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Abstract— Depression is a severe psychiatric illness that
causes emotional and cognitive impairment and has a con-
siderable impact on patients’ thoughts, behaviors, feelings
and well-being. Moreover, methods for recognizing and
treating depression are lacking in clinical practice. Elec-
troencephalogram (EEG) signals, which objectively reflect
the internal workings of the brain, is a promising and
objective tool for recognizing and diagnosing of depres-
sion and enhancing clinical effects. However, previous EEG
feature extraction methods have not performed well when
exploring the intrinsic characteristics of highly complex and
nonstationary EEG signals. To address this issue, we pro-
pose a regularization parameter-based improved intrinsic
feature extraction method of EEG signals viaempirical mode
decomposition (EMD), which mines the intrinsic patterns
in EEG signals, for depression recognition. Furthermore,
our method can effectively solve the problem that EMD
fails to extract intrinsic features. In this method, we first
select an appropriate regularization parameter to generate
the regularization matrix. Next, we calculate the sum of
the matrix products of the IMFs and the regularization
matrix and leverage the inverse of this matrix to extract the
intrinsic features. The classification results of our method
on four EEG datasets reached 0.8750, 0.8850, 0.8485 and
0.7768, respectively. In addition, compared with the iEMD
method, our method requires less computational costs.
These results support our claim that our method can effec-
tively strengthen the depression recognition performance,
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and our method outperforms state-of-the-art feature extrac-
tion approaches.

Index Terms— Depression recognition, EEG, empirical
mode decomposition, intrinsic features.

|. INTRODUCTION

EPRESSION is a severe psychiatric disorder that causes
emotional and cognitive impairment and affects the
thoughts, behaviors, feelings and well-being of patients,
impairing their ability to live and work. According to recent
reports from the World Health Organization (WHO), depres-
sion affects approximately 280 million people of all ages
worldwide and cause more than 700,000 people die from
suicide each year [1], [2]. Thus, it has become a seri-
ous threat to human life. Clinical diagnoses of depression,
which are critical for receiving effective and timely treatment,
rely on self-assessment scales and physician interviews, and
depression is diagnosed by psychiatrists subjectively based on
their experience. However, in clinical practice, experienced
psychiatrists often have limited resources and the number of
psychiatrists and patients is extremely unbalanced. Unfortu-
nately, there are no objective criteria for assessing depression
in clinical practice [3]. Therefore, it is crucial to develop an
objective and valid method for recognizing and evaluating
depression to understand the effect of different treatments.
Depression can be effectively identified with psychophys-
iological data-driven methods [4], [5], [6], [7], [8]. Specif-
ically, physiological data can be used to develop objective
and accurate tools for determining the physiological and
psychiatric states of subjects. Electroencephalogram (EEG)
is a widely recognized physiological signal that reflects the
internal workings of the brain [9], [10]. EEG signals captured
from the scalp are safe, noninvasive, low-consumption and
easy to acquire. Thus, EEG signals can be used to develop
a promising and objective tool for recognizing and diagnos-
ing depression to enhance clinical outcomes. Several studies
have confirmed that EEG signals can be used to effectively
recognize depression [11], [12]. Furthermore, EEG signals in
the frontal lobe and bilateral temporal region can be used as
biomarkers for distinguishing depressed patients from healthy
controls [13], [14], [15], [16].
Effective features are crucial in EEG recognition tasks. If a
feature is invalid, a classifier can have difficulty identifying
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group differences in an EEG signal. Existing EEG feature
extraction methods in depression recognition research mainly
utilize the following features. (1) Frequency domain feature
methods use fast Fourier transformations (FFTs) [17] to con-
vert EEG data from the time domain to the frequency domain
to extract features such as the power spectral density, maxi-
mum power, and centroid frequency [18], [19], [20]. (2) Tem-
poral domain features, which show changes in EEG signals
over time, are implemented in the current study by using the
autoregressive (AR) model [21] and recurrent neural networks
(RNNSs) [22], [23]. (3) Spatial domain feature methods utilize
the original signals to generate a covariance matrix according
to the EEG channel space and then construct spatial filters
to learn the spatial patterns as features. The most impressive
spatial domain feature method is the common spatial pattern
(CSP) approach [24], [25], which extracts EEG features by
exploring the spatial distribution components of different
tasks. (4) Nonlinear features can be used to investigate the
complexity and chaos of EEG signals. Traditional nonlinear
features include the wavelet entropy [26], CO complexity [27],
Renyi entropy [28], permutation entropy [29], Kolmogorov
entropy [30], and Lempel-Ziv (LZ) complexity [31]. (5) Image
feature methods convert EEG signals into time-series images,
spectral images, or topography maps and extract features
from these images. Previous research has used convolutional
neural networks (CNNs) [32], [33], [34] to mine the statistical
characteristics of EEG signals in these images. Although these
features are widely used in depression recognition research,
they do not perform well when exploring the intrinsic charac-
teristics of highly complex, nonstationary EEG signals.
Empirical mode decomposition (EMD) is an adaptive
time-series signal decomposition method proposed by N.E.
Huang et al. for complex and nonstationary signals [35].
EMD can decompose a complex signal into a finite number
of simple signals known as intrinsic mode functions (IMFs),
which reflect the essential physical characteristics of the signal
nature. Therefore, EMD is an effective technical tool for
investigating the intrinsic patterns and valid features of EEG
signals [36], [37]. EMD-based feature extraction methods typi-
cally use IMFs to represent EEG signals and use the expansion
coefficients as the features [4], [35]. However, due to mode
mixing, the inverse of the matrix product of the IMFs and its
transpose matrix does not exist. Thus, EMD cannot extract fea-
tures of EEG signals effectively and accurately. To address this
problem, a regularization parameter-based improved intrinsic
feature extraction method of EEG signals via EMD is proposed
in this work. In this method, we introduce a regularization
parameter to effectively optimize the intrinsic features of EEG
signals. First, the improved method multiplies the identity
matrix by an appropriate regularization parameter to generate
the regularization matrix. Next, we calculate the sum matrix by
adding the matrix product of the IMFs and its transpose matrix
to the regularization matrix. Then, we compute the inverse of
this sum matrix. Since the regularization matrix is nonsingular,
the sum matrix is also a nonsingular matrix. Thus, the inverse
of the sum matrix can be used in place of the inverse of the
matrix product of the IMFs in the subsequent EMD-based
feature extraction to efficiently optimize the intrinsic features
of EEG signals. Therefore, our improved intrinsic feature

extraction method can effectively address the issue of IMF
mode mixing in the traditional EMD method, which causes
issues for EEG feature extraction. Consequently, our method
can effectively extract the features by calculating the expansion
coefficients of all IMFs. Furthermore, we demonstrate the
performance of our EMD method in exploring EEG intrinsic
characteristics and extracting effective features.
The main contributions of this work are as follows:

1) We provide an improved intrinsic feature extraction
method that effectively enhances the robustness of
EMD-based EEG feature extraction and supports effec-
tive depression recognition.

2) Our method effectively explores the intrinsic character-
istics of EEG signals and improves the interpretability
of these features according to physics and mathematics,
thus enhancing the relationship between neuroscience
and physiological electrical signal studies.

3) We illustrate a framework for intrinsic feature opti-
mization and provide a novel idea and approach for
recognizing depression, which will inspire innovative
healthcare applications.

The remainder of this paper is organized as follows.
In Section II, the materials and theoretical basis are intro-
duced. Then, our regularization parameter-based improved
intrinsic feature extraction method of EEG signals via
EMD for depression recognition is proposed in Section III.
An analysis and comparison of the experimental results are
demonstrated in Section IV. Finally, we discuss and conclude
this work in Section V.

[I. MATERIALS AND THEORETICAL BASIS
A. Data Acquisition and Preprocessing

The EEG signals used in this work were acquired from
three spontaneous resting-state EEG datasets, including 128-
channel, 64-channel, and 3-channel EEG signals, and one audi-
tory stimulus-evoked 3-channel EEG dataset. The 64-channel
and 3-channel resting-state signals and the 3-channel auditory
stimulus-evoked EEG signals were acquired independently in
this study. The 128-channel resting-state EEG signals used in
this paper were acquired from MODMA [38].

During the data acquisition process, there were no signif-
icant group differences in terms of the age and sex of the
subjects in each dataset. All subjects were right-handed, had
normal or corrected-to-normal hearing and vision, had no
history of neurological disorders and had normal intelligence.
The main inclusion criteria for the subjects were as follows:
1) no psychotropic medication treatment was taken at least two
weeks before diagnosis and 2) no drug treatment was taken
after diagnosis. To ensure the effectiveness and reliability
of the EEG signals, the subjects were restricted to the age
range of 18 to 55 years. Additionally, the subjects were
required to have at least a primary school education level.
To select subjects, psychiatrists used different scales, i.e.,
the Life Event Scale (LES), Mini-International Neuropsychi-
atric Interview (MINI), and Childhood Trauma Questionnaire
(CTQ), to assess patient mental states based on the severity
of depression, irritability, and stress levels. The subjects were
informed of the purpose and protocol of the data acquisition
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TABLE |

THE PROFILE OF SIX AFFECTIVE AUDITORY STIMULI
Stimulus Property Valence Arousal Dominance
M SD M SD M SD
Cattle neutral 501 185 6.04 185 456 175
Painting neutral 496 1.68 537 1.68 506 1.82
Babies Cry negative 2.04 139 6.87 139 346 231
Dentist Drill  negative 2.89 1.67 691 167 292 2.03
Baby positive  7.61 2.10 6.03 2.10 6.14 198
Crowd2 positive ~ 7.65 1.58 7.12 1.58 6.09 2.18

process before participating in the experiment. This study was
approved by the Ethics Committee of The Third People’s
Hospital of Tianshui City.

We selected 15 depressed patients (female/male=9/6,
37.624+12.94 years old) and 20 healthy controls (female/
male=38/12, 31.331+7.48 years old) for the 64-channel EEG
signal acquisition process. A 5-minute eyes-closed resting-
state. EEG signal was acquired for each subject using
a 64-channel Brain Products (BP) electrode cap at a sampling
rate of 1000 Hz with a 1-40 Hz analog bandpass filter. The
impedance of each channel was maintained below 20 kQ.
We set FCz and AFz as the reference and ground electrodes,
respectively.

The 128-channel EEG signals in the MODMA dataset
included 24 depressed patients (female/male=11/13, 30.88+
10.37 years old) and 29 healthy controls (female/male=9/20,
31.45+9.15 years old). The eyes-closed resting-state EEG
signals of each subject were collected for 5 minutes using
a 128-channel HydroCel Geodesic Sensor Net (Electrical
Geodesics Inc.) at a sampling rate of 250 Hz.

The 3-channel EEG signals acquisition process included
81 depressed patients (female/male=50/31, 40.58+12.12 years
old) and 89 healthy controls (female/male=48/41, 30.83%
10.32 years old). A 90-second eyes-closed resting-state EEG
signal was acquired for each subject using a 3-channel
wearable EEG collection device placed on the prefrontal
lobe (Fpl, Fpz, and Fp2) at a sampling rate of 250 Hz [39].
We also used the device to acquire auditory stimulus-evoked
EEG signals from 105 depressed patients (female/male=64/41,
41.02£12.00 years old) and 109 healthy controls (female/
male=60/49, 31.1949.83 years old). In this work, we used
six auditory stimuli with different emotional properties from
the TADS-2 [4] to explore the differences between depressed
patients and healthy controls, as illustrated in Table I. Each
auditory stimulus was 6 seconds, and after each auditory
stimulus, the patient was presented with 6 seconds of rest.
Thus, 72 second EEG signals (6 auditory stimulix6s+6
resting x6s=72 s) were acquired.

The raw EEG signals acquired with 64-channel and
128-channel electrode caps were preprocessed in MATLAB
using the EEGLAB toolbox [40]. The sampling rate of the
64-channel raw EEG signal was downsampled to 250 Hz
to reduce computational costs. The raw 128-channel and
3-channel EEG signals were filtered between 1 Hz and 40 Hz
using a bandpass filter. Then, EEGLAB was applied to
inspect all raw EEG signals for artifacts such as body move-
ment, eye blinks, eye movement, and electromyogram (EMG).

All EEG signals were re-referenced using the common aver-
age reference (CAR) strategy. Then, the 64-channel and
128-channel EEG signals were decomposed to remove arti-
facts, such as electrooculogram (EOG), electrocardiogram
(ECG), and EMG signals, using the independent component
analysis (ICA) algorithm. Artifacts were removed from the
3-channel EEG signals with discrete wavelet transforms and
Kalman filtering [41]. Due to noise, the EEG signals collected
during and after the sixth auditory stimulus were removed.
Finally, we used the processed 64-channel, 128-channel, and
3-channel resting-state EEG data of each subject and carefully
selected four (4 x 10s = 40 s), eight (8 x 10s = 80 s),
and four (4 x 10s = 40 s) 10-second valid epochs with-
out artifacts, respectively, to build Dataset 1, Dataset 2 and
Dataset 3. We divided the processed stimulus-evoked EEG
data of each subject into ten 6-second (10 x 6s = 60 s) valid
epochs to construct Dataset 4.

B. EEG Intrinsic Feature Extraction

EMD can be used to decompose complex signals into
a finite number of IMFs, which reflect the intrinsic phys-
ical characteristics of the signal. The IMFs contain the
time-frequency domain information of the signal and have the
following properties:

(1) The number of extremes (maximum and minimum
values) is either equal to the number of zero crossings of the
IMFs, or differs by one.

(2) The IMFs are locally symmetric, and the mean of the
top and bottom envelopes of each IMF are zero.

(3) The IMFs contain at least one maximum value and one
minimum value.

The decomposition process of the signal x(#) can be sum-
marized as follows:

(1) Find all extreme points in the signal x(¢).

(2) Draw the envelopes epqx () and ey, (t) of the signal
x(t) with cubic spline interpolation.

(3) Calculate the mean of the top and bottom envelopes
m(t) — (emax(t)‘f'emm(t)).

2

(4) Calculate the difference between the signal and the
mean, i.e., h(x) = x(t) — m(t).

(5) Determine whether there is a maximum value less than O
or a minimum value greater than O in A (¢). If so, repeat steps 1)
to 4); if not, use c(t) = h(t) to represent an IMF. Then, repeat
the above process with the residual signal x(z) = x(t) — h(t)
until the signal x(¢#) cannot be decomposed further, and the
remaining signal is a residue r(¢).

After the decomposition process, the original signal can be
represented as the sum of IMFs and the residue:

N
x(t) =D i) +r(), M
i=1
where N is the number of IMFs decomposed by the EMD
method.

To facilitate the subsequent operations in this paper, the
time-series signals are represented as vectors with length 7,
i.e., the EEG signal is denoted by x, and the IMFs and residue
are denoted by ¢y, ¢a, - -+ , ¢y and r, respectively.
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The relationship between IMFs and EEG signals illustrated
in Eq. 1 can be used to determine the intrinsic features of
the EEG signals. In the traditional intrinsic feature extraction
method, two reference signals R; and Rj are calculated by
averaging the EEG signals of the depressed patients and the
healthy controls in the training sets, respectively, as follows:

1 < 1 <&
R = gxl Ry =~ §X2 2
where n1 and n; are the numbers of EEG epochs with different
labels in the training sets, and X;; and xp; are the i-th EEG
epochs in the two groups. The reference signals are used to
explore common information between different EEG epochs,
which can be used to characterize the group properties of EEG
signals.
Next, the reference signals are decomposed into IMFs:

Ny Ny
Ri=>cj+r, Re=) oj+m, 3)
j=1 j=1

where N1 and N, are the numbers of IMFs obtained by
decomposing R; and R, using the EMD method, respectively,
cij and ¢p; are the IMFs, and r; and ry are the residues.
Therefore, any EEG epoch x can be denoted by the IMFs and
residues of R; and Rj:

Ny

X Zwljclj + Win 4111 =X, 4
=1
Ny

X ZWchzj + Win, 4112 =X, Q)
=1

where w; € R+ and wy e Rty are the
expansion coefficients, and X; and X, are the EEG signals
recovered using the IMFs of different reference signals. Let
A = [en,ci o ,cn,r] € RNty and Ay =
[c21, €2, ,C2N,, T2] € RI*(M2+1y denote the matrices of
the IMFs and residue acquired by decomposing the reference
signals Ry and Ry, respectively. Therefore, Eqgs. 4 and 5 can
be rewritten in the form of matrix multiplication:

wi-AT =3, (6)
wy - AT =%, 7

Then the expansion coefficient can be calculated with the
following equations:

wi =xA1(ATA) !, 8
w2 = xAy(AJA2) . ©)

Therefore, all EEG epochs can use the above equations
to derive the expansion coefficients w; and w, as intrinsic
feature vectors. By extracting the features in this manner,
we can explore the similarity between different EEG epochs
and mental states to identify the intrinsic characteristics of the
EEG signal. Theoretically, EEG signals that are characteristic
of the depressed states should be more similar to the reference
signals of depressed patients and less similar to the reference
signals of healthy controls, and vice versa.

I1l. A REGULARIZATION PARAMETER-BASED IMPROVED
INTRINSIC FEATURE EXTRACTION METHOD VIA EMD

According to N. E. Huang et al. [35], the orthogonality of
the IMFs decomposed by the EMD method is local. For some
data, the neighboring components of the IMFs may have the
same frequency information, which leads to mode mixing.
Therefore, the IMFs of the reference signals calculated by
Eq. 3 could be linearly correlated, and Eqs. 8 and 9 may
fail to effectively extract features. This result indicates that
the traditional intrinsic feature extraction method has certain
limitations and cannot be used with all types of data.

Since the IMFs could be linearly correlated, the deter-
minant values of the matrix products Arerl and AgAz in
Egs. 8 and 9 are close to 0. In this case, the inverse of
the matrix product does not exist. Therefore, the method of
extracting the expansion coefficients as features is ineffective.

To address this problem, we propose an improved intrinsic
feature extraction method that uses a regularization parameter
to extract valid EEG features as accurately as possible. We let
H, = Arerl and Hy = AgAz denote the matrix products.
Then, the rank of the matrix products H; and H» can be
calculated as follows:

ranky = rank(Hy),
rank; = rank(Hp).

(10)
Y

If rank; is equal to N1+ 1, Eq. 8 can be utilized to effectively
extract the intrinsic features of the EEG signal. However,
if ranky is less than Nj + 1, the following steps need to be
taken to extract the features:

wi-Al = x, (12)
wi-ATA; = xA;. (13)

Eq. 13 is equivalent to the following equation:
wi - Hp =xA;. (14)

Since H; is singular, the regularization parameter A is
introduced:

H, = H, + /E, (15)

where E denotes the identity matrix and AE denotes the
regularization matrix. The regularization parameter A is used
to adjust the value of the identity matrix E to control its effect
on the matrix product. The regularization parameter A ensures
that the matrix fIl is as similar as possible to the matrix
product Hj. The value of the regularization parameter A is
set in the range of (0,1]. Since the matrix product H; can
be decomposed into a nonnegative diagonal matrix and two
unitary matrices by singular value decomposition (SVD) and
AE is a nonsingular matrix, the matrix fIl is a nonsingular
matrix and its inverse exists. To verify that the matrix H, is
nonsingular, we rewrite Eq. 15 as follows:

H = U, VI + JUEVT = U(Z; + AE)VT, (16)

Since X; is a diagonal matrix with nonnegative elements
and AE is a diagonal matrix with positive diagonal elements,
the sum of X£; and AE is a nonsingular diagonal matrix
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with positive diagonal elements. Thus, the matrix fIl is a
nonsingular matrix with an existing inverse matrix, that can
effectively and reliably be used in the following steps of the
intrinsic feature extraction method. The inverse matrix can be
expressed as follows:

H'
Hlﬁl_l

(H + 2E)~' =V(z, + AE)~'UT,
2i(Z 4+ AE)" ' ~E.

A7)
(18)

Thus, the intrinsic features w; can be calculated as follows:

wi-AT =x (19)
= w-HH ' =xAH;! (20)
= wi = xAH;! Q1

If rank; is equal to N>+1, w> can be calculated using Eq. 9.
If rank; is less than N> + 1, we need to calculate w, as the
intrinsic features of an EEG signal in the same manner as wy:

wy - AT =x (22)
= wy - HoH; ! = xAyH;! (23)
= W) = XAzﬁz_l (24)

It should be noted that although we demonstrated the reg-
ularization parameter-based improved intrinsic feature extrac-
tion method with only two groups of subjects, our method
is also effective for multiple groups of subjects, which is
discussed briefly below. First, the average EEG signals of
different groups of subjects are used to acquire more reference
signals with Eq. 2, such as Rz, Ry,---,Rg. Then, the
reference signals are decomposed into multiple IMFs using the
EMD method, and the inverse matrices of the sum matrices
of the reference signals are calculated using Eqs. 14 to 18.
Finally, the intrinsic features of the EEG epochs are extracted
by calculating the expansion coefficients from reference sig-
nals with different ground-truth labels with Egs. 19 to 21.

The steps of the regularization parameter-based improved
intrinsic feature extraction method are summarized in
Algorithm 1. The improved method can effectively extract
the intrinsic features of EEG signals by exploring the intrin-
sic differences between various groups. The method has a
high generalizability and robustness, allowing it to extract
intrinsic features from a wider range of time-series signals
by neglecting their complex and nonstationary nature. For
many types of time-series data, the improved intrinsic feature
extraction method is as effective as traditional methods. How-
ever, in some situations, such as mode mixing, the improved
method can effectively extract features that reflect the intrinsic
characteristics of the signals, while traditional methods fail to
extract the intrinsic features of time-series signals. Therefore,
the improved method performs better than traditional methods.
As illustrated in Algorithm 1, the computational complexity
of the improved method is equivalent to that of traditional
methods. Compared with traditional methods, the improved
method requires slightly more time to calculate the ranks and
the sum matrix. As a result, the improved method gener-
ally outperforms traditional methods. In addition, compared
with other manual features, our method can more effectively
explore the intrinsic differences between different groups of

EEG signals and can infer differences in the neurophysi-
ological mechanisms of various electrophysiological activi-
ties, resulting in an improved performance. Compared with
the deep representations in end-to-end models, our method
has more natural physics and mathematics interpretations,
has a reduced computational cost and effectively prevents
overfitting. The analysis of the proposed method shows that
our method comprehensively considers intrinsic differences
between groups, natural interpretations and the computational
cost. Thus, our method can be used to effectively extract the
intrinsic features of EEG signals.

Algorithm 1 A Regularization Parameter-Based Improved

Intrinsic Feature Extraction Method via EMD

Input: n segments of training EEG epochs x; m segments of

testing EEG epochs x; Training label y

Output: The intrinsic features w

Method:

1: Calculate the reference signals R; and R» in different class
in training signals, respectively;

2: Compute the IMFs and residues of R; and Ry and let
A1 and A; be the set of IMFs and residues of R; and
Ry, respectively;

3: while i <n+m do

Extract the features of i-th subjects: wy; - AlT = x; and
woi - AT = x;;

5. Compute H; = AlTAl and Hy = A;Az, and compute

rank rank; and rank, of H; and Hj, respectively;

6 if rank; = N; + 1 then

7: wii = x A ATAD) ! = x; A H
8: else:

9: wi; = x;A1(H; +/1E)71;

10: end if

11:  if ranky = N> + 1 then

12: wy = XA (ATAY) ™! = x;AH,
13:  else:

14: wy = X;Ar(Hp + /IE)_l;

15: end if

16:  The extracted intrinsic features of the i-th EEG epochs
are w; = [Wi;, wai|;

17: end while

18: return the intrinsic features w

The framework of the regularization parameter-based
improved intrinsic feature extraction method is shown in
Fig. 1, which we can use to explore essential properties of the
improved method. The reference signals in Fig. 1 are acquired
by averaging EEG signals from channels with the same label.
We use different colors to represent the different channels
of the reference signal. In the feature extraction process, the
reference signals are first decomposed using the EMD method
to acquire the IMFs of different channels. Then, a matrix
is used to denote the IMFs and residuals, and the matrix
product is calculated. To calculate the inverse of the matrix
product ATA as accurately as possible, this work introduces
a regularization parameter A to the intrinsic feature extraction
method. The identity matrix E is adjusted by the regularization
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Fig. 1. The framework of our regularization parameter-based improved intrinsic feature extraction method of EEG signals via EMD for depression

recognition.

parameter A to ensure that the sum of the matrix product and
the regularization matrix is both similar to their product and
invertible. Since the sum matrix is nonsingular, its inverse can
be calculated. Finally, for any EEG epoch, this inverse matrix
can be applied to extract the intrinsic features w, improving the
effectiveness and reliability of our method. It should be noted
that the extracted intrinsic features of the EEG signals are
similar to the reference signals of different classes, and we can
concatenate these features to reveal the intrinsic characteristics
of different groups in various EEG epochs.

In this section, the regularization parameter-based improved
intrinsic feature extraction method was presented in several
ways, including a formal definition, an algorithmic descrip-
tion, and a graphical demonstration. In the improved method,
we first introduce a regularization parameter A to adjust the
value of the identity matrix E, which ensures that the sum
matrix and the matrix product of the IMFs are similar. Then,
we calculate the inverse of the sum matrix, which can be used
to approximately represent the inverse of the matrix product,
to effectively extract the intrinsic features in the following
steps of the method, thereby optimizing the intrinsic features
of EEG signals.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct a series of experiments with
four EEG datasets to further demonstrate the performance of
the proposed intrinsic feature extraction method at exploring
intrinsic characteristics of EEG signals and evaluate the perfor-
mance of the method for depression recognition. For notational
convenience, we abbreviate the regularization parameter-based
improved intrinsic feature extraction method via EMD as
RIEMD in this section. We first analyze the effect of the
selected regularization parameter on the RIEMD method.
Then, we compare the performance of the RIEMD method
with various feature extraction methods in terms of depression
recognition.

In this work, we applied support vector machine (SVM),
decision tree (DT), and k-nearest neighbor (kNN) models to
perform the classification experiments. We used the subject-
independent 10-fold cross-validation strategy to identify suit-
able parameters for the models. An effective strategy for
identifying the parameters is to exponentially grow sequences
of ¢ and C, suchas C = [21%,214 ... 27 15]and o= 215, 214,
..., 27151 [42]. To construct an optimal DT model, we tune
the depth d and the minimum number of samples at a leaf
node s. We also linearly grow k to optimize the kKINN model,
i.e,k=1[1,2,- -, kmax]-

We applied the min-max normalization strategy to normalize
the training features to range between O and 1. The testing
features were normalized with the same strategy using the
maximum and minimum values acquired with the training
features. In this work, we utilized the accuracy, sensitivity,
and specificity to evaluate the classification performance of
the RIEMD method. The classification experiments were per-
formed on the platform with a 3.2 GHz CPU and 16 GB of
RAM and the Windows 10 operating system. We trained the
SVM model using LIBSVM [42] tools in the Java version and
implemented the DT and kNN models on the Python platform.

A. Performance Comparison of the Regularization
Parameter Selection

We investigated the effect of the regularization parame-
ter on the RIEMD method and selected five parameters
{0.1,0.3,0.5,0.7,0.9} to extract features from four EEG
datasets. In this comparison, the features were classified using
the SVM model for depression recognition. For Dataset 4,
we demonstrated the average results of all EEG segments using
the same parameters.

As shown in Table II, the depression recognition results
varied little as the regularization parameter changed. The same
results were acquired with Datasets 1 and 2 for different
parameters A. This result indicates that the RIEMD method
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TABLE Il
RESULTS OF THE RIEMD METHOD WITH DIFFERENT PARAMETERS

A Metrics Dataset 1 Dataset 2 | Dataset 3 | Dataset 4
Accuracy 0.8850 0.8750 0.8485 0.7768
0.1  Sensitivity 0.8750 0.8750 0.7875 0.7491
Specificity 0.8917 0.8750 0.9028 0.8046
Accuracy 0.8850 0.8750 0.8426 0.7736
0.3 Sensitivity 0.8750 0.8750 0.7719 0.7482
Specificity 0.8917 0.8750 0.9056 0.7991
Accuracy 0.8850 0.8750 0.8441 0.7750
0.5  Sensitivity 0.8750 0.8750 0.7813 0.7482
Specificity 0.8917 0.8750 0.9000 0.8018
Accuracy 0.8850 0.8750 0.8426 0.7695
0.7  Sensitivity 0.8750 0.8750 0.7688 0.7454
Specificity 0.8917 0.8750 0.9083 0.7936
Accuracy 0.8850 0.8750 0.8485 0.7723
0.9  Sensitivity 0.8750 0.8750 0.7750 0.7482
Specificity 0.8917 0.8750 0.9139 0.7964

is effective for extracting intrinsic features of EEG signals.
The difference between the best and worst classification results
on Datasets 3 and 4 was less than 0.0060, verifying the
robustness and effectiveness of the RIEMD method. This result
is due to the fact that the RIEMD method changed only the
values on the principal diagonal through the introduction of
the regularization parameter when calculating the inverse of
the matrix product. Since the value of A is small, the values
on the principal diagonal change little, while the values on
the nonprincipal diagonal do not change. The change of the
regularization parameter had little effect on extracting the
intrinsic features of EEG signals, which is the main reason for
the robust performance of the RIEMD method in depression
recognition, as illustrated in Table II.

Although the RIEMD results varied slightly with different
regularization parameters, the best results on the four datasets
were acquired with a regularization parameter of 0.1, as shown
by the results in Table II. The smaller the regularization
parameter is, the smaller the change in the matrix product.
However, the regularization parameter cannot be extremely
small, as this would lead to singularization of the matrix
product, and the corresponding inverse matrix cannot be solved
effectively. While the change in the regularization parameter
has little effect on the extracted features, we recommend a
regularization parameter of 0.1 to ensure the effectiveness and
generalizability of the RIEMD method.

B. Performance Comparison of the Different Feature
Extraction Methods

To investigate the effectiveness of the RIEMD method,
we carefully chose three linear features in the EEG power
spectrum, namely, the maximum frequency, mean frequency,
and centroid frequency [43], [44], [45], and two nonlinear
features, namely, the Kolmogorov entropy and LZ complex-
ity [30], [46], [47], as our comparison baseline. In addi-
tion, we selected the EMD method proposed in [37], the
differential entropy (DE) method proposed in [48], the CSP
method used in [24] and the improved EMD ((EMD) feature
extraction method proposed by Shen et al. [4] as the feature
extraction methods for comparison. We also selected several
state-of-the-art deep representations in end-to-end models as

comparison methods, including the CNN model proposed by
Zhang et al. [32], a deep neural network (DNN) model, a paral-
lel model with a two-layer CNN and two-layer RNN (C_RNN)
proposed by Saha et al. [49], and a covariance manifold-based
long short-term memory (LSTM) model proposed by
Zhang et al. [23]. These methods have been widely applied
in EEG recognition tasks and have been demonstrated to be
effective for depression recognition [46], [S0]. The selected
methods cover the main EEG feature extraction methods used
in depression recognition research, as mentioned in Section I.
In this paper, this comparison can be used to synthetically
validate the superiority of the RIEMD method. The results of
the experiments are demonstrated in Tables IIT and IV, where
the results on Dataset 4 are the average of all EEG segments.

As shown in Table III, for EEG Datasets 1 and 2, the
proposed RIEMD method achieved the best results, outper-
forming the other methods. Most of the depression recognition
results obtained using the different feature extraction methods
performed above the chance level of 0.5 on both datasets,
except for the DT model for DE features on Dataset 1 and
the kNN model for the baseline on Dataset 2, where the clas-
sification results were only 0.4188 and 0.4650, respectively.
Therefore, these models are not effective and generalizable
for depression recognition tasks. Furthermore, the depression
recognition accuracy using both the DE and baseline methods
was less than 0.6500, while the accuracies of the EMD, iEMD
and our RIEMD methods was greater than 0.7700 on both
datasets. This result indicates that these methods perform
better than the DE and baseline methods in exploring the
intrinsic characteristics of EEG signals. Moreover, this result
demonstrates that using intrinsic features to represent EEG
signals is more effective than using frequency domain features,
temporal domain features and nonlinear features for depression
recognition. Although the classification results achieved with
the CSP method were better than those obtained with the DE
and baseline methods, the results of CSP method acquired
with the kNN model on Dataset 1 were considerably worse
than those obtained using other methods. Furthermore, the
sensitivity and specificity metrics achieved with the CSP
method using the kNN and DT models differed significantly on
Dataset 1 in depression recognition tasks, indicating a high risk
of imbalance between the models. Therefore, the advantage of
the CSP method over DE and baseline methods may not be
stable enough.

On Datasets 3 and 4, the RIEMD, iEMD and CSP methods
achieved one, three and three of the best metrics in the
depression recognition results, respectively. Although the CSP
method achieved the three best results, these results varied
greatly from the remaining results achieved by the CSP
method, while the best results achieved with the RIEMD and
iEMD methods do not vary considerably from the remaining
results. This result indicates that the RIEMD and iEMD
methods are more stable than the CSP method. The depression
recognition results obtained on both datasets were better
than 0.5, and most of the results were greater than 0.6 (only
the accuracy of the baseline with the DT model on Dataset 4
was 0.5945), which suggests that the effect of the different
models on Datasets 3 and 4 reaches an acceptable level.
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TABLE IlI
COMPARING EXPERIMENTAL RESULTS OF THE RIEMD AND COMPARATIVE METHODS ON FOUR DATASETS

Methods Metrics Dataset 1 Dataset 2 Dataset 3 Dataset 4
SVM kNN DT SVM kNN DT SVM kNN DT SVM kNN DT

Accuracy 0.5063 0.5125 0.4188 | 0.5975 0.5200 0.5500 | 0.8162 0.7765 0.7588 | 0.7104 0.6795 0.6418
DE Sensitivity | 0.1750  0.7625  0.6500 | 0.4438 0.5667 0.5708 | 0.7156 0.8556 0.7778 | 0.6691 0.7682 0.6764
Specificity | 0.8375 0.2625 0.1875 | 0.7000 0.4500 0.5188 | 0.9056 0.6875 0.7375 | 0.7518 0.5909  0.6073
Accuracy 0.8375 0.5563 0.7875 | 0.8575 0.7000 0.7750 | 0.7985 0.8176 0.7176 | 0.7059 0.7268  0.6791
CSP Sensitivity | 0.8000 1.0000 1.0000 | 0.8375 0.7917 0.8333 | 0.7000 0.9889 0.7889 | 0.6918 0.7327 0.6873
Specificity | 0.8750 0.1125 0.5750 | 0.8708 0.5625 0.6875 | 0.8861  0.6250 0.6375 | 0.7200 0.7209 0.6709
Accuracy 0.8500 0.7938  0.8000 | 0.8475 0.8175 0.7950 | 0.8294 0.8000 0.7706 | 0.7668 0.6982  0.6627
EMD Sensitivity | 0.8250  0.6625  0.8000 | 0.7938 0.9833 0.8333 | 0.8125 0.9222 0.7889 | 0.7473 0.8391  0.6818
Specificity | 0.8750 0.9250 0.8000 | 0.8833  0.5688 0.7375 | 0.8444 0.6625 0.7500 | 0.7864 0.5573  0.6436
Accuracy 0.8625 0.8188 0.8188 | 0.8800 0.8300 0.8075 | 0.8647 0.8176 0.8235 | 0.7868 0.7005 0.6677
iEMD Sensitivity | 0.8500  0.7125  0.8125 | 0.8750 0.9750 0.8375 | 0.8500 0.9111 0.8667 | 0.7473 0.8282  0.6718
Specificity | 0.8750 0.9250 0.8250 | 0.8833 0.6125 0.7625 | 0.8778 0.7120 0.7750 | 0.8264 0.5727 0.6636
Accuracy 0.8750 0.8125 0.8000 | 0.8850 0.8450 0.8075 | 0.8485 0.7824 0.7706 | 0.7877 0.6936  0.6586
RIEMD  Sensitivity | 0.8750 0.7500 0.7250 | 0.8750 0.9792 0.8250 | 0.7875 0.8778 0.8111 | 0.7600 0.8136  0.6636
Specificity | 0.8750 0.8750 0.8750 | 0.8917 0.6438 0.7813 | 0.9028 0.6750 0.7250 | 0.8155 0.5736  0.6536
Accuracy 0.6500 0.5375 0.5688 | 0.6175 0.4650 0.5300 | 0.7235 0.7235 0.6956 | 0.6987 0.6218  0.5945
Baseline  Sensitivity | 0.5500 0.4250 0.5375 | 0.6833 0.4375 0.4188 | 0.7500 0.8028 0.7333 | 0.6545 0.6591 0.6264
Specificity | 0.8750 0.6500 0.7000 | 0.5188 0.4833 0.6042 | 0.7000 0.6344 0.6531 | 0.7427 0.5845 0.5627

We used the Friedman test to calculated the F5 55 = 40.42 (the critical value of F(5,55) for a=0.05 is 2.38), which satisfied p<0.05 and CD=1.97.
Thus, according to the post-hoc two-tailed Bonferroni-Dunn test, the RIEMD method performed significantly better than the DE and baseline methods in
depression recognition; the iEMD method was significantly better than the CSP, DE and baseline methods; and the EMD method was significantly better
than the DE and baseline methods in depression recognition.

In addition, Table III shows that the stability of the classifi-
cation results on Datasets 3 and 4 was better than the stability
on Datasets 1 and 2 because the results with different features
and classifiers were similar. Among all the features, the DE
and baseline methods have the greatest differences in overall
stability, which may be caused by two reasons. First, these fea-
ture extraction methods do not optimize the spatial information
of multichannel EEG data, and sufficient EEG spatial infor-
mation cannot be learned by concatenating features extracted
from different channels. The second reason is the lack of train-
ing EEG epochs in Datasets 1 and 2. Datasets 1 and 2 included
only 53 and 35 subjects, respectively, while there were 170 and
214 subjects in Datasets 3 and 4, respectively. Additional sub-
jects would be beneficial for the DE and baseline methods to
investigate interclass similarities and differences. In addition,
the RIEMD method demonstrated stable recognition results
with high reliability and robustness on the four datasets,
illustrating the effectiveness of optimizing intrinsic features
of EEG signals for depression recognition.

As illustrated in Table IV, we investigated the performance
of the proposed RIEMD method and the selected deep repre-
sentations in end-to-end models. In the depression recognition
tasks, the RIEMD method outperformed the CNN, DNN,
C_RNN and LSTM models. The accuracies on the four
EEG datasets were improved by approximately 0.0425 to
0.2000, 0.1100 to 0.2850, 0.1367 to 0.2132 and 0.0950 to
0.1404, respectively. As end-to-end models, the CNN and
LSTM achieved better classification results than the DNN
and C_RNN models. This result is mainly because the DNN
and C_RNN models do not comprehensively consider the
temporal and spatial domain characteristics of EEG signals and
represent EEG data from only a single domain, while the CNN
and LSTM models explore the characteristics of EEG signals
in multiple domains. Therefore, classification results of the
DNN and C_RNN models are slightly reduced. Compared

TABLE IV
COMPARISON OF THE RIEMD METHOD WITH SEVERAL DEEP MODELS

Methods Metrics Dataset 1 Dataset 2 | Dataset 3 | Dataset 4
Accuracy 0.8125 0.7750 0.7118 0.6818
CNN Sensitivity 0.7500 0.6875 0.6000 0.5364
Specificity 0.8750 0.8333 0.8111 0.8273
Accuracy 0.6750 0.6250 0.6985 0.6445
DNN Sensitivity 0.5625 0.7813 0.5750 0.6091
Specificity 0.7875 0.5208 0.8111 0.6800
Accuracy 0.6750 0.6000 0.6353 0.6500
C_RNN Sensitivity 0.5800 0.6150 0.5625 0.6000
Specificity 0.7700 0.5350 0.7000 0.7000
Accuracy 0.8325 0.7175 0.7059 0.6364
LSTM Sensitivity 0.7750 0.8125 0.7000 0.5909
Specificity 0.8900 0.6542 0.7889 0.6818
Accuracy 0.8750 0.8850 0.8485 0.7768
RIEMD Sensitivity 0.8750 0.8750 0.7875 0.7491
Specificity 0.8750 0.8917 0.9028 0.8046

with deep representations, the RIEMD method can effec-
tively explore the intrinsic characteristics of EEG signals for
depression recognition tasks. Moreover, the RIEMD method
has more natural interpretations in physics and mathematics,
requires less computational time and prevent overfitting.

To further demonstrate the effectiveness of the RIEMD
method, the Friedman test [51] and Bonferroni-Dunn test [52]
were used to compare the performance of different feature
extraction methods, as shown in Table III. The CNN, DNN,
C_RNN and LSTM models were excluded from the test due
to obtaining only one result for each dataset. Since there
were six methods and twelve classification results for each
method in the test, F5 55 = 40.42 was calculated based on the
Friedman test, which is much higher than the critical value of
2.38 for F(5,55) with o« = 0.05. This test revealed significant
(p < 0.05) differences between the classification results.
The post-hoc two-tailed Bonferroni-Dunn test was used to
compare the various methods. In depression recognition tasks,
the RIEMD method significantly (p < 0.05) outperformed
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TABLE V
COMPUTATIONAL COSTS OF THE RIEMD AND IEMD METHODS

RIEMD_INV  iEMD_INV RIEMD iEMD
Dataset 1 0.295 ms 0.467 ms 4.863 ms  5.074 ms
Dataset 2 0.809 ms 1.460 ms 5715 ms  6.458 ms
Dataset 3 0.046 ms 0.118 ms 1.128 ms  1.252 ms
Dataset 4 0.047 ms 0.095 ms 0.787 ms  0.907 ms
150 4 = iEMD

= RIEMD

time(s)

T T T T T T
0 2000 4000 6000 8000 10000
NO. of input samples

Fig.2. Comparison of computational cost between the RIEMD and iEMD
methods on artificial data.

the DE and baseline methods, the iEMD method performed
significantly (p < 0.05) better than the CSP, DE and base-
line methods, and the EMD method performed significantly
(p < 0.05) better than the DE and baseline methods. Thus,
the proposed RIEMD method is highly effective for depres-
sion recognition and could optimize the intrinsic features
of EEG signals. Although the classification results of our
RIEMD method are not significantly better than those of
the iEMD method, the results are comparable. Furthermore,
the RIEMD method requires less computational time than the
iEMD method. To guarantee the effectiveness of solving the
inverse matrix of the matrix product of the IMFs, the RIEMD
method must perform n» more additions than the EMD method,
while the iIEMD must implement SVD with a computational
complexity of O(n®), where n denotes the size of the matrix
product.

To further demonstrate the computational differences
between the RIEMD and iEMD methods, we conducted two
experiments. The first experiment involved the artificial matrix
products of the IMFs, which were randomly generated for
different sample sizes. In this work, we increased the number
of input samples from 1 to 10000 and compared the compu-
tational cost. The comparison results are illustrated in Fig. 2.

According to the experimental results, the computational
costs of the RIEMD and iEMD methods are consistent
with the above analysis. As the sample sizes increased, the
computational costs of the RIEMD and the iEMD methods
increased. Moreover, the computational cost of the iEMD
method increased more quickly than that of our RIEMD
method.

The second experiment involved the four EEG datasets. The
computational costs of the RIEMD and iEMD methods with
these EEG datasets are shown in Table V, where RIEMD_INV

and iEMD_INV indicate that we solved the inverse of the
matrix product using the RIEMD and iEMD methods, respec-
tively. The computational time of the RIEMD and iEMD
methods was the average time to extract the features of one
EEG epoch with the RIEMD or iEMD method, respectively.
We repeated the computation of each EEG epoch 100 times to
guarantee stable results. As shown in Table V, the advantage
of the RIEMD method in terms of the computational time
is consistent with the theoretical analysis and the results
illustrated in Fig. 2. However, this advantage is not clear
during the feature extraction stage because decomposing EEG
signals using the EMD method requires more computational
time than solving the inverse of the matrix product. Therefore,
in consideration of the classification results and the computa-
tional time, the performance of our RIEMD method is better
than that of the iEMD method. In addition, the RIEMD method
provides a novel idea and approach for effectively solving
the issue of inaccurate and impractical extraction of intrinsic
features with the EMD method due to mode mixing and may
inspire more innovative and intelligent applications in the field
of depression recognition.

V. CONCLUSION

This study presented a regularization parameter-based
improved intrinsic feature extraction method via EMD and its
application in depression recognition. In this method, we intro-
duced a regularization parameter to effectively optimize the
intrinsic features of EEG signals with more natural physics
and mathematics interpretations. The experimental results on
four EEG datasets demonstrate that the RIEMD method can
efficiently capture relationships between the intrinsic char-
acteristics of EEG signals and depression, achieving good
depression recognition performance. One of the limitations of
our work is that the dataset is small. Besides, the channel space
of EEG signals should contain more useful information for
depression recognition. In future studies, we will collect more
EEG signals to improve the generalizability of our method and
further optimize the spatial information from EEG signals.
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