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Recovery of Brain Network Integration and
Segregation During the Loss and Recovery of

Consciousness Induced by Sevoflurane
Kangli Dong , Qishun Wei , Delin Zhang, Lu Zhang, Guozheng Wang, Xing Chen, and Jun Liu

Abstract— Anesthetic-induced loss of consciousness
(LOC) has been studied using functional connectivity (FC)
and functional network analysis (FNA), manifested as frag-
mentation of the whole-brain functional network. However,
how the fragmented brain networks reversibly recover dur-
ing the recovery of consciousness (ROC) remains vague.
This study aims to investigate the changes in brain network
structure during ROC, to better understand the network frag-
mentation during anesthesia, thus providing insights into
consciousnessmonitoring. We analyzed EEG data recorded
from 15 individuals anesthetized by sevoflurane. By inves-
tigating the properties of functional networks generated
using different brain atlases and performing community
detection for functional networks, we explored the changes
in brain network structure to understand how fragmented
brain networks recover during the ROC. We observed an
overall larger FC magnitude during LOC than in the con-
scious state. The ROC was accompanied by the increas-
ing binary network efficiency, decreasing FC magnitude,
and decreasing community similarity with the functional
atlas. Furthermore, we observed a negative correlation
between modularity and community number (p <0.001 and
BF10 >4000, linear regression test), in which modularity
increased and community number decreased during ROC.
Our results show that a larger FC magnitude reveals exces-
sive synchronization of neuronal activities during LOC. The
increasing binary network efficiency, decreasing commu-
nity number, and decreasing community similarity indicate
the recovery of functional network integration. The increas-
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ing modularity implies the recovery of functional network
segregation during ROC. The results suggest the limitation
of FC magnitude and modularity in monitoring anesthetized
states and the potential of integrated information theory to
evaluate consciousness.

Index Terms— Anesthesia, consciousness, electroen-
cephalogram, functional networks, community detection.

I. INTRODUCTION

WHILE much work on understanding the mechanism of
anesthesia has focused on the molecular actions of var-

ious anesthetics on specific receptors at the cellular level [1],
[2], changes in brain networks that result in unconscious
network dynamics are still poorly understood [3]. A related
and more comprehensive theory for anesthetic-induced uncon-
sciousness is integrated information theory (IIT) [4], which
holds that the balance between functional integration and
segregation supports the existence of consciousness. Large-
scale network studies of brain functional connectivity (FC)
have revealed properties that facilitate the integration and
segregation. For instance, the breakdown of FC represents the
impaired connectivity between brain areas; modularity stands
for the ability for specialized function to occur within densely
interconnected groups of brain regions (segregation); charac-
teristic path length and global efficiency in functional network
analysis (FNA) represent the ability to rapidly combine seg-
regation from distributed brain regions (integration) [5], [6].
FC and FNA provide insights into the neurological underpin-
nings of loss of consciousness (LOC) during anesthesia by
evaluating the global and local structured behavior of brain
networks [7], [8].

The breakdown of FC under sleep or anesthesia could
be regarded as a feature of LOC, causing the impaired
connectivity between brain areas [9], which is broadly
consistent with the IIT of consciousness [4]. The studies
using electroencephalography (EEG) and electrocorticogra-
phy (ECOG) provided plentiful insights into the process
of unconsciousness induced by anesthetics. For instance,
Fabio et al. found that cortical effective connectivity is dis-
turbed during midazolam-induced LOC [10] and non-rapid
eye movement (NREM) sleep [11], and suggested that LOC
may be characterized by a breakdown of cortical effective
connectivity [10]. Using intracortical recordings in macaque
monkeys, Schroeder et al. [12] showed that ketamine anesthe-
sia inhibits communication among structurally linked cortical
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regions. By investigating functional connectivity and con-
structing time-varying networks, Li et al. [13], [14] monitored
the fluctuation of consciousness during anesthesia. Using
network nodes (brain regions) and the FC between nodes, FNA
provides a standard method to quantify and study functional
integration and segregation of the brain. Using recorded rs-
fMRI, Boly et al. [15] found an increase in modularity during
human nonrapid eye movement sleep. During LOC induced
by dexmedetomidine, Hashmi et al. [16] found an overall
decline in network efficiency of the local and global functional
networks. Specifically, the increasing modularity and decreas-
ing efficiency of the functional network were considered to
represent the reduced integrated ability of the brain during
LOC, and the increasing modularity during anesthesia has been
suggested to measure different states of consciousness [17].

Although significant progress has been obtained in under-
standing the cortical network fragmentation and neural corre-
lates during anesthetic-induced LOC, how fragmented brain
network reversibly recovers during the recovery of conscious-
ness (ROC) induced by anesthetics is rarely mentioned. Based
on theoretical models and empirical observations, studies
have shown that the induction and recovery processes of
anesthesia might be asymmetric, which can be seen as the
phenomenon of anesthetic hysteresis [18], [19]. Although
there have been studies employing EEG or ECoG in the
recovery phase of anesthesia [20], [21], [22], the network-level
mechanism of ROC induced by anesthetics is poorly under-
stood. The detailed study of brain network structure during
loss and recovery of consciousness would be of fundamen-
tal and translational scientific value. Scientifically, it would
provide insight into our understanding of the brain network
mechanisms of anesthetic-induced ROC. Clinically, it may
provide insights into conscious state monitoring and anesthesia
prognosis [23]. Specifically, it could examine the availability
of these graph-theoretic indicators (i.e., FC magnitude, effi-
ciency, modularity, etc.) monitoring different phases during
anesthesia and develop more accurate methods for assessing
consciousness.

This study aims to investigate the change in brain network
properties (evaluated through graph-theoretical measures) and
the community structure of brain networks during the loss
and recovery of consciousness, thus gaining a better under-
standing of brain network fragmentation under anesthesia and
provide insights into conscious state monitoring. Specifically,
we focused on exploring global efficiency, which repre-
sents functional integration, and modularity, which represents
functional segregation. On the basis of the modularity being
estimated, we performed community detection to further inves-
tigate how fragmented communities of brain network recovers
during anesthetic-induced ROC. The structure of the remaining
sections is as follows: Section II introduces the research meth-
ods, including anesthetic protocol, EEG acquisition and source
localization, construction of brain networks, graph-theoretical
measures, and network community analysis. Section III firstly
gives the results of graph-theoretical measures, then provides
the results of network community analysis, including the
community similarity analysis, the relationship between mod-
ularity versus community number, and the overall changes in

community structure of functional networks. In Section IV,
we discuss the implications of these results, suggesting the
importance of functional atlas in anesthesia research and the
potential of community number and IIT, not the FC and
modularity to evaluate different states of consciousness.

II. METHODS

A. Anesthetic Protocol and Participants

The anesthetic protocol and EEG collection were recently
published in [24], in which the details of the anesthetic
protocol could be found. EEG data from 15 patients under
loss and recovery of consciousness induced by sevoflurane
were included in this study. The data consists of 19 channels
of EEG data from 7 males/8 females, aged 43.8 ± 13.4 years,
weighing 63.3 ± 14.9 kilograms, and 165.8 ± 5.8 centimeters
tall (mean ± SD). The data collection was approved by the
Ethics Committee of the first affiliated Hospital of Zhejiang
University (Ethics No.: ChiCTR2000033139), and informed
consent forms were signed with all patients before the data
were collected.

B. EEG Data Acquisition and Preprocessing

EEG data were collected using ANT Neuro equipment with
19 channels: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, C4, T8,
P7, P3, Pz, P4, P8, O1, and O2, with reference to M1 and
M2 channels. The sampling rate was 1000 Hz. Electrolyte gel
was used to decrease the electrode impedances to under 5k�.
The EEG analysis was performed in MATLAB R2020a. Fig. 1
displays the general block diagram of EEG signal analysis.
The DC bias correction, EEG filtering, power interference
reduction, and average re-reference were performed using
EEGLAB [25]. The bandpass filtering frequency range was
0.3 Hz to 50 Hz. To boost processing performance, the sample
rate was decreased to 250 Hz. Normalized variance was used
to identify abnormal signals with non-physiological artifacts,
which were then manually rejected or retained by eye assess-
ment. To decrease blinking and muscular activity artifacts,
independent components analysis (ICA) was applied. For com-
ponent selection and rejection, we used the artifacts chosen by
ADJUST 1.1 [26]. Five EEG epochs (ETSev 2.0, 0.9, 0.6, 0.3,
0, which were selected based on the end-tidal sevoflurane con-
centration (ETSev in percentage) during anesthesia) from the
loss and recovery of consciousness under sevoflurane-induced
anesthesia were used for analysis, in which ETSev2.0 is the
deep unconscious state (deep LOC), ETSev0 is the conscious
state when patients were completely awake from anesthesia,
ETSev0.9, 0.6 and 0.3 are intermediate states between deep
unconscious and conscious states. Parts of the codes in this
work are released on GitHub1.

C. EEG Source Localization and Parcellation

Using the spherical approach in EEGLAB, the 19 chan-
nels were initially interpolated into 33 channels according
to the 10–20 international system to ensure source localiza-
tion accuracy. After that, the Beamformer algorithm [29] in

1https://github.com/Kangli-Dong
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Fig. 1. Analysis framework. Step 1: EEG preprocessing, in which
the recorded EEG was processed using re-reference, downsampling,
bandpass filtering, baseline removing, interpolating electrodes, and ICA.
Source localization, including reference head model generating and
beamformer algorithm. Cortex parcellation using the Desikan-Killiany
(anatomical) atlas [27] and Yeo (functional) atlas [28]. Step 2: Con-
struction of weighted network, random network, and binary network.
Evaluation of the graph-theoretical measures. Step 3: Community struc-
ture detection using Louvain algorithm and iterative community detection
algorithm. Evaluation of similarity between community detection results
and default divisions.

Brainstorm (Fig. 1. Step 1) [30] was used to carry out the
source localization. Several reviews and articles [31], [32],
[33], [34], [35], [36], [37], [38] acknowledge that even with
low-density EEG settings (such as 19 electrodes), meaningful
results of source estimation could be achieved. Details could
be found in the supplementary material. We also provided the
spectrum/spectral features and sensor-level network analysis
(see Fig. S1 and S2 in the supplementary material) to prove
the reliability of our work.

After source analysis of EEG, we segmented the voxels into
68 and 33 ROIs based on the Desikan-Killiany atlas [27] (a
typical anatomical atlas) and Yeo brain atlas [28] (a typical
functional atlas) as shown in Fig. 1. Step 1. We used the
mean of all source signals in the ROI to represent its activity.
The 68 and 33 ROIs belong to 4 and 8 default communities
according to previous studies [28], [39], respectively (see
Table. I and Table. II).

D. FC Estimation and Construction of Brain Functional
Networks

To examine the change of network properties, we first
constructed different functional networks under different

TABLE I
FUNCTIONAL BRAIN REGIONS ACCORDING TO YEO ATLAS

conscious states during anesthesia, thus assessing the changes
and correlations of the graph-theoretical measures of these
networks in Sec II-E.

Drawing upon previous studies [17], [40], [41], [42], [43],
we focused on the postprocessing of the alpha band. The alpha
band of EEG was regarded as providing the most features to
consciousness [17], [40] and dominant at surgical concentra-
tions of anesthesia [41]. Furthermore, long-range integration
during top-down processing (supports consciousness) appears
to evolve with temporal dynamics of alpha band [42], [43].
We band-passed the source-level signals to obtain the alpha
band (8-12 Hz). To evaluate the FC magnitude, we extracted
the signal phase of alpha-band EEG using Hilbert transform,
and then the Phase-locking values (PLV) [44] were employed
as a connectivity measurement, which isolates the amplitudes
and phases of the original signals for a certain frequency range
and then calculates the phasic interrelationship between two
signals:

P LV (t) = 1

n

∣∣∣∣∣
n∑

i=1

e jφi (t)

∣∣∣∣∣ (1)
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TABLE II
ANATOMIC BRAIN REGIONS ACCORDING TO DESIKAN-KILLIANY ATLAS

where φi (t) is the phase difference, n denotes the total number
of trials. If the phase difference does not change much in
the trial, then the PLV is close to 1, otherwise it is close to
zero. PLV has several methodological advantages over other
functional connectivity measures: Firstly, PLV evaluates the
phase synchronization between two signals that only accounts
for phase information, which makes PLV confounded of
differences in amplitude. Secondly, PLV is a representative
nonlinear coupling technique capable to obtain a statistical
measure of functional connectivity, considering EEG source
signals do not strictly satisfy the linearity assumption [45].
Simultaneously, PLV is computationally fast and could pro-
duce similar results for constructing EEG networks with
nonlinear causal metric [46]. Thirdly, although PLV could be
sensitive to volume conduction effects [45], [47], the source
estimation addressed this problem. We used the mean PLV
across all time-bins and epochs (2 seconds) as the FC measure
of functional networks.

Then we constructed different weighted functional networks
with two different scales (68 and 33 nodes), where each
node represents each ROI and each edge represents the FC
magnitude. After constructing the weighted functional net-
works, we transformed these weighted networks into binary
networks and random networks by dealing with the edge
weights, i.e., the FC magnitude, as shown in Step 2 in Fig. 1.
To build the binary functional networks, we used a fixed
edge density as a threshold, removed edges in the weighted
networks with weights less than the threshold, and set the
weights of edges greater than the threshold to 1. The random
functional networks were constructed by disorganizing the
small-world structure of the weighted networks using Brain
Connectivity Toolbox (BCT) [5]. We also tested the influence
of edge density on network properties by modulating it from
0.1 to 1. The binary functional networks with edge density =
0.2, 0.3, 0.4, 0.5 were kept for further analysis of community
detection.

E. FNA: Graph-Theoretical Measures

Here we employed some graph-theoretical measures to
examine the properties of the functional networks constructed
in Sec. II-D, respectively. We examined the relationship
between these network properties and sevoflurane concen-
tration, thus exploring the network fragmentation and the
brain’s integrated ability during the loss and recovery of
consciousness.

1) Measure of FC Magnitude: Nodal Strength kW: We fist
used nodal strength kW to evaluate the FC magnitude (Fig. 1.
Step 2). The nodal strength of node i in a weighted network
is

kW
i =

∑
j∈N

Wij (2)

where FC between i and j are associated with FC magnitude
Wij . The nodal strength kW (edge density = 1) reflects the
overall FC magnitude of a weighted network, which was
calculated and visualized on brain surfaces for both Yeo and
Desikan-Killiany atlas using ggseg package in R [48].

2) Measure of Network Segregation: Modularity: One of
the most often used measures of functional segregation is
modularity. The modularity measure quantifies the quality
of modular partitions in such a way that the network has
stronger connections inside a community or module, than
across communities. The formulation of the modularity [49]
of a binary network is:

Q = 1

l

∑
i, j∈N

(
ai j − ki k j

l

)
δmi ,m j (3)

where mi is the community containing node i , and δmi ,m j = 1
if mi = m j , and 0 otherwise; l = ∑

i, j∈N ai j is the number
of links in a network.

The formulation of the modularity of a weighted network
is

Qw = 1

lw
∑

i, j∈N

[
wi j − kw

i kw
j

lw

]
δmi ,m j (4)
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where lw = ∑
i, j∈N Wij is the sum of all weights in a network.

Using Q maximizing, the network may be partitioned
into non-overlapping communities or modules [49], [50]. The
modularity (Fig. 1. Step 2) was estimated using the Louvain
algorithm [50], which was made available via the Brain
Connectivity Toolbox [5].

3) Measure of Network Integration: Global Efficiency: One
of the most often cited measures of functional integration
is global efficiency. The global network efficiency assesses
global communication of the brain [51]. The global efficiency
of a binary network can be calculated as follows:

E = 1

n

∑
i∈N

Ei = 1

n

∑
i∈N

∑
j∈N, j �=i d−1

i j

n − 1
(5)

where Ei is the efficiency of node i ; di j = ∑
auv∈gi↔ j

auv

is the shortest path length (distance) between nodes i and j ,
gi ↔ j is the shortest path (geodesic) between i and j . And
di j = ∞ for all disconnected pairs i , j ; n is the number of
nodes.

The global efficiency of a weighted network is

Ew = 1

n

∑
i∈N

∑
j∈N, j �=i

(
dw

i j

)−1

n − 1
(6)

where dw
i j = ∑

auv∈
gi

W↔ j

f (Wuv ) is the shortest weighted path

length between i and j ; f is a map (e.g., an inverse) from

weight to length; gi
W↔ j is the shortest weighted path between

i and j . The global efficiency (Fig. 1. Step 2) was calculated
using the Brain Connectivity Toolbox [5].

F. FNA: Network Community Analysis

We further performed community detection for functional
networks using the Louvain algorithm and iterative commu-
nity detection, thus exploring the changes in the community
structure of brain networks and understanding how fragmented
communities of brain network recovers during anesthesia-
induced ROC.

1) Louvain Algorithm: Based on the estimation of modularity,
we then explored the specific optimal community structure and
the community number of binary functional networks under
different conscious states using the Louvain algorithm (Fig. 1.
Step 3). There are two steps in the Louvain algorithm for
maximizing network modularity Q. In order to locate small
communities inside a network, the algorithm first optimizes Q
for local modularity. The algorithm then creates a new network
whose nodes correspond to the communities discovered in the
previous step. Self-loops represent links within communities
discovered in the initial step of this new network, and the
communities connected in the first step are represented by
cross-node links whose weights are equal to the weights of
the edges connecting the communities. To find large-scale
communities, the Louvain algorithm optimizes Q of the new
high-level network, and the process loops back to the initial
step to re-optimize Q. For details of the Louvain algorithm,
see [50].

2) Iterative Community Detection: The Louvain algorithm
requires resolution to determine the rough scale of commu-
nity structure. We used a robust detection algorithm [52] to
identify the robust solution of the results obtained from the
Louvain algorithm (Fig. 1. Step 3). The Iterative community
discovery approach takes into account the usage of statistical
null models to aid in the principled identification of structural
communities in semi-decomposable systems. For details of
iterative community detection, see [52]. We modulated the
resolution in the Louvain algorithm from 0.8 to 1.5 with a
step length of 0.01. For each resolution value (from 0.8 to 1.5),
100 repeated identification of community structure using the
Louvain algorithm was executed to ensure the robustness of
the results. All the results (800 × 100) were put into the robust
detection algorithm to obtain a single community structure for
each patient.

3) Normalized Mutual Information: After the community
detection of functional networks, the similarity between com-
munity structure and default divisions (the divisions of brain
regions into larger systems according to the atlases) could be
evaluated. We quantified this similarity between community
structures by using normalized mutual information (NMI) [53],
[54] (Fig. 1. Step 3). An earlier description of the use of NMI
measures for functional networks can be found in previous
studies [53], [54], [55]. NMI can be calculated as follows:

NMI(A, B) =
−2

∑CA
i=1

∑CB
j=1 Nij log

(
Nij N
Ni N j

)
∑CA

i=1 Ni log
(

Ni
N

)
+ ∑CB

j=1 N j log
(

N j
N

) (7)

where A and B are two partitions; The number of communities
in partitions A and B is indicated by the symbol CA and CB,
respectively. Both partitions have the same number of nodes,
N . Nij is the number of nodes that are shared by A and B’s
communities. Nodes of A’s community i are totaled as Ni ,
and the number of nodes in B’s community j is N j . The NMI
equals 0 when two partitions are completely independent and
1 when identical. The NMI of functional networks (averaged
across edge densities = 0.2, 0.3, 0.4, 0.5) were kept for
statistical analysis.

4) Community Ratio: To visualize and investigate the overall
change in community structures, we averaged the functional
network matrices of each conscious state across participants.
Furthermore, the community structures detected by the Lou-
vain algorithm and Iterative community detection were rela-
beled by maximizing the sum of the same labels to match
the results of different conscious states. To assess the dif-
ferences between community members during the change
of consciousness state, we examined the proportion of each
functional region in each community. The community ratio
matrix was constructed and visualized using the heatmap
in Seaborn (https://seaborn.pydata.org/). Results rendered in
brain surfaces were visualized using BrainNet Viewer [56].

G. Statistical Analysis

To show the relationship between functional integration
(represented by efficiency) and segregation (represented by
modularity) and the relationship between modularity and
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Fig. 2. Nodal strength kW
i distribution of weighted functional networks (edge density = 1) constructed using Yeo and Desikan-Killiany atlas during

the ROC from anesthesia. A: Nodal strength kW
i of functional networks constructed using Yeo atlas during the ROC (from left to right: ETSev 2.0,

ETSev 0.9, ETSev 0.6, ETSev 0.3, ETSev 0); B: Nodal strength kW
i of weighted functional networks constructed using Desikan-Killiany atlas during

the ROC (from left to right: ETSev 2.0, ETSev 0.9, ETSev 0.6, ETSev 0.3, ETSev 0); color bar stands for kW
i scale of each brain region. It can be

seen that the nodal strength kW
i of weighted functional networks using Yeo and Desikan-Killiany atlas showed an overall decrease with the decrease

of sevoflurane dose, which indicates the overall decrease of FC magnitude during the ROC from anesthesia.

Fig. 3. The graph-theoretical measures (global efficiency and mod-
ularity) during the ROC from anesthesia. A: Variation trend of the
graph-theoretical measures of different functional networks constructed
using the Yeo brain atlas [28] (left panel), and Desikan-Killiany atlas [27]
(right panel) with different edge densities (figures from the left column
to right column: global efficiency, modularity; figures from the top row to
bottom row: weighted network, random network, binary network); differ-
ent edge densities were represented with different colors; B: Correlation
diagram of efficiency E and modularity Q of the binary network (edge
density = 0.2); left: result of network constructed using the Yeo atlas;
right: result of network constructed using the Desikan-Killiany atlas. It can
be seen that the efficiency E of the functional network (binary network)
increased with the ROC despite the FC magnitude and the efficiency E
of the weighted network decreased, and there is a significant positive
correlation between modularity Q and global efficiency E.

community number, both conventional linear regression and
Bayesian linear regression (Bayes f actor = B F10) were
used to verify the linear relationship between efficiency and

modularity (Fig. 3. B), and the linear relationship between
modularity and community number (Fig. 5. B–D and
Table. III). The results (efficiency, modularity, community
number) in all epochs (ETSev2.0, 0.9, 0.6, 0.3, 0) were used
for calculating the correlation. The influence of confounding
variables (sex, age, and ETSevs) in linear regression was
excluded by building simple regression models (‘regress out’)
for characteristic variables (efficiency, modularity, community
number) and confounding variables, and keeping the
residuals. p<0.05 and B F10 > 100 indicate strong evidence
for a regression model. The JASP software package [57]
was used to carry out the linear regression. The NMI data
(Fig. 4) was tested by the repeated measures analysis of
variance (ANOVA), and Bonferroni correction was used
for the post-test. The ANOVA was employed using SPSS
software version 23.0.

III. RESULTS

In this section, we first demonstrated changes in
graph-theoretical measures for the weighted, binary, and ran-
dom functional networks to examine the change in network
properties during the loss and recovery of consciousness in
Section III-A. Considering FC magnitude affects the network
structure according to the results in Section III-A, we fur-
ther carried out community analysis for binary networks
to verify the change in community structure of functional
networks during the loss and recovery of consciousness
(Section III-B, III-C, III-D). Specifically, we examined if there
were dose-dependent effects in changing trend of community
structures using different brain atlases in Section III-B, the
relationship between modularity versus community number
was displayed in Section III-C, and we visualized the overall
changes in community structure of functional networks during
the ROC in Section III-D.

A. Changes in Graph-Theoretical Measures (Nodal
Strength, Modularity and Efficiency) of Functional
Networks

We first examined the nodal strength distribution to show
the change in the FC magnitude during anesthesia. Fig. 2
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visualizes the nodal strength kW
i distribution of weighted

functional networks (edge density = 1) constructed using
Yeo (Fig. 2. A) and Desikan-Killiany atlas (Fig. 2. B). The
nodal strength kW evaluates the averaged FC magnitude of a
weighted network. We can see that the FC magnitude (nodal
strength kW

i ) showed an overall decrease with the decrease of
sevoflurane dose for both Yeo and Desikan-Killiany atlas.

Next, global efficiency and modularity of weighted, binary,
and random functional networks were evaluated to discuss
the change in network properties during the ROC from anes-
thesia. Fig. 3 displays the graph-theoretical measures (global
efficiency and modularity) of functional networks during the
loss and recovery of consciousness. Not consistent with pre-
vious work [58], [59], the decreased dose of sevoflurane
was related to an overall decrease in FC magnitude, which
could be demonstrated by the decreased global efficiency
E W of the random networks constructed using both Yeo and
Desikan atlases during the ROC from anesthesia (Fig. 3. A).
Furthermore, this result is compatible with the results of
decreased nodal strength in Fig. 2. Additionally, an overall
decrease in efficiency E W of random and weighted networks
was observed along with the decreased dose of sevoflurane
(Fig. 3. A) for both Yeo and Desikan atlases, while an overall
increase in efficiency E of binary networks was observed,
which demonstrates that FNA with and without FC magnitude
leads to opposite results. Furthermore, increased modularity of
weighted, random (QW ) and binary (Q) functional networks
were observed (Fig. 3. A) for both Yeo and Desikan atlases.
Efficiency E and modularity Q showed a significant positive
correlation in binary functional networks (edge density = 0.2)
constructed using both Yeo and Desikan atlases (Fig. 3. B.
Yeo: R = 0.868, p < 0.001, B F10 = 3.316e+20; Desikan:
R = 0.659, p < 0.001, B F10 = 5.517e+7) during the ROC
from anesthesia, which was opposite to the results of some
studies using fMRI [15], [60], but similar to the results of some
studies using EEG [61]. To sum up, the global efficiency E
of the functional network (binary network) increased despite
the FC magnitude and the modularity (Q and QW ) of the
functional network decreased during the ROC from anesthesia.

B. Community Similarity of Brain Networks With Default
Divisions

We then explored if there were differences in community
structure change of brain networks constructed using different
brain atlases during ROC. Using the community detection
algorithm and NMI method, the community structure simi-
larity with the default divisions of functional networks during
ROC from anesthesia is displayed in Fig. 4. Firstly, for the
functional networks constructed using Yeo atlas, an overall
decrease of the averaged NMI was observed during the
ROC from anesthesia (Fig. 4. A. p < 0.0001, F = 16.989,
Partial η2 = 0.493), indicating that the community structure
of functional networks gradually deviated from the default
division (Table. I), in other words, there was an increased
communication among different functional regions during the
ROC from anesthesia. For the functional networks constructed
using Desikan-Killiany atlas, there was also a significant
NMI change (Table. II) during the ROC from anesthesia

Fig. 4. Community similarity with default divisions (the divisions of
brain regions into larger systems according to the atlases). A: NMI
between community structures of patients’ functional networks (averaged
across edge densities = 0.2, 0.3, 0.4, 0.5) constructed using Yeo atlas
during the ROC; B: NMI between community structures of patients’
functional networks (averaged across edge densities = 0.2, 0.3, 0.4,
0.5) constructed using Desikan-Killiany atlas during the ROC. It can be
seen that an overall decrease of NMI in functional networks constructed
using Yeo atlas and no apparent trend of NMI in functional networks
constructed using Desikan-Killiany atlas could be observed during the
ROC from anesthesia.

(Fig. 4. B. p < 0.001, F = 5.308, Partial η2 = 0.233),
however, no apparent trend could be observed. The results of
random networks demonstrate that the small-world structure
of the functional networks was destroyed, therefore, no sig-
nificant results could be observed (diagrams on the right
in Fig. 4. A, B).

C. Relationship Between Modularity Versus Community
Number

To explain the inconsistency between the decreased modu-
larity during LOC and results from other studies, we tested
the change of community number during the ROC from
anesthesia. The binary network with edge density = 0.2 was
used for analysis. Surprisingly, for functional networks con-
structed using Yeo atlas, an overall decrease in community
number and increase in modularity Q were observed during
ROC from anesthesia (Fig. 5. A). Furthermore, a significant
negative correlation was observed between modularity and
community number (Fig. 5. B. R = −0.872, p < 0.001,
B F10 = 1.059e+21). We also carried out the statistical results
of modularity and community number of the functional net-
works constructed using Desikan-Killiany atlas. An overall
decrease in community number and increase in modularity Q
were also observed during ROC from anesthesia (Fig. 5. C).
Furthermore, a significant negative correlation between mod-
ularity and community number was also observed (Fig. 5. D.
R = −0.593, p < 0.001, B F10 = 477623).

To prevent the impact of isolated nodes on the outcomes,
the relationship between modularity and community num-
ber under different network edge densities using both Yeo
and Desikan-Killiany atlas was tested by linear regression
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Fig. 5. Relationships between modularity Q and community number
of the binary functional network with edge density = 0.2 during the
ROC from anesthesia. A: Statistical diagrams of community number and
modularity Q of functional networks constructed using Yeo atlas during
the ROC from anesthesia; B: Correlation diagram between community
number and modularity Q of functional networks constructed using Yeo
atlas during the ROC from anesthesia; C: Statistical diagrams of commu-
nity number and modularity Q of functional networks constructed using
Desikan-Killiany atlas during the ROC from anesthesia; D: Correlation
diagram between community number and modularity Q of functional
networks constructed using Desikan-Killiany atlas during the ROC from
anesthesia. It can be seen that for the functional networks constructed
using both Yeo and Desikan-Killiany atlas, a significant negative correla-
tion between community number and modularity Q was observed during
the ROC from anesthesia.

(Table. III). The strong evidence for a regression (p<0.001 and
B F10 >4000) model was provided (network edge density =
0.3, 0.4, 0.5), indicating the negative correlation between
modularity and community number of functional networks
during the ROC from anesthesia.

D. Overall Changes in Community Structure of
Functional Networks

To visualize and investigate the overall change in commu-
nity structure, we averaged the functional network matrices of
each consciousness state across participants. The communities
were relabeled by maximizing the sum of the same labels to
match the results of different states of consciousness. Fig. 6
displays the community detection result of the functional
networks constructed using Yeo atlas during the ROC from
anesthesia. We ignored the analysis for the functional networks
constructed using Desikan-Killiany atlas, considering no sig-
nificant trend can be observed in the community similarity
(Fig. 4. A). As can be seen from Fig. 6. A, the isolation
of the left node of the visual network (community 1) was

TABLE III
STATISTICAL RESULTS OF REGRESSION MODEL OF THE RELATIONSHIP

BETWEEN MODULARITY Q AND COMMUNITY NUMBER UNDER

DIFFERENT NETWORK EDGE DENSITIES USING BOTH YEO AND

DESIKAN-KILLIANY ATLAS

found during the loss and recovery of consciousness (ETSev
2.0, ETSev 0.9, ETSev 0.6, and ETSev 0.3 in Fig. 6. A).
The heatmap of the community ratio could also display the
isolation of the left node of the visual network (Fig. 6. B).
Additionally, an overall decrease of communities with consis-
tent functions (with consistent colors) was observed with the
ROC. For instance, communities 1, 4, 6, 9, and 11 execute
specialized function under ETSev 2.0; communities 1, 4, and
11 execute specialized function under ETSev 0.9; commu-
nities 1 and 11 execute specialized function under ETSev
0.6; communities 1 and 4 execute specialized function under
ETSev 0.3 and 0, respectively (Fig. 6. A and B).

IV. DISCUSSION

Anesthetic-induced unconsciousness has been studied using
brain FC and FNA, which is attributed to the disruption of
the brain’s integrated ability. In this study, we investigated the
change in brain network properties and the community struc-
ture of brain networks during the ROC to gain a better under-
standing of brain network fragmentation under anesthesia. Our
results demonstrate that unconsciousness causes an excessive
synchronization of neuronal activity, and the recovery of both
functional network integration and segregation leads to the
ROC induced by sevoflurane. We will discuss the implications
of these findings below.

A. Sevoflurane Causes an Excessive Synchronization of
Neuronal Activity and Cortical Network Fragmentation
Simultaneously

The cortical network fragmentation could be revealed by
two different phenomena: one is the breakdown of FC (the
edge of the functional network) [10], [11], [12], [62], [63], and
the other is the fragmentation of the network structure [15],
[16], [59], [64]. Numerous studies have provided evidence
for both meanings. However, some of the opposite results
followed, e.g., the enhancement of the coherence [61], cor-
relation [65], Granger causality [66], weighted phase lagging
index (wPLI) [67] (contrary to the first meaning), and modular-
ity without significant change [68], increased global efficiency
index [69] (contrary to the second meaning). We also found
increased FC magnitude in this study (Fig. 2). Bola et al. [65]
supposed that excessive synchronization might represent unre-
sponsive but conscious states. However, this assumption is not
suitable for our study, considering consciousness was certainly
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Fig. 6. The community detection result of the functional networks constructed using the Yeo atlas during the ROC from anesthesia (A: Topographic
distribution of communities; brain regions with the same color are from the same community according to Yeo atlas; B: heatmap of the community
ratio matrix; from top to bottom: ETSev 2.0, ETSev 0.9, ETSev 0.6, ETSev 0.3, ETSev 0; color bar stands for the absolute proportion scale of each
functional region in each community). It can be seen that an overall decrease of communities with consistent colors (with consistent functions) was
observed with the ROC from anesthesia, which indicates the restoration of communication among different functional regions.

refrained in clinical anesthesia. We believed that the increased
connectivity [61], [65], [67] in our result is similar to the
excessive synchronization observed in the unconsciousness
during epilepsy [70], which also suggests that FC magnitude
could not properly evaluate different anesthesia states. Further-
more, the lower global efficiency of the binary network during
the LOC (Fig. 3) reveals the fragmentation of the cortical
network, and the increased global efficiency index during the
unconsciousness found in some studies [69] might be caused
by the construction of a weighted functional network (Fig. 3).
Overall, our result indicates that FC magnitude might not be
suitable for evaluating consciousness, and the global efficiency
of the binary functional network might be a better indicator.

B. Communication Among Functional, Rather Than
Anatomical Regions Recovers During ROC

The parcellation atlas is the foundation of the construc-
tion of the functional network at the EEG source level and
directly affects the interpretability of the results. A part of the
studies using EEG stagnated at the sensor-level analysis [21],
[69], [71], [72], which directly affected the definition of the
functional network edge and its reliability. Some studies using
both EEG and fMRI carried out the parcellation of the brain
based on anatomical atlas [16], [73], which would reflect the
anatomy of the brain well and adjust functional networks to
a befitting size, but could not reflect the connectivity among
functional regions of the brain. The ideal process of functional
network construction should be using a functional atlas [64].

Hence, we investigated the influence of different cortical
parcellation atlases (a typical anatomical atlas and a typical
functional atlas) on the network properties and tracked the
changes in community structure using NMI (Section III-B).
The higher the NMI, the closer the network structure is to
the default divisions, and the connections within the default
communities are more frequent than the connections between
different default communities, which indicates a lower func-
tional integration. Therefore, with the decrease of sevoflurane
dose, the community structure of the functional network (con-
structed using Yeo atlas) becomes more and more dissimilar to
the default functional partition during anesthetic-induced loss
and recovery of consciousness (Fig. 4 and 6), indicating an
increased functional integration and communication between
different functional regions, while the functional networks
constructed using an anatomical atlas (Desikan-Killiany atlas)
showed no apparent trends. The results indicate that the recov-
ery functional integration and community structure during
ROC is based on the functional division of the brain rather than
the anatomy of the brain, and the consciousness is supported
by the functional organization of the human cerebral cortex.

C. The Increasing Community Number, Rather Than
Modularity, Could Be Used to Evaluate Anesthesia States

From the perspective of FNA and the direction of previous
studies, network fragmentation can be reflected based on
changes in network properties (e.g., the increase of modularity
or number of communities [15], reduction in both local and
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global network efficiency of functional networks [16], [64])
derived from thresholded FC matrices employing a fixed mag-
nitude threshold [59]. Nevertheless, the results we displayed
here (the decreased modularity and increased community
number during unconsciousness under anesthesia (Fig. 5)) are
inconsistent with previous studies. Modularity quantifies the
benefits of community partitioning. A network with stronger
connectivity between communities has smaller modularity than
a network with stronger connectivity within communities.
Modularity is one of the most commonly used measures of
functional segregation, which should be used to measure the
capacity of highly linked clusters of brain areas to perform
specialized function [5]. The possible interpretation for the
inconsistent results is that the changing trends of modularity,
and community number are not necessarily consistent and
the increased number of communities is a direct reflection
of the fragmentation of a network. Although some work used
increased modularity as a biomarker of unconsciousness [17],
the result we showed (increasing modularity during ROC) indi-
cates that modularity could not be used to evaluate anesthesia
states while community number is a more appropriate measure.

D. The Potential of IIT to Evaluate Conscious States
Under Anesthesia

Overall, all the network metrics discussed above reflect the
functional integration or segregation defined in the IIT [4],
which claims that consciousness is supported by a balance
of integration and segregation. IIT is a conceptual framework
of consciousness associated with anesthesia-induced uncon-
sciousness. A lot of work has started to find evidence for
IIT using different neuroimaging and analysis methods. Using
state-space reconstruction for conscious states, Lee et al. [74]
proposed that inducing general anesthesia with propofol
impairs the brain’s integrated ability. During propofol-induced
unconsciousness, Liang et al. [75] reported a loss of efficient
global communication capacity but a rise in local functional
segregation in the cortical network. When compared to con-
trols, Rizkallah et al. [76] found that functional networks in
participants with disorders of consciousness (DOC) exhibited
less integration and more segregation. Using phase-amplitude
coupling (PAC) analysis, propofol was found to cause neu-
ronal populations to become ‘busy’ on a local scale, lim-
iting functional integration in long-range areas, according
to Liang et al. [77]. In a recent study, Dong et al. [24] also
explored the integration and segregation using the PAC on
multiple spatial scales. Here we show in this study, the
increased global efficiency and modularity (Fig. 3), decreased
community similarity of brain networks with default divisions
(Fig. 4 and 6), and decreased community number (Fig. 5) of
binary functional networks during the ROC from anesthesia,
all together reveal the recovery of functional network integra-
tion and segregation from the perspective of brain network
structure. Therefore, IIT has great potential for evaluating
consciousness. FC and FNA should be used in anesthesia
research from the perspective of integration and segregation,
which is expected to lead to the development of anesthesia
monitoring.

E. Defects and Future Directions

Firstly, although recent investigations confirmed the capabil-
ity of recreating the source using low-density EEG data [31],
[32], [33], [34], [35], [36], [37], [38], high-density EEG
settings are always preferable and low-density EEG collection
is a serious limitation of this study. We hope that we can
obtain more reliable results using high-density EEG collection
in future studies. Secondly, we track network changes by
steadily increasing or decreasing propofol or sevoflurane doses
rather than adopting a randomized sequence or alternating
decreased and increased doses, which may be impractical
given participant safety. Thirdly, the small sample size and
incomplete data (especially for the induction process) limited
the interpretability of the results. The data set has only
15 patients, which might have led to inconsistent findings.
Fourthly, resting-state EEG-based functional networks were
used to evaluate the integration and segregation of the brain,
however, actual causal interaction associated with the IIT
should be tested using high-dimensional responses of the brain
to perturbations [78], [79]. Therefore, actual causal interaction
can not be measured in this study, which only evaluated the
potential global and local structured behavior of the brain
network using statistical techniques.

For future consideration, additional types of FC should be
considered to verify the conclusion of this study. Moreover,
the high-density EEG acquisition should cover the whole
anesthesia process, and task-state should be considered in
brain network study under anesthesia. Finally, the dynamic
FC analysis can improve our comprehension of the dynamic
change process of the whole-brain network.

V. CONCLUSION

The inability of the brain to integrate and segregate process-
ing, which is generally manifested as a fragmentation of the
whole-brain functional network, is one of the most recog-
nized neural mechanisms of LOC. Insight into brain network
mechanisms of ROC induced by anesthetics can be gained
from a systematic study of the brain network properties
and community structure. As shown above, an overall larger
FC magnitude and weighted network efficiency but lower
binary network efficiency during sevoflurane-induced LOC
were observed. Community similarity among functional rather
than anatomical regions is reduced during ROC. Furthermore,
a negative correlation between modularity versus community
number was observed. Taking the IIT theory as the foothold,
these findings demonstrate that unconsciousness causes an
excessive synchronization of neuronal activity, and the recov-
ery of both functional network integration and segregation
leads to ROC. The use of FC and modularity to evaluate
anesthetic states needs to be re-examined, and assessing the
integration-segregation balance should be further utilized in
future directions.
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