Work

The related work of predicting or estimating the trajectory
of lower limb joints can be divided into two categories:
polynomial-based regression (PR) methods and neural network
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(NN)-based methods. Works pertaining to both categories are
presented following sequentially.

Fukuchi et al. [19] used a second-order polynomial to
describe the relationship between a given walking speed
and the knee gait trajectory. Their method is fast as the
computation burden needed by a second-order polynomial for
prediction is small. However, the prediction is less accurate
due to the second-order polynomial is not enough to describe
the complex curve of joint angle profiles. Moissenet et al. [20]
proposed a multiple regression model that can estimate the
relative contribution to lower limb joint profile of walking
speed, gender, age and BMI. Yet, it is reported that a mismatch
in predictors may lead to errors higher than 5◦ on lower limb
sagittal kinematics. Ren et al. [21] developed a personalized
gait trajectory generation method based on Random Forest
algorithm, the method modelling the relationship between
fourteen subject-specific parameters (SSPs) and gait trajectory.
Experimental results show that their method has a good
prediction accuracy, nevertheless, the computational burden of
that method is so heavy that it can not be used for real-time
applications. Among all the work in the class of PR models,
Embry et al. [22] proposed the most relevant work to this
study. They developed a gait prediction model which is defined
as the sum of the basis functions weighted by task function,
and the task function accepts, phase variable, gait speed
and slope as inputs. Experimental results demonstrated their
method outperformed linear interpolation significantly when
predicting the inter-subject mean joint kinematics. However,
their method is prone to overfitting for it is not easy to
set the form and the order of task function. In addition,
their method cannot generate personalized joint trajectories
depending on individual characteristics. Reznick et al. [23]
proposed an approximate personalization method for joint
trajectories by using the “difference” at the level ground
task to approximate the “difference” at all other inclines,
where the “difference” is computed by the same subject’s
experimental data and the inter-subject mean. They showed
that the prediction accuracy of personal trajectory has been
greatly improved after personalized. Nonetheless, because
their method is personalized directly from the level of joint
trajectory, thus it cannot be applied to online scenes. Also,
their method is easy to mistakenly incorporate measurement
noise into the individual’s contribution.

Cunha et al. [24] used two neural networks (namely, the
back propagation neural network (BNN) and the extreme
learning machine (ELM)) to predict the personalized joint
trajectory. The input of these NNs are four subject-specific
parameters (SSPs) included the subject’s age, weight, height
and desired walking speed. However, four SSPs parameters
selected base on priori may not represent all subject-specific
gait properties. Liang et al. [25] proposed a method based
on Long Short-Term Memory (LSTM) network to generate
hip joint and knee joint gait profiles by exploiting inter-limb
synergy. Whereas, due to the use of 21 SSPs, the proposed
model required a large data and an ample amount of time
and effort for angle profile prediction. He et al. [26] proposed
an algorithm, which is based on extreme learning machine
and AutoEncoder, to offer a natural and personalized gait

trajectory for lower limb joint based on the body parameters.
For the purpose of improving the efficiency and safety, a gait
cell concept is proposed. Yet, like work in Liang et al. [25],
He et al. [26] is also relatively slower methods and thus
cannot be used for real-time applications. Bajpai and Joshi [27]
proposed a deep neural network named as “MoveNet”, which
consists of three NN modules (encoder, mapper, and decoder),
to predict joint profile across variable walking speeds and
slopes. Like Reznick et al. [23], the method proposed by
Bajpai and Joshi [27] can also predict subject-specific knee
joint angle profiles for variable slopes from the data of knee
joint angle profiles recorded at a flat surface. However, the
input of MoveNet must be a complete joint profile, which
limits its application in prosthetics. As the author points out,
another limitation of MoveNet is that it can only be used
to abled-bodied users. Yun et al. [28] proposed a method
which model the relationship between fourteen body features
and human gait trajectories by Gaussian process regression
(GPR) algorithm. Although they showed that their method
has a very good prediction performance, it will take more
than one or two days to optimize the hyperparameters of GPR
model.

B. Motivation and Contributions
After a comprehensive review of related work, although

ADLs includes various combinations of walking speeds and
slopes, we find that most of the previous studies neglected
the demand of predicting joint trajectories for different slopes
(except [22], [23], [28]). With regard to the subject-specific
personalized trajectory prediction, most of these related work
used handcrafted SSPs as the features to train their models.
However, studies in [29] shown that the age, gender, BMI,
walking speed, and other body parameters may not be enough
to fully characterize the individual’s gait. Besides, almost
all related work based on a parametric model to build gait
prediction model. In order to obtain good prediction accuracy
and prevent overfitting, a large amount of training data is usu-
ally required. Nevertheless, recording gait data from amputee
are expensive. Furthermore, for some work from the field of
gait analysis, model complexity and computing time may not
matter. But in the field of prosthetic control, the accuracy
of model prediction and the rapidity of calculation must be
balanced, so that the gait prediction model can be applied to
real-time scenes.

Considering the limitations of previous methods, and the
personalized and real-time requirements of prosthesis control
for trajectory prediction under variable speeds and slopes
tasks, This study presents a gaussian process enhanced Fourier
series (GPEFS) model. Firstly, in order to obtain a low
computational load and the convenience of control, gait trajec-
tory is transformed into the finite Fourier coefficients (FFCs)
vector space by the least-square method. Secondly, we use
multiple GPRs models to fit the Fourier coefficients in FFCs
vector space. As a nonparametric kernel-based probabilistic
regression method, GPR can effectively avoid the overfit-
ting problem. Hence, unlike work in [22], there no need to
determine the form and order of the model according to the
prior knowledge. Usually, the number of FFCs m is much
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smaller than the length of joint trajectory n (namely,m � n),
and fitting FFCs with multiple GPRs is equivalent to making
multiple GPRs calculated in parallel. Therefore, the problem of
high computational complexity of GPR (O

(
N3

)
) [33] can be

effectively avoided. Finally, in terms of trajectory personal-
ization, we do not explicitly set SSPs, but believe that the
difference between the level ground walking task data and
statistical average (or inter-subject mean) data is enough to
capture personal characteristics. And we operate that in FFCs
vector space, thus it needn’t to take a complete trajectory as
input in an application. Thus, the proposed GPEFS model can
be applicable to a real-time online scenes.

The rest of this paper is organized as following. The data
set used to train the gait model are presented in Section II-A.
The model format and the solving of Fourier series of the
training data are presented in section II-B. Section II-C
describes the model learning process with GPRs. And the
Section II-D describes the method of individualizing. The
numerical results are shown in Section III and are discussed
in Section IV. Finally, the conclusion and future work is
presented in Section V.

II. METHODS

A. Data Set
Thanks for the open access dataset provided in [22]

and [30], which greatly facilitates our research. The exper-
imental protocol was approved by the Institutional Review
Board at the University of Texas at Dallas (UTD). In this
dataset, a total of 10 non-disabled subjects (5 female) par-
ticipated in the experiment, and they are all provided written
informed consent. The test method is that all subjects walking
at a steady speed and incline on a Bertec instrumented
split-belt treadmill for one minute, and the subjects’ kinematics
data are recorded by motion capture system; The specific
test content for each subject including walking at a constant
speed of 0.8m/s, 1.0m/s, and 1.2m/s with a constant ground
slope ranging from −10 degrees to +10 degrees at 2.5 degree
increments. There are 3 speeds and 9 slopes, resulting in
27 different tasks in the training dataset. We defined a task
variable χi ∈ R2×1 made of speed vm ∈ R1 with m =
1, 2, 3 and slope sn ∈ R1 with n = 1, . . . , 9, and all observed
tasks are aggregated into xob, they are expressed as:{

xob = [χ1, χ2, . . . , χ27]T ∈ R27×2

χi = [vm, sn]T ∈ R2×1, i = 1, . . . , m ∗ n, . . . , 27
(1)

where vm , as the subject’s forward speed, is linearly mapped
from the range of 0.6 m/s to 1.4 m/s to the range of 0 to
1; and sn , as the ground slope, is linearly mapped from the
range of −10 degrees to 10 degrees to the range of 0 to 1. It is
worth noting that χi can be easily expanded to include other
motion modes like a sit/stand or flat/stairs. In the data set, per
stride was interpolated to contain N = 150 points, and all gait
cycles begin at heel strike (corresponding to point 1), and end
just before the next heel strike (corresponding to point 150).

B. Model Format and the Solving of Fourier Coefficient
In this study, gait model represents joint kinematics as a

function of continuous phase variable ϕ ∈ R1 and a continuous

task variable χ ∈ R2×1. Where the phase variable ϕ represents
the progress of gait cycle, and can be expressed as ϕ ∈
{R| 0 � ϕ � 1, ϕ̇ > 0} [13]. The task variable χ represents the
evolution of walking task. For humanity’s gait kinematics has
a continuous characteristic, χ not only includes the recorded
task xob but also includes tasks that beyond the fine granularity
of record. In this study, we mainly consider the problem of
interpolation estimation of joint profiles outside the trained
data. So the continuous task variable χ can be expressed as
χ = [v, s] ∈ {

R
2×1|0 � v � 1, 0 � s � 1

}
, note that speed

v and slope s are all continuous variable, and all have been
normalized with the same range as vm and sn , respectively.
The challenge is how to construct a unified model q(ϕ, χ) to
predict the trajectories of lower limb joints under continuous
changing tasks.

Previous study [22] provided a scheme that created a unified
model based on the sum of K basis functions bk (ϕ) weighted
by K task functions ck (χ):⎧⎪⎪⎪⎨⎪⎪⎪⎩

q (ϕ, χ) = ∑K
k=1 bk (ϕ) ck (χ)

bk (ϕ) = β00k + ∑E
i=1 (β1ik cos (iϕ) + β2ik sin (iϕ))

ck (χ) =
(

γ

κ

)
f (χ)κ (1 − f (χ))γ−κ

(2)

where E = 10 is usually selected to match the significant
frequency content of human kinematics [32]. They defined
ck (χ) as a form of Bernstein polynomials, and it’s order γ
and the form of function f (χ) needs to be determined based
on domain knowledge or cross validation method.

In contrast, this paper proposed a unified model that uses
only one basis function. The central insight is that we can
use the finite Fourier coefficients (FFCs) of the basis function
to account for the trends of different tasks (instead of using
task functions), and the relationship between FFCs and task
variables under different tasks can be learned by machine
learning algorithm. The prediction model is defined as:

q(ϕ, χ) = a1(χ) +
E∑

i=1

(a2i(χ)cos(iϕ) + a2i+1(χ)sin(iϕ))

= bT (ϕ)A(χ) (3)

where E = 10 is also selected, and the Fourier basis vector
b(ϕ) and FFCs vector A(χ) are defined as:

b(ϕ)

= [1, cos(1ϕ), sin(1ϕ), . . . , cos(Eϕ), sin(Eϕ)]T ∈ R2E+1

A(χ)

= [a1(χ), a2(χ), . . . , a2E (χ), a2E+1(χ)]T ∈ R2E+1

One of the advantages of the proposed method is that, under
the recorded task data xob, the corresponding FFCs vector
A(xob) can be solved easily by batch least-squares (BLS)
or recursive least-squares (RLS) (for real-time online scenes)
method. According to the solution process of BLS or RLS (it
is not shown for the sake of brevity) [34], for a stride with N
interpolation points in the task χi , we can defined the Fourier
basis matrix B(ϕ) ∈ RN×(2E+1) and the inter-subject mean
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joint kinematics vector Q(ϕ, χi ) ∈ RN with the follow form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
B(ϕ) =

⎡⎢⎢⎢⎢⎣
bT (ϕ1)

bT (ϕ2)
...

bT (ϕN )

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 cos(1ϕ1) . . . sin(Eϕ1)

1 cos(1ϕ2) . . . sin(Eϕ2)
...

...
...

...

1 cos(1ϕN ) . . . sin(EϕN )

⎤⎥⎥⎥⎥⎦
Q(ϕ, χi ) = [q(ϕ1, χi ), . . . , q(ϕk, χi ), . . . , q(ϕN , χi )]T

(4)

where q(ϕk, χi ) is the inter-subject mean joint kinematics
recorded at discrete phase point ϕk and discrete task vector
χi . Then FFCs corresponding to task χi can be obtained by:

A(χi ) = (BT (ϕ)B(ϕ))−1 BT (ϕ)Q(ϕ, χi ) ∈ R2E+1 (5)

For all recorded task xob, the corresponding Fourier coefficient
can be formed as a matrix:

Aob = [A(χ1), . . . , A(χi ), . . . , A(χ27)] ∈ R(2E+1)×27 (6)

So far, we are equivalent to transforming the joint trajectories
into FFCs space, so the model learning can also be realized
in this space.

C. Inter-Subject Mean Gait Model Learning With
Gaussian Process Regression Enhanced
Fourier Series

Based on the insight that we can use FFCs, which can
be denoted as a function A(χ), to account for the trends of
continuously varying tasks. Therefore, now the core problem
is how to define a regression function F̂(χ) that approximates
as accurately as possible the unknown FFCs function A(χ),
where F̂(χ) is defined as:

F̂(χ) = [ f̂1(χ), f̂2(χ), . . . , f̂2E+1(χ)]T ∈ R2E+1

There are a multitude of machine learning algorithms can be
used to model the function F̂ . Yet, considering the training
data is small-sized (only 27 recorded tasks), and gaussian
process regression (GPR), as a nonparametric kernel-based
probabilistic models, can automatically achieve a balance
between fitting accuracy and model complexity to prevent
overfitting of a small-sized data set [33]. Hence we selected
GPR to model F̂ .

We used 2E + 1 independent GPRs to model each dimen-
sion of F̂ . For f̂κ (χ) with κ = 1, 2, . . . , 2E + 1, the
corresponding GPR model using the training dataset Dκ =
{(χi , Aob(κ, i), i = 1, 2, . . . , 27} can be defined as:

f̂κ (χ) ∼ GP
(
μ f̂κ

(χ) , k f̂κ

(
χ, χ ′)) (7)

where μ f̂κ
(χ) is the mean function, and k f̂κ

(
χ, χ ′) is the

kernel function (covariance function). We can query the GP at
a new task input χ∗ as:

p( f̂κ(χ∗) | Dκ , χ∗) = N (μ f̂κ (χ∗), σ 2
f̂κ

(χ∗)) (8)

The mean and variance predictions of that GPR are computed
using a kernel vector k f̂κ = k f̂κ (Dκ , χ∗), and a kernel matrix

K f̂κ with entries Ki j
f̂κ

= k f̂κ (χi , χ j ):{
μ f̂κ (χ∗) = kT

f̂κ
K−1

f̂κ
Dκ ∈ R1

σ 2
f̂κ

(χ∗) = k f̂κ (χ∗, χ∗) − kT
f̂κ

K−1
f̂κ

k f̂κ ∈ R1 (9)

In this paper, we used the exponential kernel with automatic
relevance determination [33]:

k f̂κ
(χ, χ ′) = σ 2

f ex p

[
−1

2

(χ − χ ′)T (χ − χ ′)
σ 2

l

]
(10)

where σ f is the signal standard deviation and σl is the
characteristic length scale, and they are usually be denoted
as � = [σ f , σl ], which as the hyperparameters of GPR. The
training process of GPR is using the recorded training data
to determine the hyperparameters �, by maximizing the log
marginal likelihood function as [33]:

logP (Dκ |xob,Θ ) = −1

2

(
DT

κ K−1Dκ + log |K| + n log 2π
)

(11)

where n = 27 is the number of the recorded tasks.
After concatenated all trained f̂κ (χ) into F̂(χ), then the

inter-subject mean joint kinematics model can be reconstructed
as:

q(ϕ, χ) = bT (ϕ)F̂(χ) (12)

This is the unified model learned by GPR enhanced
Fourier series. It can address the question of predicting the
inter-subject mean joint kinematics for continuously varying
task.

D. Individualizing Personal Gait Model Based on the
Task Data of Flat Ground and Normal Speed

Inter-subject mean gait model accounts for trends well over
continuous varying task, however, it may not be enough to
fit a personal characteristic kinematics. For individual subject
p with p = 1, 2, . . . , 10, the most direct method to get the
personalized model qp(ϕ, χ) is using a complete experimental
data of all tasks with the same process of obtaining the
inter-subject mean model. However, it is often difficult to
measure a large number of tasks over varying speeds and
slopes due to the limitations of experimental equipment and
site, especially for clinical related tasks. Therefore, how to
use as limited task data as possible to individualize personal
gait model has strong practical significance. In this paper,
we proposed a method that modifying the inter-subject mean
model based on only a single personalized task of flat ground
and normal speed, so as to obtain the individual gait model
across all tasks.

We selected the normal speed (v = 1.0m/s) and flat
ground (s = 0 degree) as the basis task (denoted as χbase),
which is the task an individual subject need to carry out.
We defined the FFCs of the subject p corresponding the
basis task as A p(χbase), and the FFCs of subject p of task
χi is denoted as A p(χi ) wiht i = 1, 2, . . . , 27. Noting that
in practical application we do not need to calculate A p(χi )
(except A p(χbase)) for they are only to facilitate analysis and



HUANG et al.: MODELING AND INDIVIDUALIZING CONTINUOUS JOINT KINEMATICS USING GPEFS 783

Fig. 1. Fourier coefficients of the inter-subject mean kinematics of hip,
knee and ankle solved by batch linear least squares (BLS) in all recorded
tasks.

description. The rationality behind the personalization method
proposed in this paper is that, as showed in Fig. 4, we found
that the difference FFCs between individual trajectory and
mean trajectory follows the same trend in all tasks. Therefore,
we can use the coefficient error between individual trajectory
and mean trajectory in the base task χbase to approximate the
coefficient error in other tasks, and they can be formed as:{

A p,�(χ j ) = A p(χ j ) − A(χ j )

A p,�(χbase) = A p(χbase) − A(χbase)
(13)

we considered the A p,�(χbase) as a measure of personal
characteristics, and the A p,�(χ j ) can be approximated by
A p,�(χbase). Therefore, the FFCs of individual p in all tasks
can be approximated as:

Â p(χ j ) = A(χ j ) + A p,�(χbase) (14)

After obtaining the Fourier coefficient Â p(χ j ), we can fit
the personalized model use GPR with the same process as
obtaining the inter-subject mean model.

III. RESULTS

In this section, we will first model the inter-subject mean
kinematics of hip, knee and ankle, and evaluate the ability
of the unified mean model learned by GPR enhanced Fourier
series to predict the kinematics of untrained tasks. Secondly,
we will evaluate the feasibility and performance of the pro-
posed personalization method. We used the percent gait to act
as the phase variable, which are defined as:ϕ = t

T , ϕi = ti
T ,

where T is the total time of a gait cycle, t is the continuous
time, and ti is the discrete time.

A. Performance of the GPR Enhanced Fourier Series in
Modeling the Inter-Subject Mean Joint Kinematics

Fig.1 shows the FFCs of the mean model of hip, knee and
ankle solved by batch linear least squares (BLS) in all recorded
tasks. From Fig.1, we can see that the Fourier coefficients
playing a major role in hip, knee and ankle are “w0 ∼ w4”,
“w0 ∼ w6” and “w0 ∼ w10” respectively, this is consistent
with the complexity of the joint trajectory.

Fig.2 shows the fitting effect of the GPR model on Fourier
coefficients w0, w1 and w2 of hip, knee and ankle in all record
tasks, where the “Target Value” is the Fourier coefficients
solved by BLS. Due to the limited space of the paper, the
fitting effect of other Fourier coefficients has not been shown.
Table I shows the fitting-loss of GPR model in fitting Fourier
coefficients “w0 ∼ w20” of hip, knee and ankle, where the
fitting-loss is computed by:

f i tLoss (wi ) =
√√√√ 27∑

j=1

(wB L S
i, j − w

G P R f it
i, j )2/27 (15)

where subscripts i = 0, 1, . . . , 20 and j represent FFCs serial
number and task serial number, respectively. From Fig.1 (as
the target value solved by BLS) and Table I (as the fitting-
loss), we can see that FFCs are fitted well by GPRs in all
tasks.

Fig.3 shows the example of inter-subject mean model joint
surfaces of hip, knee and ankle at normal speed (1.0m/s).
Where the model outputs are represented as blue surface with
a bright yellow gradient, and the inter-subject mean data used
to train the model are shown in dotted cyan lines. We can note
that our proposed method can not only fit the training data
well, but also have good prediction ability and generalization
ability in untrained areas (regions between dotted cyan lines
denoting the training data). In addition, noting that the mean
model learned by GPR enhanced Fourier series is C∞ smooth,
this is different from the surface obtained by linear interpola-
tion, which is reported in [22] being prone to un-smooth when
predicting untrained regions.

B. Feasibility Verification and Performance Evaluation of
the Individualize Method

To make the paper be more concise, in this section, we chose
subject 5 as the representative for discussion. Joint kinematics
trajectories of hip, knee and ankle at normal speed (1.0m/s)
of subject 5 are denoted by the solid red lines in Fig.3. From
Fig.3 we can see that the mean model can account for trends
well over continuous varying task, but it may not be enough
to fit a personal characteristic kinematics.

Fig.4 shows the Fourier coefficients errors between the
individual model of subject 5 and the inter-subject mean
model in all tasks. Where the average errors value in all
tasks are expressed by the dotted line; the error value in base
task (speed = 1.0m/s & slope = 0 degree) is expressed by
the solid line; and the value between the maximum error
and the minimum error is expressed as the colored area.
It can be seen from Fig.4 that the error values of all FFCs
follow the same trend in all tasks. For quantitative description,
we analyzed the correlation between the error values under
the base task and those under all other tasks. Correlation
coefficients (Pearson coefficients) of hip, knee and ankle are
0.84, 0.80 and 0.85, respectively, that shows they all have
strong correlation. Therefore, it is feasible to use the FFCs
under the base task to approximate the FFCs under all other
tasks.

Fig.5 shows the individualized model joint surfaces of
subject 5, superimposed with the joint trajectories recorded
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Fig. 2. Fitting performance of the GPR model on Fourier coefficients w0, w1 and w2 of hip, knee and ankle in all tasks, where the “Target Value” is
the Fourier coefficients solved by BLS.

TABLE I
THE FITTING-LOSS OF GPR MODEL IN FITTING FOURIER COEFFICIENTS “w0 ∼ w20 ” OF HIP,KNEE AND ANKLE IN ALL RECORDED TASKS

Fig. 3. Inter-subject mean model joint surfaces of hip, knee and ankle learned by GPRs enhanced Fourier series, superimposed with the joint
trajectories recorded in experiment with dotted cyan line (as the training data). The true surface is 4 dimensional, so this is the 3D projection onto
one speed, 1.0m/s. Where the solid red line denotes the experimental data of subject 5.

in experiments with the solid red lines. By comparing Fig.5
and Fig.3, we can intuitively see that the individualized model
can better fit the joint kinematics of individual. Noting that we
have not made special adjustments except applied personal gait
data at normal speed on flat ground.

Table II shows the root mean squared error (RMSE) and
max error across all tasks of inter-subject mean model and
individualized model for all subjects and joints. The formula
of RMSE is defined as:

RM SE =
√√√√ N∑

i=1

T∑
j=1

(q f it (ϕi , χ j ) − qrecord (ϕi , χ j ))2/(NT )

where N = 150 is the number of interpolated point in a
gait period, and T = 27 is the number of the recorded
tasks. Averaged across all subjects, after individualization, the
reduced RMSE/Max-Error at the hip, knee, and ankle joint are
2.94/5.059, 1.822/5.82 and 1.156/4.51, respectively.

Fig.6 shows the statistical information corresponding to
Table II. We statistically compared the gait model before
and after individualized to check whether the improvement
is statistically significant. Since the number of recorded tasks
is only 27, it may not satisfy the homogeneity of variance,
so a two-tailed Mann Whitney test using an alpha of 0.05 was
adopted. As showing in figure.6, the RMSE and Max-Error
before and after individualized in all subjects for all joints
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TABLE II
RMSE AND MAX ERROR OF INTER-SUBJECT MEAN MODEL AND INDIVIDUALIZED MODEL ACROSS ALL TASKS FOR ALL SUBJECTS AND JOINTS.

THE LAST TWO COLUMNS SHOW THE MEAN AND STANDARD DEVIATION (SD) AT EACH JOINT ACROSS ALL SUBJECTS

Fig. 4. Fourier coefficient errors in all tasks between the Fourier
coefficients of the data of subject-5 and the one of inter-subject mean
data. Where the average error value in all tasks is expressed by the dotted
line; the error value in base task (speed = 1.0m/s � slope = 0 degree)
is expressed by the solid line; and the value between the maximum error
and the minimum error is expressed as the colored area.

are significantly improved. The p-value of RMSE/Max-Error
of hip, knee and ankle are p = 0.0011/p = 0.0185, p =
0.0147/p = 0.0068 and p = 00186/p = 0012, respectively.

IV. DISCUSSION

Human beings are born to walk naturally in a continuous
way. In addition to walking with the most comfortable speed
on the flat ground, we often face the task of variable speed
and variable slope in ADLs. However, when designing a
continuous prosthetic controller, it is a challenge to build a gait
prediction model that can accurately and continuously predict
the trajectories of lower limb joints across various slopes and
walking speeds. This study aims to contribute to this topic.

A. Advantages of GPR Enhanced Fourier
Series Modeling

For highlighting the advantages of our proposed model,
as shown in Fig.7, we compared the Mean/Maximum
prediction error values of the proposed method (namely,
GP enhanced Fourier series (abbreviated as GF)) with the
ones of the state-of-the-art method proposed in [22] (namely,

“basis function weighted by task function” (BM)) and a
traditional linear interpolation (LN) method. The definition
and calculation formula of prediction error can be referred
to equation (10) of [22]. It is clearly shown that both
the mean and maximum prediction errors in our proposed
method (GF) are the smallest. Specifically, in hip, knee
and ankle joint, the mean prediction errors in GF are only
46.5%/44.2%, 21.7%/17.5%, and 15.7%/13.5% of that in
BM/LN, respectively; And the maximum prediction errors in
GF are 17.6%/23.3%, 15.0%/8.8%, and 10.5%/8.8% of that
in BM/LN, respectively.

In addition to good prediction accuracy, our method is
also beneficial from the ease of implementation and a low
computational burden. Previous work in [22] defined a task
function ck(χ) (as shown in equation(2)) as a form of Bern-
stein polynomials to account the influence of different tasks
on joint trajectory. However, how to set the order γ and
the form of function f (χ) of the task function is not easy.
It is particularly important to have an appropriate form of
task function. If the task function ck(χ) is too simple, the
finally prediction model may fail to fit the true characteristics
of the data under variable speeds and variable slops; If the
task function ck(χ) is too complex (e.g., the order (γ ) is
too high or the function f (χ) is too complex), the finally
prediction model may be over fitted and the generalization
ability may be greatly reduced. In the proposed method, the
only parameter that needs to be determined according to prior
knowledge is the order of the Fourier series E . Fortunately,
human joint profile has a relatively fixed range or shape in
daily life, so when the order of Fourier coefficient is E =
10 [32], it can capture the main features of human kinematics.
In addition, GPR is a fitting method that lets the data speak
for itself, so it can effectively prevent over fitting on small
data sets.

Previous work in [15] and [28] directly used GPR to
construct gait prediction model. Their models have achieved
good performance, but the computation burden is so heavy
that they cannot be used for real-time scene. For example,
it was reported in [28] that the time took to optimize the
hyperparameters of their GPR based model more than one
or two days. This was caused by the biggest problem of



786 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 5. Individualized model joint surfaces of subject 5, superimposed with the joint trajectories recorded in experiment of subject 5 with the solid
red lines. The true surface is 4 dimensional, so this is the 3D projection onto one speed, 1.0m/s.

Fig. 6. Statistical information corresponding to TABLE II. Where ∗ and
∗∗ represent p < 0.05 and p < 0.01, respectively, p is the p-value test
result of a two-tailed Mann Whitney test satisfy; And the bar and error
bar represent the median level and quartile, respectively.

Fig. 7. Mean/Maximum prediction error values under different tasks
of the three methods, which are the proposed method GP enhanced
Fourier series (abbreviated as GF ), the “basis function weighted by task
function” (BM) method proposed in [22], and the linear interpolation (LN)
method. Please refer to equation (10) of [22] for the specific formula and
definition.

GPR that its computational complexity is O
(
N3

)
for the

time series with length N . In this study, for the inter-subject
mean data, there 27 task data and the length of each task

data is 150. If we directly use GPR to build a gait prediction
model, the computational complexity is N

(
40503

)
. That may

be unbearable for real-time application. A novelty of this
paper is that we first transformed the joint trajectory into
Fourier coefficient space. Thus, we can use GPRs to learn
the target Fourier coefficients in the Fourier coefficient space.
Furthermore, we created multiple GPR models (can optionally
be computed by parallel) and each of them are correspond-
ing to each of the Fourier coefficients. Specifically, for the
inter-subject mean model, the computational complexity is
21∗ O

(
273

)
. It can be seen that the computational complexity

has been greatly reduced.
Besides, the target value of Fourier coefficients can be

solved directly by the least square method framework rather
than the optimization method, therefore, the solution process
is greatly simplified. Moreover, the solution process is very
robust owing to the condition number of B(ϕ), being 1.42,
is very small (the closer the condition number to 1, the more
robust of the solution of the least squares method). Where
the the condition number is defined as Cond = λmax (B(ϕ))

λmin (B(ϕ)) ,
and λmax(B(ϕ)) and λmin(B(ϕ)) represent the maximum and
minimum eigenvalues of matrix B(ϕ) respectively.

B. The Performance of the Personalized Gait Model

In the prosthetic control, the average model trained by
inter-subject mean data can make the amputee walk normally,
however, it is usually suboptimal for that the personal charac-
teristics of the wearer are ignored. A better method is to train a
personalized trajectory prediction model suitable for personal
characteristics according to personal walking data.

As showed in Table III, we compared the proposed individ-
ualizing method with eight state-of-the-art methods. From the
comparison results, we can see that the personalized trajectory
prediction performance of [19], [20], and [23] is relatively poor
due to the limited expressive ability of polynomials. Methods
in [21], [25], [26], and [24] achieved excellent personalized
trajectory prediction performance, however, they didn’t involve
the task of variable slopes. References [23] and [27] and this
study are the only three methods involving variable speed
and variable slope tasks, and more interestingly, all three
methods follow the similar idea that believing the difference
between the level ground walking task data and statistical
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TABLE III
COMPARISON WITH PREVIOUS METHODS (PREDICTING PERSONALIZED KNEE ANGLE)

average (or inter-subject mean) data is enough to capture
personal characteristics, but the implementation strategies of
the three methods are completely different. Method proposed
in [27] regards a complete gait periodic trajectory as an one-
dimensional “image”, and obtains excellent personalized tra-
jectory prediction performance with the help of a convolutional
neural network. However, for its input must be joint profiles,
so it can only be utilized to off-line gait analysis rather than
the real-time application scenario of prosthetic control. Method
proposed in [23] directly obtain the so-called “personal contri-
bution” by calculating the joint trajectories difference between
all recorded tasks data with inter-subject mean data. Neverthe-
less, it is easy to mistakenly incorporate measurement noise
into the individual’s contribution. That may be the reason for
its relatively poor prediction performance.

As showed in Fig.4, in this study we found that the Fourier
coefficient errors between all recorded tasks data and statistical
average (or inter-subject mean) data follow the same trend.
Therefore, we can construct personalized methods directly
in Fourier coefficient space (as shown in equation (14)).
One of the advantages is that we can only perform this
operation on the dominant Fourier coefficients (i.e. Fourier
coefficients with small serial number), which can effectively
prevent the negative impact of high-frequency measurement
noise. In addition, our method does not need complete joint
contour as input, so it can be applied to real-time application
scenarios such as prosthetics.

V. CONCLUSION

In conclusion, this paper proposed a gait prediction model
which models the human locomotion as a continuous function
of phase, speed and slope. This model makes it feasible to
realize a continuous controller for powered prosthesis in a
wider range of tasks. The main contribution of this study
is that we present a formal modeling method. The joint
trajectories under different tasks are first transformed into
Fourier coefficients space; then we can use GPR to fit the
relationship between Fourier coefficient and joint trajectory.
GPR can automatically balance the fitting performance and
model complexity, so its use can avoid the model from over
fitting on the sparse training data set. Compared with the
complexity N

(
40503

)
of learning trajectory directly using

GPR for 27 recorded gait data with a length of 150, the
computational complexity of our method is only 21 ∗ O

(
273

)
(where 21 is the selected order of Fourier series).

In addition, we implicitly capture the characteristics of
individual gait trajectory in the Fourier coefficient space.
The individualizing method can model individual kinematics
across tasks based only on personalized data for level-ground
walking at a normal speed, so it can greatly reduce the time
it takes to tune multiple tasks. Applied to 10 human subjects,
the individualization method reduced the RMSE between the
model and subject’s kinematics over all tasks by an average
of 2.943 deg (max 5.059 deg) at the hip, 1.822 deg (max
5.82 deg) at the hip, and 1.156 deg (max 4.51 deg) at the ankle.
The individualization method makes the powered prosthesis be
more clinically viable over a variety of tasks without the need
of an engineer.

A future work is to study the real-time estimation algorithm
of walking speed and slope based on IMU, and combine them
into the gait prediction model. Another work is to extend the
exist personalized method to include tasks such as climbing
stairs of different inclinations and sit-to-stand.
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