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Abstract— With the increasing availability of more
advanced prostheses individuals with a transradial ampu-
tation can now be fit with single to multi-degree of freedom
hands. Reliable and accurate control of these multi-grip
hands still remains challenging. This is the first multi-user
study to investigate at-home control and use of a multi-grip
hand prosthesis under pattern recognition and direct con-
trol. Individuals with a transradial amputation were fitted
with and trained to use an OSSUR i-Limb Ultra Revolution
with Coapt COMPLETE CONTROL system. They partici-
pated in two 8-week home trials using the hand under
myoelectric direct and pattern recognition control in a ran-
domized order. While at home, participants demonstrated
broader usage of grips in pattern recognition compared to
direct control. After the home trial, they showed significant
improvements in the Assessment of Capacity for Myoelec-
tric Control (ACMC) outcome measure while using pattern
recognition control compared to direct control; other out-
come measures showed no differences between control
styles. Additionally, this study provided a unique oppor-
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tunity to evaluate EMG signals during home use. Offline
analysis of calibration data showed that users were 81.5%
[7.1] accurate across a range of three to five grips. Although
EMG signal noise was identified during some calibrations,
overall EMG quality was sufficient to provide users with
control performance at or better than direct control.

Index Terms— Below-elbow amputation, home use, myo-
electric control, prosthesis function, machine learning.

I. INTRODUCTION

TRANSRADIAL amputation, the most common major
upper limb amputation [1], greatly affects an individ-

ual’s functional ability mainly due to the loss of the hand.
Single degree of freedom body-powered or myoelectric hand
prostheses can provide users with the basic capability of
opening and closing to manipulate objects. A prosthesis with
more than one grip may be desirable because the function
of a single degree of freedom hand falls drastically short of
the complex movements the human hand typically performs
with relative ease [2], [3]. The clinical availability of pros-
thetic hands with more degrees of freedom have substantially
increased [4], [5], [6].

Since the forearm contains multiple extrinsic hand muscles
there is a growing number of studies investigating myoelectric
hand control with multiple grips [7]. With myoelectric control,
information from remaining muscles in the residual limb can
be used to control prosthesis movements. The most common
type of control has historically been two-site threshold-based
direct control. A user can contract an agonist-antagonist pair of
muscles of the forearm, often the wrist flexors and extensors,
to proportionately close and open a prosthetic hand [8], [9].
To operate a prosthetic hand with multiple grips, often a myo-
electric switching strategy (e.g., co-contraction, hold open),
a smartphone app, and/or a button on the hand is configured
to cycle between or select grips.

Multi-site myoelectric pattern recognition-based control has
been proposed as an alternative to direct control. Lab-based
evaluations of the system have been performed since at
least the 1960s, including the demonstration of function by
10 above-elbow amputees using wearable prototypes [10].
Home-based evaluations of a pattern recognition controlled

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6431-0329
https://orcid.org/0000-0002-7271-6214
https://orcid.org/0000-0002-1705-0050


272 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

wrist and hand has also been performed in the late 1970s;
five transradial users who had previous experienced with
myoelectric direct control were able to learn to control six
wrist and hand movements with pattern recognition [11].
This study reported that a major limitation was that the
control system was not self-contained within the prosthesis.
Improvements in electronics componentry have allowed these
limitations to be overcome resulting in efficient and self-
contained pattern recognition systems to be created in the
early 1990s [12], and extended to real-time multichannel
systems over the subsequent decade [13]. Pattern recognition
systems have been suggested as a more intuitive myoelectric
control strategy [14], [15]. Individuals with a transradial ampu-
tation can perform physiologically appropriate muscle contrac-
tions for the grip or individual finger movement they want
to control; studies have demonstrated 79% accuracy for five
transradial users across seven different finger movements [16]
and 90% accuracy for one transradial user across individual
finger flexion and extension movements [17] Additionally,
using pattern recognition to control various combinations
of hand and wrist motions have been investigated showing
real-time control of a virtual [18], [19] or physical transradial
prosthesis [20]. Reliable and accurate control of all available
degrees of freedom available remains a challenge.

Few studies have directly compared various myoelectric
control strategies with end users. Two studies have demon-
strated that individuals with a transhumeral or transradial
amputation have tended to perform better with pattern recog-
nition compared to direct control [21], [22] and a separate
study showed nearly identical outcomes between these two
control methods when transradial amputees controlled a two
degree of freedom system [23]. Another study controlling the
multi-degree of freedom DEKA arm with pattern recognition
control reported mixed user views on the usability and desir-
ability of the system compared to the control of their own
prescribed prosthesis control [24].

While the majority of pattern recognition studies are still
performed in-lab (as it has been since the 1960s), almost a
decade has passed since the first commercial EMG pattern
product became available in 2014 [25]. There is a strong need
to push the field forward by evaluating multi-grip prosthe-
ses after individuals have had the opportunity to use them
for some time in their home environment. Research in this
important area is growing and there are now more studies
that include longer accommodation periods of at-home use
of a multi-grip hand (although not comparing control styles).
Probsting et al. [26] evaluated use of Michelangelo hand
(seven hand positions and movable wrist) and found that after
at least four weeks use, individuals with a transradial ampu-
tation had a reduced perceived level of difficulty performing
many activities of daily living compared to their prescribed
single degree of freedom terminal device. Resnik et al. [27]
reported a discrepancy between patterns of DEKA hand grip
usage during in-lab tests and up to three months of home
use. For example, power grip was used more often at home
(median use of 52%) than during to in-lab testing (21%)
while pinch and lateral grip were used less at home
(4% and 14%, respectively) than during in-lab testing

(11% and 25%, respectively). Widehammar et al. [28] investi-
gated the effect of multi- vs single-grip myoelectric prosthetic
hands using the Ottobock Bebionic hand (14 grip types).
Individuals with a transcarpal amputation controlled the hand
using direct control including myoelectric switching (in com-
bination with using a button on the hand) for the multi-
grip option. Over six months of home use, performance and
satisfaction with the multi-grip hand increased over time.
While it was possible for individuals to control the multi-grip
hand with standard 2-site direct control, they did not evaluate
grip switching nor whether users selected the appropriate
grip [28].

To date, there is only a case study comparing at-home
pattern recognition control and direct control of a multi-
articulating hand [29]. In this study, a user with unilateral
dysmelia learned to control four grips of an OSSUR i-Limb
hand prosthesis, In comparison to direct control with switch-
ing, after five days of home use with pattern recognition they
reported more intuitive control while selecting the grips but
also some uncertainty during proportional continuous move-
ment. This uncertainty may have contributed to the outcome
assessment (i.e., ACMC) showing better use with direct control
compared to pattern recognition. The goal of this paper was
to perform the first multi-subject multi-week study aimed at
comparing home use and prosthesis control of two different
myoelectric strategies for a multi-grip prosthesis. Users with
a transradial amputation completed two 8-week home trials
while operating the device with 1) conventional, myoelectric
direct control with switching and 2) myoelectric pattern recog-
nition. Following each home trial, users completed a suite of
outcome measures. For pattern recognition, analyses of users’
calibrations were performed to gain a deeper understanding of
the EMG signals recorded during home use.

II. METHODS

Individuals were recruited across the US and all fittings and
study testing were conducted at the Shirley Ryan AbilityLab in
Chicago, IL and Walter Reed National Military Medical Center
in Bethesda, MD to participate in this study (ClinicalTrials.gov
Identifier: NCT02349035). Inclusion criteria were: age 18-95,
history of a unilateral upper limb amputation below the elbow,
and the ability to use a prosthesis under myoelectric control.
Individuals were excluded if they were unable to use a
prosthesis, had cognitive impairments that would interfere with
their understanding of study requirements, or any significant
co-morbidity that would preclude completion of the study.
The study was approved by the Institutional Review Boards
of Northwestern University (STU00101444) and Walter Reed
National Military Medical Center (IRBNet#410731). All sub-
jects provided written informed consent.

Eleven individuals with a unilateral transradial amputation
were enrolled in the study. Table I outlines subject demograph-
ics including home prescribed prostheses and typical usage
with their myoelectric prosthesis. Eight subjects successfully
completed the study protocol. One subject, TR6, withdrew due
to not being able to meet the daily usage requirement. Two
subjects were withdrawn by study personnel due to noncom-
pliance: TR8 was unreachable during his second home trial
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TABLE I
SUBJECT DEMOGRAPHICS

and did not return for outcomes testing and TR9 completed
the study but indicated he was not trying to control nor use his
prosthesis in a useful way during the home trials or outcomes
testing.

A. Study Protocol

1) Prosthetic System: A certified prosthetist fitted all users
with a multi-articulating hand (OSSUR i-Limb Ultra Revolu-
tion [30]), a passive wrist rotator, and a myoelectric controller
(COMPLETE CONTROL Gen1 system by Coapt, LLC [25]).
The COMPLETE CONTROL system is a clinically available
pattern recognition system that was modified for this study
to also allow for direct control and data logging. Eight
electromyography (EMG) electrode pairs were embedded into
a flexible inner liner and socket. To use the same socket and
electrode setup for both direct and pattern recognition control,
care was taken when determining the location of electrodes.
Two electrode pairs were placed over the wrist flexors and
extensors for threshold-based direct control; direct control only
accessed these two channels. The remaining six electrodes
were placed over remaining residual limb forearm muscles;
pattern recognition control accessed all eight channels

For direct control, channel gains and thresholds were con-
figured in a dual-differential or a first-over strategy for pro-
portional control [9]. To switch between a default grip and
other grips, up to four triggers (hold hand open, double and
triple hand open pulse, and co-contraction) were configured.
Participants switched between grips when the hand was fully
open. Clinical judgment and user feedback were used to
determine the number of triggers and ultimately the number
of grips each individual would use, as well as which grip
would be assigned to each trigger. Direct control settings were
modified as necessary during in-lab training or testing during
pre- and post-home trial visits but not modified at home.

For pattern recognition control, participants auto-calibrated
their control at any time by making natural muscle contrac-
tions that followed along with a series of pre-programmed
grips [31], [32]. This auto-calibration process recorded and
auto-labeled myoelectric data for each trained grip. A well-
established classification system [12], [33] was trained which
used 200 ms analysis windows with a 25 ms update incre-
ment, extracted time domain and auto regressive features,
and classified data using a linear discriminant analysis classi-
fier [15], [34], [35]. Hand speed control was proportional to the
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Fig. 1. Participants using their multi-grip hand prosthesis under pattern
recognition and direct control. Participants gave permission for the use
of their identifiable images.

EMG activity [36]. To switch between grips users sustained
a ‘hand open’ muscle contraction which moved the hand to
a baseline/natural hand position before performing the muscle
contraction for the new desired grip. This scheme balanced
the potential desire to remain in a grip even if the hand was
fully open (similar to direct control) and only switch to a new
grip following a sustained hold open. Clinical judgment and
user feedback were used to determine the maximum number
of grips and which grips the individual would use. Users had
the ability to auto-calibration in the lab or at home whenever
they desired.

2) Pre-Home Trial Training: Participants were educated on
and practiced with both direct and pattern recognition control
strategies, regardless of the style of control of their pre-
scribed device. Individuals participated in therapy (Fig. 1)
with certified and licensed occupational therapist to learn how
to properly control the multi-articulating hand under both
myoelectric direct control (DC) and pattern recognition control
(PR) and how to best incorporate their prosthesis into their
activities of daily living. To avoid training biases (e.g., some
therapists may be more highly trained with direct control
compared to pattern recognition control), the same occupa-
tional therapist who has extensive experience in training both
control styles trained and tested all participants. They received
a minimum of four training sessions for a total training time of
8-12 hours prior to each 8-week home trial. During training
users performed a variety of functional tasks to ensure profi-
ciency of each control type. Training was considered complete
and the user ready to start the home trial once he or she was
able to reliably operate all the functions of the prosthesis and
perform functional tasks with the prosthesis. Additionally with
pattern recognition control users also needed to demonstrate
understanding of the calibration process (e.g., when calibration
may be needed, how to calibrate, etc). Completion of training
was at the discretion of the occupational therapist with input
from the user on comfort of use.

The order of control type was randomized. A reduced set
of 8 of the 24 available i-Limb grips [30] were available
including lateral, power, thumb precision pinch opened and
closed, thumb 3 jaw chuck opened and closed, standard

3 jaw chuck closed, and index point. Of note, all users
had up to five triggers that could be assigned in direct
control; this was the total that was possible without other aids
(app, button, grip chips, etc). For pattern recognition, the
system was capable of having all 8 grips configured if users
were able to control them, however the maximum configured
and reliably controlled by any participant was four. For each
user, grips assigned during direct control did not always match
grips assigned during pattern recognition control. To more
clearly define any differences between myoelectric control
strategies, no alternative methods of changing grips (e.g., grip
chips, IMU based gesture control, smartphone application,
etc.) were used.

3) Home Trial: During each 8-week home trial, participants
were required to check-in regularly with an occupational
therapist, maintain an average daily usage of at least two
hours per day, and log the activities they were performing
with their prosthesis. Users were also asked to denote any
grip(s) that were difficult to control and to rate their overall
prosthesis function on a scale of 1-10 where 1 corresponded to
poor function and 10 corresponded to great function. Usage
data was recorded on the embedded controller. Because the
study device included different degrees of freedom than their
prescribed prosthesis, participants were allowed to continue
use of this device. We did not track use of their prescribed
prosthesis.

4) Post-Home Trial Assessments: Following each home trial,
participants returned to the lab for assessments. Since there
is not one upper limb outcome measure that captures all
prosthetic function [37], we tested a suite of outcome measures
in order to get a more representative picture of how differences
in grip control effected prosthesis control. These measures
included:

• Southampton Hand Assessment Procedure (SHAP) evalu-
ates unilateral hand function [38]. Abstract object manip-
ulation and activities of daily living are timed by the
subject. Scores are compared to a normalized, able-bodied
control score of 100.

• Jebsen-Taylor Hand Function Test evaluates hand func-
tion. Seven hand-related tasks utilizing common items
such as cards, cans, paper clips, and coins are timed [39].

• Assessment of Capacity for Myoelectric Control (ACMC)
evaluates control a myoelectric hand. An observational
assessment of the ability to control gripping, hold-
ing, releasing and coordinating 30 items is scored on
a 4-point capability scale [40], [41]. Rasch analysis
converts capability ratings to a single measure of each
user’s functional ability.

• Modified Box and Block Test of Manual Dexterity eval-
uates gross manual dexterity. One-inch blocks are moved
one at a time from one side of a box to the other over a
wooden partition [42]. The final score is the number of
blocks transferred in 1 minute, typically averaged over
three trials.

• Activities Measure for Upper Limb Amputees
(AM-ULA) evaluates the performance of daily functional
activities using the prosthesis and is graded on a scale
of 0-4 (unable to excellent) [43].
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A higher score for the SHAP, ACMC, AM-ULA, and Box
and Blocks and a lower score for the Jebsen-Taylor indicated
better function or control.

Since commercially available pattern recognition systems
provide users the advantage of recalibrating at any time,
this important feature was included during home trial and
assessment. To parallel clinically available direct control,
control parameters were only modified during their prosthetic
or laboratory visits. If the clinicians and/or participant agreed
modifications of their direct control settings were necessary
prior to starting outcomes, changes were made. For both styles
of control, no changes to grip configurations were made once
home trial ended and outcomes began.

B. Data Analysis

During the home trial, prosthesis daily usage data was
logged on the device. Measures included the duration of time
the prosthesis was turned on, which grip(s) were used and the
speed at which the hand was commanded to move. From these
data, we calculated average daily wear time as the total number
of hours the device was turned on divided by the total number
of days the device was turned on. For pattern recognition
control, the number of times the prosthesis was recalibrated
and the raw EMG recorded during calibration were logged.
Since the configured grips for each user were selected based
on the most functional grips for their own activities of daily
living, the time spent in each grip was ranked in order of
descending usage and the percentage of time spent in each
grip was calculated.

EMG recorded during pattern recognition calibration was
analyzed to measure offline classification accuracy. A leave-
one-out-cross-validation analysis was performed across all
calibrations performed in each quarter of the home trial.
Confusion matrices for each subject were created in order to
investigate whether there were trends in accuracy of different
grips and whether those trends remained varied across the
duration of the home trial.

Calibration EMG data were also used to investigate potential
signal noise and user timing issues that may have occurred at
home. Signal noise issues included higher presence of 60 Hz
noise (i.e., higher baseline signal noise), poor skin/electrode
impedance matching, intermittent electrode contact, faulty
wire. User timing issues included non-trivial muscle activity
recorded during the no movement/rest portion of the calibra-
tion (i.e., amplitude near equivalent to the lowest amplitude
grip muscle pattern), missing contractions (e.g., no muscle
activity during an expected movement portion of the calibra-
tion), and/or calibration timing issues (e.g., one muscle con-
traction(s) recorded across two different calibrated movements,
or when muscle contraction starts too early or ends too late).

To compare cumulative wear time, average daily wear-time,
number days powered on and number of configured grips,
between direct and pattern recognition control, we performed a
repeated measures analysis of variance (ANOVA) with subject
as a random factor, control type (DC, PR) and order as fixed
factors. To compare outcome measures between direct and
pattern recognition control, we performed a repeated measures

TABLE II
HOME USE DATA

analysis of variance (ANOVA) with subject as a random factor,
control type (DC, PR) and order as fixed factors, and the
average daily wear time, testing order, and control condition
of the users’ prescribed prosthesis as a covariate. As the
average daily wear-time was found to be non-significant, it was
removed from the model.

III. RESULTS

A. Home Usage

Participants reported successfully using the multi-
articulating hand prosthesis for similar activities across the
duration of the study protocol for both control conditions.
These activities included housework (e.g., washing and folding
laundry, sweeping, mopping, vacuuming), meal preparation,
self-care (e.g., dressing, grooming, cutting food), yardwork
(e.g., mowing lawn), grocery shopping, and for employment
including office work (e.g., filing papers, typing) and holding
small tools for maintenance work. Usage data logged on the
device during the home trials showed no significant difference
in cumulative hours powered on or on the average daily
on time between control conditions (Table II) (p > 0.05).
Participants rated their overall prosthesis function for direct
control as 7.5 [0.7] and for pattern recognition as 8.0 [0.9].
These ratings remained fairly consistent across the duration
of the home trial, with pattern recognition increasing slightly
each quarter (Table II). At the conclusion of the study, seven
of the eight subjects (all except TR3) stated they preferred
pattern recognition over direct control.

The three most commonly configured grips, were power,
thumb precision pinch closed, and standard 3 jaw chuck closed
(Fig. 2A). On average, more grips were configured for direct
control (Table II, p = 0.02); however, while using the multi-
articulating hand at home, participants demonstrated broader
usage of grips in pattern recognition compared to direct control
(Fig. 2A & 2B). Participants spent 83.0% [1.9] of the time at
home in a single grip (i.e., most-used grip) for direct control,
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Fig. 2. Home use grip usage including A) configured grips for each subject displayed with the percentage of usage time associated with direct
control and pattern recognition control and B) average grip usage across all users with grips ranked in descending usage order for direct control and
pattern recognition. Grey shading indicates results from direct control and blue shading indicates results from pattern recognition control.

Fig. 3. Outcomes using direct (grey) and pattern recognition (blue)
control. The ACMC showed significantly improved control for pattern
recognition compared to direct control (*p < 0.05).

11.5% [1.3] of the time in their second most used grip, and
4.1% [1.1] of the time in their third most used grip. For pattern
recognition control, usage at home was spread out across a
larger number of grips with approximately 56.1% [6.6] of
the time spent in the preferred grip, and 23.4% [3.5] and
16.5% [3.4] of time spent in the 2nd and 3rd most used grips,
respectively.

B. Outcome Measures

Testing order and control of the users’ home prescribed
prosthesis were found to be not significant and therefore these
covariates were removed from the model. Analyzing outcome
measures showed significant differences between control con-
ditions (Fig. 3); users scored significantly better control with
pattern recognition compared to direct control (DC: 48.3 [3.4];
PR: (58.7 [2.2], p = 0.017). The Box and Blocks (DC: 35.9
[2.6]; PR: 37.7 blocks [2.9]; p = 0.75), AMULA (DC: 19.7
[0.5]; PR: 21.1 [1.0]; p = 0.16), Jebsen-Taylor (DC: 264.5 sec
[22.6]; PR: 226.4 sec [17.7], p = 0.35), and SHAP (DC:
36.6 [2.3]; PR: 35.4 [2.5], p = 0.697) showed no significant

differences between control. For pattern recognition control
seven of eight users recalibrated in between tasks in the
assessments an average of 3.9 [3.5] times. For direct control
a prosthetist adjusted settings (gains or thresholds) for one of
eight users prior to beginning outcomes.

C. Signal Quality During Pattern Recognition Calibration

During the pattern recognition home trial, the amount
of times users calibrated their prosthesis was highly vari-
able. Median value was 18.0 with an interquartile range of
11.75 to 36. TR5 only calibrated one time at home and TR2
calibrated his prosthesis the most often with 97 calibration
sessions at home. An example of raw EMG recorded during
calibration of four grip patterns with no signal quality issues
identified is shown in Fig. 4A. The figure additionally shows
examples of various types of signal noise (Fig. 4B) and
user timing (Fig. 4C) issues identified during analysis. Fig. 5
displays, in counts per user, how many times both noise and
user timing issues were identified.

D. Calibration Offline Classification Accuracy

Figure 6 displays the offline accuracy confusion matrices
and the grips identified via home logs as difficult to control in
real-time of each user across each quarter of the home trial.
The majority of grips for all users had accuracies above 70%
with many in the 85% to 95% range. Average classification
accuracy across all users 81.5% [7.1].

IV. DISCUSSION

To the authors knowledge this is the first multi-user study
to evaluate multi-grip control at home with two different
myoelectric control strategies. While pattern recognition con-
trol did not increase the total number of grips a user had
access to, users did access more varied grips with pattern
recognition compared to direct control. Due to using natural
muscle contraction patterns paired with similar prosthesis
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Fig. 4. Example EMG calibration data from all 8 signals recorded during
home use. A) Data recorded from one user calibrating 4 grips (Key,
Power, Tripod Closed, and Precision Pinch Closed) grips with no issues
identified. Other calibrations demonstrate examples of B) signal noise
and C) user timing issues.

Fig. 5. Number of calibrations per subject where any issues (top), signal
noise issues (middle), and user timing issues (bottom) were identified.
The number of calibrations was highly variable between subjects.

grips, pattern recognition may encourage users to access a
more useful or functional grip for their activities of daily
living. These data, recorded at home, provide an insight into
how an individual truly translates at home what is setup for
them in the laboratory or clinic.

During our in-lab clinical testing, users showed a significant
improvement of 21% (representing an average score increase
of 10.4 [2.9] in the ACMC. The ACMC was included because
of its ability to measure skill in prosthesis control and flow of
movement including the user’s ability to grasp, release, and
hold items in multiple planes of movement [40]. For this test,
users are encouraged to use their prosthetic hand as much as
possible throughout the assessment. The significant increase
found in this study may be a result of users accessing and
therefore having more practice with more grips using pattern
recognition control. In contrast, a case study using four grips of
the i-Limb Ultra hand showed better prosthesis performance in
the ACMC with direct control compared to pattern recognition
following five days of pattern recognition home use [29].

In contrast to user preference which indicated 7 of 8 par-
ticipants favored consistently rated pattern recognition higher
than direct control while at home and the same subjects
preferring pattern recognition at the end of the study, the
other outcomes assessed showed no difference between control
types. For some tests, this is not surprising. For example, the
Box and Blocks task does not require changing grips; there
would be no reason to believe that performance would be
different between control types but including this comparison
was still important. One might expect pattern recognition to
perform more poorly if misclassification caused the hand to
change grips erroneously. Our results confirm that pattern
recognition did not degrade simple one degree of freedom
hand movements. For the SHAP, it is possible to achieve high
scores by performing compensatory movements or completing
components of the test without using the most functionally
appropriate grips. For this study in direct control the hand
started in the users default grip (i.e., power grip for the
majority of users) and with pattern recognition the hand started
in a relaxed hand open position where users had to perform the
muscle contraction of the grip they desired. For either control
style, there is the possibility some participants just completed
the task with whichever grip was selected first. One study
showed that users could perform well in the SHAP using only
a single degree of freedom terminal device [44] which requires
no grip switching. The AM-ULA evaluates skillfulness and
speed of movement and we expected a difference between the
two control strategies. For this test, a user completes a series of
activities of daily living in which they are either encouraged to
use their prosthesis to complete bilateral tasks and asked to use
only their prosthesis to complete unilateral tasks and ask time
is not measured or constrained [43]. The AM-ULA trended
towards improved control with pattern recognition but this
potential difference was not statistically significant. Perhaps
other outcome measures that explicitly measured body com-
pensations, such as the Gaze and Movement Assessment [45],
or inclusion of a powered wrist rotator, may reveal more
notable differences between control types.

The choice of not using a powered wrist rotator likely
impacted overall performance for both conditions. Controlling
a powered wrist via direct or pattern recognition might have
contributed to additional differences seen during outcome mea-
sures. For direct control users would need to access the wrist
via either another myoelectric switch (or replace a grip with
wrist control). With pattern recognition control users could
implement seamless sequential control to go back and forth
between hand and wrist movements. This choice may have
especially impacted the three subjects who use a powered wrist
with their prescribed device. Pre-positioning of the passive
wrist rotation was allowed prior to starting tasks, however was
not allowed to complete the task. For example, SHAP page
turning, they were allowed to pre-position the hand/wrist after
the timer was started but not use the passive wrist to complete
the turning of the page. For the ACMC, pre-positioning
was allowed throughout the evaluation. Although reliable and
accurate control of the wrist in combination with multiple grips
still remains rather challenging regardless of control modality,
preliminary work on intact-limbed individuals demonstrates
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improved performance with additional degrees of freedom at
the wrist [46]. Additionally had we measured users’ baseline
control with their prescribed prosthesis we may have been
able to better define changes in control due to study prosthesis
components.

The pattern recognition portion of the study provided a
unique opportunity to evaluate EMG and user calibrations
during home use. An offline analysis of these calibrations
showed that users were fairly accurate with their grip con-
trol (average 81.5%) and that this remained fairly constant
throughout the duration of the home trial. The grips users
felt hard to control (Fig. 6) weren’t always the grips with the
lowest accuracy. This is likely the difference between offline
analysis of these calibration sessions and real-time control.
Unfortunately we were unable to measure misclassification
during home use without constant knowledge of the users’
intent. One novel study with a similar pattern recognition
control subjectively logged errors and the user’s intended grip
via a button during real-time home use of four grips of the
i-Limb Ultra [29]. The user reported four to six errors in grip
control across five consecutive days. While something similar
could have been helpful in this study, the logging of errors in
this way likely interfered with natural use.

It is hard to determine if or how much the individuals’
choices to calibrate both at home and during outcomes effected
their control and whether recalibration truly was necessary.
Users may have chosen to recalibrate because of poor control
(potentially due to fatigue, arm position, etc) or simply because
they were used to recalibrating often. The benefit of pattern
recognition is that it not only provides this choice to the user,
letting them feel more in control of their own device, but
also that the calibration procedure doesn’t take long (under
a minute, with less time when less grips are configured).

Early concerns regarding clinical viability of pattern recog-
nition included potential difficulties maintaining quality EMG
signals on more than the two channels necessary for direct
control. While the reliance on clean EMG signals and the
potential for signal noise via faulty wires or the electrode-
skin interface (e.g., electrodes picking up 60 Hz interference
or poor electrode impedance matching [47]) are well known in
the field, data of how often these signal characteristics occur
during home use has thus far been unreported. In this study we
confirm that while maintaining good electrode connection with
eight bipolar EMG channels is difficult, the EMG still resulted
in usable pattern recognition control as evidence by the fact
that even with some signal issues, pattern recognition control
was at least as good as, or for some outcomes significantly
better than, direct control.

While certain calibrations demonstrate EMG quality below
laboratory-based standards, many of these calibrations still
result in satisfactory prosthesis control. Usage at home likely
depends more on the consistency of these issues; an intermit-
tent signal issue, or one that was present during calibration
but then resolves itself during use, can lead to poor control
whereas a consistent signal issue, or one that is consistently
present during calibration and subsequent use may be unno-
ticeable to the user. This idea was reinforced during an in-lab
test demonstrating that amputee users maintained prosthesis

function following simulated signal issues on at least two of
the eight available signals [48].

Similarly user timing issues do not automatically imply poor
control. Many users are in fact encouraged to move their arm
freely around the workspace during each movement of calibra-
tion, including rest [49]. Finding the right balance of optimal
movement is critical. Too much activity during rest, especially
if the overall magnitude of EMG activity recorded is at or
above the magnitude of EMG activity for a desired motion
class, raises the threshold for the pattern recognition controller
to be able to distinguish motion from no motion [50]. This has
the potential to make activating an intended motion difficult,
since the threshold for movement can become high. But the
right amount of arm movement for the rest or the “no motion”
portion of calibration can raise the motion threshold just
enough to reduce inadvertent movements of the prosthesis.
Alternative approaches to automatic categorize training data
as corresponding to a resting or active category could help
mitigate these issues.

An important finding from the at-home calibrations was that
identifying signal or timing issues closer to their onset could
further improve user pattern recognition control and user
experience. These study data were stored on the prosthesis
during the 8-week home trial and thus unavailable for real-time
analysis and feedback. Since completing this study, mobile
phone applications have become available to inform users
of calibration quality immediately and provide signal quality
indicators to both the user and clinician [51]. An even more
powerful alternative would be a cloud-connected health system
whereby a clinical or research team could remotely access
device data in a timely manner such that a resolution could be
proposed; a prosthetist can remotely identify poor fit issues
and faulty wires [52] and recall the study participant or just
the device to address the issue(s), a therapist can identify user
calibration issues in order to provide subject-specific training
to improve their muscle contraction timing, or, if accessible,
device settings can be remotely adjusted. Furthermore, purely
knowing the number of times a user has calibrated can be
important to a clinician. For example, had this been in place
for this study, a therapist could have intervened to question
why TR2 was calibrating so often (97 times during the
8-week home trial) or why TR5 had only calibrated one time
in 8 weeks (even if only to confirm continued function). TR2’s
high number of calibrations was due to poor control caused
by electrode liftoff; TR2 often calibrated five to eight times
in a row before he reached out to the occupational therapist
and/or prosthetist for assistance. Once study personnel were
aware of the electrode liftoff and socket fit issues they
attempted to resolve them but ongoing fit issues remained
during the first half of his home trial. Once these issues
were finally resolved TR2’s number of calibrations drastically
decreased; during the last half of the home trial, TR2 only
calibrated on 4 separate days. TR5 chose not to calibrate over
the majority of the home trial because he was happy with the
daily performance of the prosthesis.

Our study on the comparison of direct control to pattern
recognition had some limitations. All users had access to
their prescribed prosthesis but we did not track how often
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these devices were used during the home trials. Four of the
eight participants (TR3, TR5, TR10, TR11) reported regularly
switching back to their prescribed device (body powered
or ETD) mostly to complete heavy duty tasks or tasks that
were too rough on the multi-grip hand. For the other four, two
participants (TR2 and TR4) did not switch to their prescribed
device because it remained ill-fitting during the study and we
are unsure of the remaining two (TR1 and TR7). Switching
may have caused an additional cognitive burden for users when
their prescribed prosthesis was configured under the opposite
control type as the study prosthesis. Although the order of
control conditions was randomized and order found to be not
significant, users may still have been learning how to use
the multi-articulating hand and/or the control throughout the
8-week trial or learning the outcome measures. It was found
that able-body participants did better at performing the SHAP
after completing it five days in a row [53], although it is
unclear the impact when assessments were completed 2-3
months apart. Another limitation of the study was the low
number of enrolled subjects likely reduced our power for
detecting changes between control conditions.

The electronic usage data was limited due to the type
of data logging available. We were unable to distinguish
between wear time (i.e., wearing the prosthesis) and use time
(i.e., using the prosthesis to accomplish a task) and instead
were able to record on time (i.e., prosthesis powered on).
These three measurements are different and we are unable
to know if wear or use time differed by control condition.
Similarly, while we measured the time spent in each grip we
were unable to distinguish how the grips were being used,
if switching most often occurred between more similar grips
(e.g., 3 jaw chuck closed and precision pinch closed) or more
different grips (e.g., precision pinch and lateral grasp) and if
that varied by control condition.

V. CONCLUSION

This study provided critical insight into the control and
home use of multi-articulating hand prosthesis. Users demon-
strated broader use of a variety grips at home and signif-
icant improvements in the ACMC outcome measure while
controlling their prosthesis with pattern recognition compared
to direct control. At-home pattern recognition calibration data
revealed that although signal noise and user timing issues
were identified on some calibrations, overall EMG quality was
sufficient to provide users with control performance at or better
than direct control. Since these data were collected in home
they provide a more accurate story of how well EMG signals
can be maintained during true daily use. Additionally, these
calibration sessions highlight an opportunity for near real-
time analysis and user feedback that could provide additional
information to resolve device or user errors and/or accelerate
user training.
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