
260 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

A Deep-Learning Based Real-Time Prediction of
Seated Postural Limits and Its Application in

Trunk Rehabilitation
Xupeng Ai , Graduate Student Member, IEEE, Victor Santamaria , Jiawei Chen, Boce Hu,

Chenfei Zhu, and Sunil K. Agrawal , Member, IEEE

Abstract— Seated postural limit defines the boundary
of a region such that for any excursions made outside
this boundary a subject cannot return the trunk to the
neutral position without additional external support. The
seated postural limits can be used as a reference to pro-
vide assistive support to the torso by the Trunk Support
Trainer (TruST). However, fixed boundary representations
of seated postural limits are inadequate to capture dynami-
cally changing seated postural limits during training. In this
study, we propose a conceptual model of dynamic boundary
of the trunk center by assigning a vector that tracks the
postural-goal direction and trunk movement amplitude dur-
ing a sitting task. We experimented with 20 healthy subjects.
The results support our hypothesis that TruST intervention
with an assist-as-needed force controller based on dynamic
boundary representation could achieve more significant
sitting postural control improvements than a fixed boundary
representation.The second contribution of this paper is that
we provide an effective approach to embed deep learning
into TruST’s real-time controller design. We have compiled
a 3D trunk movement dataset which is currently the largest
in the literature. We designed a loss function capable of
solving the gate-controlled regression problem. We have
proposed a novel deep-learning roadmap for the explo-
ration study. Following the roadmap, we developed a deep
learning architecture, modified the widely used Inception
module, and then obtained a deep learning model capable
of accurately predicting the dynamic boundary in real-time.
We believe that this approach can be extended to other
rehabilitation robots towards designing intelligent dynamic
boundary-based assist-as-needed controllers.

Index Terms— Seated postural limits, assist-as-needed
controller (AANC), rehabilitation robotics, supervised learn-
ing, statistical machine learning.

I. INTRODUCTION

DYNAMIC seated postural control is the ability to main-
tain upright balance under gravity and internal/external

Manuscript received 16 August 2022; revised 19 October 2022;
accepted 1 November 2022. Date of publication 9 November 2022; date
of current version 31 January 2023. This work was supported by the
National Institutes of Health under Grant R01HD10190. (Corresponding
author: Sunil K. Agrawal.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by the Institutional Review Board (IRB) of Columbia University under
Protocol No. AAAQ7781.

Xupeng Ai, Victor Santamaria, Jiawei Chen, Boce Hu, and Chenfei Zhu
are with the Department of Mechanical Engineering, Columbia Univer-
sity, New York, NY 10027 USA (e-mail: xa2117@columbia.edu).

Sunil K. Agrawal is with the Department of Mechanical Engi-
neering, and the Department of Rehabilitation and Regenerative
Medicine, Columbia University, New York, NY 10027 USA (e-mail:
sa3077@columbia.edu).

Digital Object Identifier 10.1109/TNSRE.2022.3221308

Fig. 1. a. Schematic of TruST robotic platform. Four wires are attached
to a belt in the transverse plane passing through the torso. Four motors
are mounted on a stationary frame which control the tensions in these
wires, attached in series with a spring and a load cell. A subject sits
on a bench and three markers are placed on the torso belt. Two body
markers are placed on the subject’s left and right shoulders. Motion
capture cameras surround the TruST system and continuously track the
positions of the five markers. A global reference frame is set at the middle
of the sitting platform. b. TruST’s assist-as-needed force field. During
experiment, when the subject’s estimated trunk center P moves out of
the seated postural limits (represented by a star-shape boundary), the
robot generates a planar force towards the subject’s neutral position of
the trunk center.

perturbations during voluntary trunk movements [1]. It is the
cornerstone to carrying out activities of daily living (ADL).
However, it may be impaired in people with moderate-to-
severe neuromotor disorders such as in spinal cord injury (SCI)
and cerebral palsy (CP).

Motor learning-based training is often used to improve body
functions. The training is designed to be goal-oriented and
characterized by intensity, trial-and-error, practice variability,
and motor progression to induce neural plasticity [2]. However,
training approaches to improve sitting-related functions are
currently lacking in the literature. In any training intervention,
motor task progression is crucial to improve dynamic seated
postural control and induce long-term functional changes [3].

We have developed a motor learning-based seated postural
control intervention, delivered via a robotic Trunk Support
Trainer (TruST), the TruST-intervention [4] (Fig. 1a). Dur-
ing training, subjects practice multi-directional goal-oriented
postural and reaching tasks within and beyond their seated
postural limits (i.e., region beyond which subjects will lose
control of balance) (Fig. 1b). The primary outcomes of the
TruST-intervention in CP and SCI patients are the expansion

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4155-9348
https://orcid.org/0000-0002-7889-6957
https://orcid.org/0000-0002-4008-1437

AI et al.: DEEP-LEARNING BASED REAL-TIME PREDICTION OF SEATED POSTURAL LIMITS AND ITS APPLICATION 261

Fig. 2. Blue lines: trunk movement trajectories. Pink dot: the neutral
position a. Circular boundary representation, b. Star-shaped boundary
representation, c. Seated postural limits change dynamically during
training.

of sitting workspace and improvements in seated postural
control [3], [5].

Robotics is gaining popularity in patients’ functional reha-
bilitation [6]. Assist-as-needed controllers (AANC) are often
used within rehabilitation robots to maximize motor recovery
by generating assistance based on an estimate of subjects’
current functional ability [7]. A trajectory-based assist-as-
needed controller (TAANC) generates force fields to guide
a subject to move close to a predetermined trajectory for a
specific rehabilitation task. TAANCs have focused on devel-
oping assistive force fields based on error between the current
and desired joint or task trajectories. These methods have been
used in the training of various human movements [8], [9].

TruST-intervention applies a boundary-based assist-as-
needed controller (BAANC). The controller instructs the robot
to provide assistive force as the subject’s trunk center moves
beyond the seated postural limits. BAANC uses the seated
postural limits as an aid to encourage subjects to explore motor
strategies when performing functional tasks [10]. Therefore,
a key element of BAANC is the representation of the seated
postural limits. Eizad et al. developed a trunk rehabilitation
robot capable of providing assistance when the subject’s centre
of pressure moved out of a preset rectangular boundary [11].
The Robotic Upright Stand Trainer (RobUST) used a circular
boundary representation during stand training [12]. Our group
has also tested circular boundaries within TruST intervention
(Fig. 2a) [4].

Even though BAANCs with regular-shaped boundaries are
easy to deploy in robots, they can not capture the asymmetric
movement characteristics of children with motor impairments.
As proposed by Gassert, the controllers of rehabilitation robots
should not only be technically driven but also incorporate clin-
ical features of the users [6]. Regular-shaped boundary cannot
represent the seated postural limits in multiple directions (e.g.,
the circular boundary in Fig. 2a may approximate the seated
postural limit in the forward direction but may be inadequate
for use in other directions). To remedy this, polygon-shaped
boundary representations were proposed. Gribble et al. con-
structed a star-shaped boundary by guiding subjects to per-
form the Star Excursion Balance Test (SEBT) and measuring
their movement amplitude in eight principal directions. The
star-shaped boundary is used as an assessment tool for patients

with lower extremity injuries [13]. We have introduced the
star-shaped boundary representation (Fig. 2b) to design the
BAANC of TruST and have validated its effectiveness during
rehabilitation of SCI patients [5].

In our previous work, a key observation was that the seated
postural limits change during training. For example, Fig. 2c
shows a healthy subject’s seated postural limits which dynam-
ically change over multiple repetitions in a training session.
This change was even more pronounced in individuals with
CP and SCI during their trunk training. This is well supported
in the literature as the performance of individuals changes due
to immediate practice-specific improvements or muscle fatigue
during intervention sessions [14]. Therefore, fixed bound-
ary representations cannot capture dynamic changes in the
seated postural limits during training. In addition, we hypoth-
esize that the use of dynamic boundary representation within
a rehabilitation intervention would improve rehabilitation
outcomes.

This paper presents a proof-of-concept study with a novel
dynamic boundary representation design for the seated pos-
tural limits. In this study, We have conducted a controlled
experiment with 20 healthy subjects and demonstrated that
TruST’s BAANC based on dynamic boundary representation
results in greater sitting workspace improvements than a fixed
boundary representation.

Another significant contribution of this study is that we
have provided an effective approach to introduce deep learning
into BAANC design. Deep learning models, a subgroup of
artificial intelligence algorithms, are experiencing explosive
growth due to their powerful prediction abilities [15]. How-
ever, due to limited data availability, task division differences,
and model validation challenges, designing BAANCs based
on deep learning algorithms in robotic-aided therapy remains
largely unexplored. In this study, we have compiled the largest
3D trunk movement dataset in the literature. We proposed a
novel loss function design that can solve the gate-controlled
regression problem. We have also designed a novel roadmap
for the exploration study and obtained a model capable of
accurately predicting dynamic boundary in real-time. This
approach might also work for intelligent dynamic BAANC
design for other rehabilitation robots.

II. SEATED POSTURAL LIMITS REPRESENTATION

A. Data Collection

Approval for all ethical and experimental procedures in this
paper was sought and granted by the Institutional Review
Board (IRB) of Columbia University under Protocol No.
AAAQ7781. Informed consent were received from all human
subjects. IRB approval date: 12/15/2021.

SEBT is a widely used postural task for objectively mea-
suring the postural limits of patients with lower extremity
injuries [13]. We collected trunk movement data from 45 sub-
jects using a modified SEBT. A subject sat on a bench.
The researcher stood in front and instructed the subject to
move in eight principal directions from the upright sitting
posture. The subject moved the trunk as far as possible in

262 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 3. Conceptual model schematic for the dynamic boundary repre-
sentation. Point O: trajectory center; P1,P2: farthest movement points;

�OP1, �OP2: boundary vectors; Curve A → E: trunk center’s trajectory in
two trials; Curve A → B,C → D: stage 1; Curve B → P1,D → P2: stage
2; Curve P1 → C,P2 → E: stage 3.

the instructed direction, returned to the neutral position, and
waited for instructions to move in the next direction. Subjects
were randomly assigned to two groups: one group had the foot
support on a lower bench and the other group did not have
the foot support.

The trunk direction commands were assigned randomly
among the cardinal and ordinal directions (forward, backward,
left, right, left-front, right-front, left-back, and right-back).
To clearly describe the trunk movement procedure, we adopt
the following nomenclature in this paper: a “trial” is a com-
posite of the following three movements: prepare to move the
trunk (stage 1), move in a direction to the maximum (stage 2),
and then return to the neutral position (stage 3). A “round”
consists of traversing in all eight directions. Based on our
nomenclature, each round includes eight trials. The order of
the movement directions can be shuffled within one round but
all eight directions must be included within the round. Each
subject must complete 12 rounds in total. We randomized the
directional sequence in all rounds before data collection as a
random seed. Then, the directional sequence was maintained
for each subject.

Trunk movement data was collected when the subject was
in the TruST (Fig. 1a). A pliable belt was fastened around the
subject’s trunk under the inferior angle of the scapulae. The
TruST’s cables were removed from the belt. Five reflective
markers were placed on the left and right shoulders, and the
left, right, and back of the belt. Nineteen infrared motion
capture cameras (Bonita-10 series from Vicon, Colorado) were
placed around the subject to continuously monitor and record
the positions of five markers at 100 Hz.

B. Dynamic Boundary Representation

We designed the dynamic boundary representation of seated
postural limits suitable for TruST intervention based on two
requirements. For rehabilitation, the boundary representation
must capture the change in postural limits dynamically. For
robotic deployment, the developed BAANC based on such
boundary representation can generate specific assistive force
fields applied by TruST.

Our dynamic boundary representation is a conceptual model
(Fig. 3). The trunk center is obtained by computing the
centroid of the belt’s left and right lateral marker points.
Curve A → E represents the planar movement trajectory
of the trunk center in two trials. The centroid of the trunk
center trajectory in one round is defined as the “trajectory

center” (point O), representing the seated neutral position in
that round. Each trial includes three stages. During stages
2 and 3, the point farthest away from the trajectory center
is defined as the “farthest movement point” (e.g., P1 and P2).
The vector pointing from the trajectory center to the farthest
movement point is defined as the “boundary vector” (e.g.,

−−→
O P1

and
−−→
O P2). A boundary vector’s direction parameter represents

the subject’s postural-goal direction in a trial. The length of the
boundary vector represents trunk movement amplitude relative
to the neutral position in a trial. Therefore, a boundary vector
can represent the seated postural limit along the postural-goal
direction in a trial. Real-time prediction for the boundary
vectors can capture change in postural limits dynamically.

Before a TruST intervention session, subjects were
instructed to sit upright, and their trunk center coordinates
were used to update the neutral position within the TruST’s
BAANC. During the intervention, BAANC based on our
dynamic boundary representation needs to perform the fol-
lowing tasks. First, use the position of the trunk center to
identify if the current position belongs to stage 1, stage 2,
or stage 3 within the trial. If the current position belongs to
stage 2, predict the boundary vector in real-time to update
the controller to function in the postural-goal direction and
amplitude relative to the neutral. When the trunk center moves
out of the seated postural limits, TruST generates a force in
the opposite direction of the boundary vector with a desired
magnitude based on the subject’s body weight.

III. DATASET CONSTRUCTION

We used supervised deep learning to accurately predict
the dynamic boundary. The foundation of a supervised deep
learning algorithm is the construction of a robust and well-
labeled dataset. In this section, we describe our dataset and
the labeling method.

A. Dataset Description

The dataset includes trunk movement data collected from
45 healthy young adults, 14 females and 31 males (age
23.9±2.9 yrs, height 169.7±7.2 cm, weight 63.6±11.5 kg).
Subjects were randomly assigned to two groups, 23 conducted
experiments with foot support and the other 22 without.
The dataset contains data from 4320 trials (45 subjects ×
12 rounds × 8 trials).

Our collected data are time sequenced. The dataset is struc-
tured as a design matrix with 1476463 rows and 15 columns.
Rows denote time frames and columns denote features. The
15 features are raw signals sensed by the infrared motion
capture system and are the x, y, z coordinates of the five
markers in TruST’s global reference frame (Fig. 1a).

The dataset will be available to the research community
upon request consistent with the IRB guidelines (dataset access
link: https://roar.me.columbia.edu/content/trust).

B. Dataset Labeling

The labeling method (Fig. 4) for the dataset is based on
the conceptual model of the dynamic boundary (Fig. 3).

AI et al.: DEEP-LEARNING BASED REAL-TIME PREDICTION OF SEATED POSTURAL LIMITS AND ITS APPLICATION 263

Fig. 4. a. Calculate the centroid of the trunk center trajectory (blue line) to
obtain the trajectory center (pink dot); b. manually segment each trial into
preparing phase and moving phase; c. trunk amplitude labeling method;
d. postural-goal direction labeling method; e. an example direction label
sequence for one round; f. an example amplitude label sequence for one
round.

To facilitate labeling, we rename stage 1 to the “preparing
phase” and merge stages 2 and 3 to the “moving phase”. The
labeling workflow is described below:

1) Calculate the centroid of the trunk center trajectory to
obtain the trajectory center for each round in the dataset
(Fig. 4a). Next, for each trial, compare Euclidean distances
between the trajectory center and all points of the trunk center
trajectory to obtain the boundary vector. Then, manually divide
the trial’s data into the preparing phase and moving phase
(Fig. 4b).

2) Create two columns within the dataset and name them as
the “direction label” and “amplitude label”. All frames during
the preparing phase are labeled as 0 in both label sequences.

3) For the amplitude label sequence: Label all frames in the
moving phase as the boundary vector’s length value (in meter)
(Fig. 4c).

4) For the direction label sequence: The literature uses
the positive right vector as the basic vector in direction
labeling [16]. However, for numeric stability (when labeling
the right direction trials), we counter-clockwise rotate the
positive right vector by 25 degrees to obtain the updated basic
vector (Fig. 4d). Then we label all frames in the moving phase
as the anti-clockwise angle (in degree) between the boundary
vector and the updated basic vector.

The direction label and the amplitude label during one round
after labeling are shown in Fig. 4e and Fig. 4f, respectively.

IV. MODEL OF THE PROBLEM

In this section, we formalize the dynamic boundary predic-
tion problem into a deep learning problem with three tasks (a
classification task and two regression tasks). Next, we describe
the process of data preparation for real-time prediction. Then,
we propose a novel loss function to control the performance of
classification and regressions within the deep learning models.

Mathematical object notation in this section is the same as
in a widely used deep learning textbook [15]. Variables are
denoted by plain typeface, and their values are denoted by
script letters.

A. Deep Learning Problem Formalization

Deep learning is a type of statistical machine learning.
We formalize our problem based on a widely used framework
in statistical machine learning [15]:

f̂ = arg min
f ∈F

Eχ∈X,y∈y[L(f (χ), y)] (1)

X denotes the input variable for deep learning models. y
denotes the models’ target variable. f : X → y stands for
a supervised deep learning model that belongs to a family
of functions denoted by F . L stands for the loss function.
Equation (1) implies that deep learning model f is optimized
by minimizing the expected value of the loss between the
output of the network f (X) and the ground truth label y.

For our dynamic boundary prediction problem, f is a func-
tion that maps trunk movement information into the boundary
vector and phase. Specifically, in Fig. 3, the deep learning
model should classify the motion in A → B and C → D to
the preparing phase; and the motion in B → C and D → E to
the moving phase. Furthermore, the model should also predict
the boundary vector

−−→
O P1 during B → C and

−−→
O P2 during

D → E .
Therefore, our deep learning problem has three tasks: Task1

is the phase segmentation problem, Task2 is the postural-goal
direction prediction problem, and Task3 is the trunk movement
amplitude prediction problem.

To realize real-time prediction, a sliding window design is
applied in our deep learning problem formalization. Specifi-
cally, model f ’s input is a matrix variable X[t−�t,t) ∈ R

50×15,
where t denotes current time stamp and �t = 0.5 s denotes
a time window. y1, y2, and y3 are scalar variables that
denote Task1, Task2, and Task3’s target variables, respectively.
By using the framework of Equation (1) to formalize the three
tasks (task index is denoted by k), our deep learning problem
then becomes:

f̂k = arg min
fk∈F

Eχ∈X[t−�t,t),yk∈yk,t [L(fk(χ), yk)] (2)

Data preparation processes are described below. Equa-
tion (2) implies that the deep learning model for our problem
should predict the task variables based on the data from the
previous 0.5 second trunk movement information. Therefore,
we did data packaging on our dataset to make the model’s
input as a queue with 50 frames (i.e., 0.5 second time window
as sampling frequency of motion capture is 100 Hz). Each
frame has 15 features (coordinates of the five markers). The
model’s ground truth label is the task label of the next frame.
It is packaged with the queue.

B. Loss Function Design

A widely used loss function design framework [15] for
deep learning tasks is

L(f (X), y) = − log p(y | X) (3)

264 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 5. Schematic for range scaling operation.

p denotes a probabilistic model. Framework (3) implies that
the loss function can be designed by choosing a probabilistic
model capable of describing the distribution of the target
variable of a specific task.

Task1 is a binary classification problem. y1 ∈ {0, 1} is a
nominal categorical variable (0 denotes the preparing phase
and 1 denotes the moving phase). The Bernoulli probabilistic
model can describe y1’s distribution:

p1 = Bernoulli(y1; φ) = φy1(1 − φ)1−y1 (4)

Equation (4) implies that the Bernoulli model is controlled
by one parameter φ, which is also the probability for the
moving phase (p1(y1 = 1) = φ). So Task1 can be solved
by: 1) construct deep learning models to predict φ; 2) set the
discrimination threshold (T H); 3) if φ > T H , classify current
time frame to the moving phase, else preparing phase.

Task2 and Task3 are regression problems. y2 ∈ [0, 360) is
a continuous numeric variable (unit is degree); y3 ∈ [0,+∞)
is also a continuous variable (unit is meter). So the Gaussian
model can describe y2 and y3’s distribution:

pk = N (yk; μk, σ
2
k), k ∈ {2, 3} (5)

Equation (5) implies that the Gaussian model has two parame-
ters (the mean parameter μ and the variance parameter σ 2).
Task2 and Task3 can be solved by conducting deep learning
models to predict the μ2, σ 2

2 and μ3, σ 2
3 .

Based on the format of the two label sequences (Fig. 4e, f),
three tasks must be combined. Specifically, Task1 and Task2
should be combined for the direction label (Fig. 4e). Task1 and
Task3 should be combined for the amplitude label (Fig. 4f).
In our problem, y is a scalar variable for label sequences.
Bernoulli Gaussian Mixture model (pBG M) can describe the
distribution of both label sequences but needs a scaling oper-
ation for the ranges of the target variables for the three tasks:

pBG M = Bernoulli(y; φ) · N (y; μ, σ 2) (6)

Fig. 5 is the schematic for range scaling operation. We set
a linear layer as the deep learning model’s output layer and
apply the sigmoid operation mapping its range to (−1,+1).
T H was set to 0.1 for phase segmentation, and the range
[0.1,1) also acted as the regression zone. Sigmoid function
which acted as deep learning models’ activation function has
an active gradient zone and diminishing gradient zone with a
threshold of 0.9 [15]. Models are easier to optimize hidden

parameters using back propagation in active gradient zone.
Therefore, we scaled y2’s range from [0, 360) to [0.1, 0.9).
In our dataset, the maximum amplitude label value is 0.786m.
So, we segmented y3’s range [0,+∞) to [0, 0.786) and
[0.786,+∞), then scaled them to [0.1, 0.9) and [0.9, 1).

The deep learning model should predict the Bernoulli
Gaussian mixture model’s three parameters (φ,μ, σ 2). Symbol
ˆ denotes the prediction value for the ground truth. Let �̂y =
f (X) denote the output vector variable of the deep learning
predictor (�̂y = [φ̂, μ̂, σ̂] = [ŷ(1), ŷ(2), ŷ(3)]). yc is the ground
truth for binary classification and is converted from y (the
scalar variable for label sequences):{

yc = 0, if y = 0

yc = 1, if y �= 0
(7)

By inserting Equation (6) to the framework presented in
Equation (3), the loss function becomes⎧⎪⎪⎪⎨

⎪⎪⎪⎩
L = Lc + Lr

Lc = −yc log ŷ(1) + (yc − 1) log (1 − ŷ(1))

Lr = 1

2
log(2π) + log(ŷ(3)) + (y − ŷ(2))2

2(ŷ(3))2

(8)

The term Lc is a binary cross-entropy loss used to opti-
mize phase segmentation Task1 performance and Lr is for
the optimization of direction prediction Task2 and amplitude
prediction (Task3) problems. Adding two terms together in
Equation (8) ensures that the deep learning model can optimize
both classification and regression tasks during training.

We added weights to the meta terms (Lc, Lr) to tune the
loss function (Equation (8)). In TruST intervention, Task2
and Task3 directly affect the generation of assistive force-
field, making them more important than Task1. So, a constant
α = 0.3 is introduced to reflect the priority difference of the
tasks. Besides, since the deep learning model should optimize
Lr only during the moving phase, yc is introduced to the
regression term Lr to realize gate-controlled regression. Then,
we have

L = αLc + (1 − α)yc Lr (9)

Equation (8) with the first line replaced by Equation (9) is our
final loss function within the learning models in this study.

V. DEEP LEARNING MODEL CONSTRUCTION

In this section, we propose a roadmap to construct the deep
learning model for the dynamic boundary prediction. We first
introduce the metrics and evaluation method. Next, we test the
performance of three classes of basic models on our dataset.
Then, we propose a novel architecture and modified Inception
block to construct the best suitable model for our problem.

A. Metrics and Evaluation Method

The dynamic boundary prediction problem necessitates the
deep learning model to act both as a good regressor and
a good classifier. We keep only one label column for each
model during training. When testing the direction prediction

AI et al.: DEEP-LEARNING BASED REAL-TIME PREDICTION OF SEATED POSTURAL LIMITS AND ITS APPLICATION 265

performance of the model, the amplitude label column was
dropped and vice versa. The model outputs a vector (�̂y) and its
second element (ŷ(2)) was the prediction result for regression
tasks (Task2 or Task3). Positive elements were extracted from
the label sequences (Fig. 4e, f) and paired with corresponding
elements in the prediction result sequences to measure the
model’s regression performance with the mean absolute error
(MAE) as the metric.

The first element of the output vector (ŷ(1)) was converted
to the binary phase classification result using T H = 0.1,
and its binary ground truth (yc) was converted from the label
sequences (Fig. 4e, f) using Equation (7). Then, the model’s
phase segmentation results were assigned to four classes (i.e.,
the confusion matrix): True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN). We chose accu-
racy = (TP+TN)/(TP+FP+TN+FN) to measure the model’s
overall classification performance.

Precision, recall, and specificity are widely used met-
rics for deep learning models. However, there is always
a trade-off between them [15]. So we used G-mean
(
√

recall × specificity) and F2-score = (5 × precision ×
recall)/(4 × precision + recall).

Area under receiver operating characteristic curves (ROC-
AUC) is a metric for the binary classifier at various threshold
settings. We sampled 1000 thresholds in (0, 0.1) to plot the
model’s ROC curves, then calculated its ROC-AUC.

Leave-one-out-cross-validation (LOOCV) was used to unbi-
asedly estimate the performance of the model on unseen data.
The dataset was divided into 45 subject subsets. The model
ran 45 times on the dataset. Each time, one subject subset was
extracted as the test set, and the remaining 44 were segmented
into the training set (35) and the validation set (9). The results
of the 45 runs were divided into two groups based on the two
conditions (with or without foot support). All running results
are summarized in Table I.

The models were constructed on the TensorFlow frame-
work [17], and optimized using the minibatch stochastic
gradient descent method (batchsize = 128; learning rate =
0.001; optimizer = Adam). The weights of the models were
randomly initialized to small values. The early stopping call-
back (patience = 3 epochs) monitored the validation loss to
stop training when no improvements were detected.

B. Exploration Study Step 1: Basic Model Tests

Multilayer perceptrons (MLPs), convolutional neural net-
works (CNNs), and recurrent neural networks (RNNs) are
three classes of widely-used basic deep learning models con-
trolled by the unit type and unit number. We constructed
23 basic models (8 MLPs, 7 CNNs, and 8 RNNs) and tested
their performance on our dataset.

1) MLPs: Perceptrons are linear units with non-linear acti-
vation. We started from an MLP with five ReLU-activated
perceptrons in one layer. Next, we increased the unit number
to 15, 64, and 128. Then, we kept the unit number to 128 and
increased the layer number to 2, 3, 4, and 5. Results for
MLPs are shown in Table Ia. MLPs in both groups have
MAEs for Task1 of approximately 60 degrees and Task2 of

Fig. 6. CNNs’ building blocks: a. ResNet block; b. Inception block.

approximately 40 cm. Their phase segmentation accuracy is
less than 80%.

2) CNNs: We constructed one shallow CNN with three
one-dimensional convolutional layers (15 kernels, sizes 20, 10,
and 5) and two deep CNNs with nine and eighteen layers. The
ResNet block (Fig. 6a) consists of three convolutional layers
with a jump connection, and the Inception block (Fig. 6b)
which is a combination of various kernel-sized layers. We also
tested two CNNs with six and twelve ResNet blocks and two
CNNs with three and six Inception blocks.

CNNs outperformed MLPs significantly (compare Table I
a and b). Among CNNs, the one with 6 ResNet blocks
performed the best across all metrics and two groups (with or
without foot support). The nine-layer CNN performed equally
well in the foot-supported group.

3) RNNs: We constructed RNNs with three types of units:
the gated recurrent unit (GRU), the bi-directional gated recur-
rent unit (BiGRU), and the long short-term memory unit
(LSTM). We started from an RNN with 5 GRUs in one
layer. Next, we increased the unit number to 15, 64, and
128. Then, we kept the GRU number at 15 and increased the
layer numbers to 3 and 5. We also tested two single-layer
RNNs with 15 BiGRUs and LSTMs. Table Ic shows the
results for RNNs. RNNs performed similar to CNNs and
also outperformed MLPs significantly. The single-layer RNN
with 15 BiGRUs outperformed other RNNs across all metrics
in both groups.

C. Exploration Study Step 2: Architecture Design

Taking basic models as modules and combining them
following a specific architecture is a strategy for develop-
ing high-performance models. One dedicated architecture for
human motion predictors is the encoder-recurrent-decoder
(ERD) [18], [19], which first builds CNNs as the feature
extractor, then RNNs to learn the temporal dependencies
of features, followed by MLPs as the predictor. Another
widely used architecture is the RNN_CNN architecture, which
builds RNNs first, then CNNs and MLPs [19]. The differ-
ence between two architectures is the module combination
sequence.

We tested the ERD architecture on our dataset by construct-
ing a model consisting of six convolutional layers, a single-
layer RNN with 15 LSTMs, and a 3-layer MLP (configuration
similar to [18], [19]). Then, we constructed a model by
swapping the CNN and RNN modules of the ERD model to
test the RNN_CNN architecture. The performances of the two

266 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE I
EXPLORATION STUDY RESULTS (MEAN±STD)

models (Table I d) are lower than CNNs’ and RNNs’ best
models, implying that the two architectures did not benefit
from the module combination on our dataset.

We designed a sandwich architecture with the module com-
bination sequence as CNN-RNN-MLP-CNN. We tested it with
a model consisting of two 3-layer CNNs as the two pieces of
bread, a single-layer RNN with 15 LSTMs as the spread, and
a 3-layer MLP (neuron numbers 64, 256, and 512) as the fill-
ing. The sandwich structured model (CNN_SANDW) outper-
formed the others, see Table I d. Besides, the CNN_SANDW
performed better than CNNs’ and RNNs’ best models in
the amplitude prediction task and similar in the other
metrics.

D. Exploration Study Step 3: Module Tuning

We tuned modules within the sandwich architecture to
optimize the dynamic boundary predictor. We replaced the
LSTMs in the CNN_SANDW with BiGRUs and the con-
volutional layers with the ResNet blocks and the Inception
blocks (i.e., ResNet_SANDW and Incep_SANDW). Compared
with CNN_SANDW, Incep_SANDW showed improvement
in regression tasks, while ResNet_SANDW did not improve
across all metrics (Table I d, e). Therefore, the Inception block
was selected to construct the CNN parts in the sandwich archi-
tecture. We modified the Inception block to a feature-sharing
Inception block (Fig. 7). Specifically, we removed the first
layer for the Inception block’s three branches and added
one dense layer after the Inception block’s concatenated out-
puts. Replacing the Inception block in Incep_SANDW with
the feature-sharing version created the FS_SANDW model
(Fig. 7) and significantly improved the model’s performance
across all metrics (Table I e). The FS_SANDW outperformed

all the other 28 competitors we constructed in this paper across
all metrics in two groups (Table I).

VI. CONTROLLER DESIGN AND HARDWARE

DEPLOYMENT

The FS_SANDW is the best dynamic boundary predictor
based on our exploration study. However, the predictor with
approximately 19-deg MAE_2 and 6-cm MAE_3 did not offer
accurate direction and amplitude control thresholds for the
TruST’s BAANC.

Fig. 8 left depicts the FS_SANDW’s prediction error vari-
ation during the moving phase. For each trial’s data, frames
in the preparing phase were discarded and the moving phase
frames were labeled by percentage. The farthest movement
point was designated as 50%. The remaining frames were
designated proportionately. For example, in Fig. 8b, curve
B → P is 0% → 50%; curve P → C is 50% → 100%.

At the beginning of the moving phase, the FS_SANDW’s
prediction errors for Task2 and Task3 are large. However,
errors drop quickly and stabilize when approaching the 20% of
the moving phase. The stabilized MAEs for Task2 and Task3
are about 4 degrees and 3 cm (7% of the average magnitude
of the boundary vector per trial). In zone 20% → 50%, the
FS_SANDW can provide accurate direction and amplitude
control thresholds for the TruST’s BAANC.

TruST’s BAANC has two levels. The low-level controller
is capable of generating precise planar force fields [4]. The
high-level controller instructs the low-level controller when
and where force fields should be activated based on a fixed
boundary design. We updated the TruST’s high-level controller
with the FS-SANDW embedded to construct a BAANC based
on our dynamic boundary design. The high-level controller’s

AI et al.: DEEP-LEARNING BASED REAL-TIME PREDICTION OF SEATED POSTURAL LIMITS AND ITS APPLICATION 267

Fig. 7. The schematic of the FS_SANDW model constructed with the feature-sharing Inception block. Layers’ output depths are also annotated.

Fig. 8. Left: The FS_SANDW’s prediction error bands for Task2 and Task3 during the moving phase. The percentage’s corresponding time is
averaged across all 4320 trials. Right: Schematic of the TruST’s high-level controller. Point O: seated neutral position; Curve A → C: one trial; Curve
A → B: the preparing phase; Curve B → C: the moving phase; P: the farthest movement point; �OP: the boundary vector. (a) The FS_SANDW acts
as a real-time predictor with a sliding window design. Its input is 0.5s’ trunk movement signals. During curve A → B, the predictor classifies the
current status to the preparing phase, and its regression gate is closed. (b) When entering curve B → C, the predictor classifies the current status to
the moving phase, and its regression gate opens. The predictor begins to predict �OP (its prediction is �OP′). During 0�→ 20� of the moving phase,
the prediction error is large in the beginning but drops dramatically. (c) When approaching 20% of the moving phase, the prediction error is small.
The predictor continues refreshing. When the prediction error becomes stable (at about 24%), the TruST console records the stabilized prediction
value (�OP′), and the predictor’s regression gate closes (only phase classification function running). (d) TruST creates control thresholds based on
the recorded �OP′ in (c). When the trunk enters the control zone (the blue area), TruST generates an assistive force in the opposite direction of �OP′
with the desired magnitude (10% of the subject’s body weight). When the predictor detects the current phase change from the moving phase to the
preparing phase. Repeat (a) → (d).

schematic is shown in Fig. 8 and its pseudo-code (Algo-
rithm 1) is attached in the Appendix.

The work presented was carried out on the TruST’s con-
sole with the NVIDIA RTX3090 graphic card. In actual
tests, the console can run the high-level controller with two
FS_SANDWs at 25 Hz. Furthermore, the console is directly
connected to the motion capture system (100Hz), so the
communication latency can be ignored.

VII. HUMAN VALIDATION EXPERIMENT

A. Experiment Setting

We conducted a controlled experiment with 20 new young
healthy adults (6 females and 14 males, age 25.2 ± 2.4 yrs,
height 173.5 ± 10.1 cm, weight 59.3 ± 14.8 kg). They were
randomly assigned to two groups of 10 subjects each: fixed-
FF and dynamic-FF. For both groups, each subject performed
12 rounds of the modified SEBT without foot support. In the
fixed-FF group, Round 2 ∼ 11 were done with a fixed-
boundary (predefined in Round 1) based force field assisted
by TruST. In the dynamic-FF group, the proposed TruST
controller (Fig. 8) was used to adjust the seated boundary in
real-time across trials of practice. The dynamic-FF group’s

experiment setting was the same as the fixed-FF group except
that the TruST’s force field was based on the dynamic bound-
ary. For both groups, Round 1’s boundary area was used as
the baseline. Round 12’s boundary area data was used as the
measure for the post-test.

B. Statistical Analysis and Results

Statistical analysis was performed using SPSS version
28. 0 (SPSS Inc., Chicago, Ill., USA). A 2-way mixed
Analysis of Variance (ANOVA) was performed with one
between-subject factor (fixed-FF and dynamic-FF groups)
and one within-subject factor (baseline and post-test stages).
Shapiro-Wilk test and Q-Q plots were used to corroborate data
normality. The interaction effect was prioritized to address
our hypothesis that a dynamic boundary during motor practice
would lead to significantly greater trunk control improvements
(measured as sitting workspace in cm2) when compared to
a fixed boundary. An alpha rate < 0.05 was used to test
significant results. Bonferroni’s inequality procedure was used
to test post-hoc comparisons.

The two-way mixed ANOVA model was statistically signif-
icant (F(1,18) = 113.16, p < 0.001). Our analysis revealed

268 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

that both types of force fields expanded the sitting workspace
area of the healthy young adults after training (fixed-FF
baseline mean = 3044.26 cm2 and fixed-FF post-training
mean = 5548.08 cm2, p < 0.001; and dynamic-FF baseline
mean = 2642.63 cm2 and dynamic-FF post-training mean =
8228.49 cm2, p < 0.001). However, the interaction Group ×
Stage effect revealed that the dynamic-FF group improved
sitting workspace area to larger extent than the fixed-FF group
(mean difference dynamic-fixed FF = 2680.410 ± 2SE =
270.179 cm2, p < 0.001).

VIII. DISCUSSION

This study supports the hypothesis that TruST intervention
with a dynamic-boundary-based BAANC can achieve more
significant sitting workspace area improvement than based
on the fixed boundary. Seated postural tasks (such as the
modified SEBT) require motor planning and a high level of
control and coordination of the torso muscles to displace
and rotate the upper body as far as possible in multiple
directions while keeping the upper body balanced [3], [5].
As a result of these task features, the implicit sensorimotor
learning of the postural task is expected to be associated with
errors in motor programming and motor execution, in addition
to substantial motor variability across attempts, rounds, and
participants [20]. Our proposed dynamic boundary conceptual
model considers the individual and inter-trial sensorimotor
variability during motor practice. Based on this design, the
TruST’s BAANC would automatically evaluate the need to
lower the assistive force field’s activation threshold (e.g., due
to muscle fatigue) or raise it (i.e., task-specific sensorimotor
learning), thereby maximizing practice learning.

Our dynamic boundary design might also help patients with
neuromotor disorders regain seated postural control. However,
it must be tested further in clinical populations of interest.
In previous TruST interventions on CP and SCI patients,
we observed that their sitting workspace changed in two
stages. Patients had larger workspaces during the first few
sessions. In subsequent sessions, their workspace area no
longer grew significantly (sometimes even shrank), but their
movement trajectories were more accurately controlled. This
paper demonstrates that either fixed or dynamic augmented
force-based feedback improves the sitting workspace. Our
dynamic-boundary design relies on the movement trajectories
to capture the dynamic change of seated postural limits,
which maximizes practice learning but is not as robust as
the fixed-boundary design when facing chaotic movement
trajectories. A future study will investigate the feasibility of
a hybrid approach for TruST intervention with CP children
(i.e., employing fixed boundary in the first stage and dynamic
boundary in the second stage).

Deep learning models require substantial data to optimize
weights and improve the generalization ability [15]. There-
fore, prediction for the dynamic boundary representation of
seated postural limits requires considerable trunk motion data
from sufficiently diverse subjects performing postural con-
trol tasks. Since no sizeable open-source dataset was avail-
able for this study, we collected 4320 trials of 3D trunk

movement data (about 1.5 million data frames) during the
modified SEBT from 45 healthy subjects in two conditions
(with or without foot support). It is the largest 3D trunk
movement dataset in the literature and might be helpful in
other seated postural control research. It can also act as a
base dataset in transfer learning for other trunk movement
predictors.

Studies on supervised deep learning divide prediction prob-
lems into classification and regression tasks and develop
different losses for them. Existing losses provided by the
TensorFlow framework were inadequate for our dynamic
boundary prediction problem, which required models to per-
form the regression task only in the moving phase while
being inactivated during the preparing phase. Furthermore,
this gate-controlled regression problem needs a hierarchical
combination of two types of tasks, so parallelly combining two
output branches [21] was not a good choice. Another possible
solution was to simplify the problem to a classification prob-
lem (i.e., segmenting subjects’ workspace into hierarchical
ellipses [22]), but ellipses cannot accurately represent the
sitting workspace. We solved this problem using statistical
learning (i.e., picking a mixture probabilistic model to describe
the model’s target space and designing the loss based on the
maximum likelihood principle) and achieved priority tuning
of tasks and gate-controlled training by adding weights to the
two meta terms of the proposed loss. The two meta terms are
a binary cross-entropy loss and an upgraded mean square error
loss with a controlled variance variable. Replacing them with
other losses (e.g., Huber Loss [23], Focal Loss [24]) might
further improve the performance of our loss. Our loss design
approach might also work in other cyclic motion predictors
(e.g., walking, rowing) but needs phase redefinition and label
rescaling.

General deep learning algorithm development is committed
to constructing optimal models for consensus problems on
multiple open source datasets. Researchers compare their
models with others constructed on the same dataset. Given the
deep learning model’s black-box nature, they use the ablation
study [15] to test the effectiveness of each component of
their model. However, we need an exploration study to start
from scratch to build the most suitable model for the unique
dynamic boundary prediction problem on our own dataset.
Motivated by studies by Liu [25] and Guo [26], we designed a
novel exploratory roadmap (i.e., testing basic models, design-
ing the architecture, and tuning the modules) and obtained the
novel FS_SANDW model. This exploratory roadmap is worth
trying when building deep learning predictors for local datasets
or unique predictive objectives.

In this study, predicting the moving phase into the preparing
phase (i.e., FN in the confusion matrix) is more costly than the
reverse (i.e., FP). Because the TruST still activates the assistive
force field to support the subject when facing the former error
but does not activate it when facing the latter, which might
jeopardize the sitting balance and safety of patients with trunk
control deficits such as in CP or SCI. Therefore, we chose F2-
score over the more widely used F1-score because the former
penalizes FN more heavily.

AI et al.: DEEP-LEARNING BASED REAL-TIME PREDICTION OF SEATED POSTURAL LIMITS AND ITS APPLICATION 269

Deep learning algorithms can improve performance by
model ensembling or vertical combination (i.e., connecting
modules in parallel or series). Ensemble methods (bagging,
stacking, and boosting) trade vastly increased parameters
and reduced processing speed for lower predictive variance,
thereby are not suitable for our study since the boundary
predictor embedded in TruST’s controller must operate in
real-time at high speed. On the other hand, the architecture
for model combination is sensitive to the dataset. Two widely
used architectures tested to be ineffective on our dataset,
which implies that module interference occurred during train-
ing. We plotted models’ training and validation curves in
50 epochs to analyze and diagnose the learning dynamics of
those two architectures. We found that the validation curves
of the ERD and the RNN_CNN oscillated like the validation
curves of RNNs and CNNs, respectively. The similarity in
learning dynamics suggested a possibility: for both archi-
tectures, only the latter feature extractor took dominance
when updating gradients during back-propagation. Motivated
by that observation, we designed the sandwich architecture
to balance the training priority between the CNN and RNN
feature extractors. The proposed architecture improved the
model’s performance across all metrics on our dataset. How-
ever, it is unknown whether this architecture applies to other
datasets.

Our proposed feature-sharing Inception block significantly
enhanced the Incep_SANDW’s performance and enabled the
FS_SANDW to outperform all competitors across all metrics.
The Inception block was initially designed for image data
feature extraction. It doubles the input depth in the first layer
and then squeezes it back in the second layer to learn robust
features across the color channels of the image. However, this
depth operation on our dataset forced the block to learn the
spatial and temporal channels’ complex combinations, which
hampered the subsequent RNN part in learning time dynamics.
Therefore, the first layer of the Inception block was removed.
Besides, the one dense layer addition step was motivated by
the NiN [27] and the soft parametric sharing [28]. We took
this step to force combinations among multi-scaled features
extracted by the Inception block’s three branches to achieve
a more robust feature map. After comparing Incep_SANDW
and FS_SANDW’s training and validation curves, we found
that FS_SANDW has a higher training loss and a much
lower validation loss, which implies that the proposed block
could help avoid overfitting. Replacing the Inception block
to our proposed block is a possible strategy to transfer
published powerful image processing models to time series
predictors.

IX. CONCLUSION

In this proof-of-concept study, we provided a novel dynamic
boundary representation for seated postural limits. We con-
ducted a human study to demonstrate that TruST’s BAANC
based on dynamic boundary design could reach greater sitting
workspace improvement than the fixed boundary. In our future
study, we plan to design a hybrid approach based on the
dynamic boundary to help patients with neuromotor disorders

regain seated postural control. We also provided an approach
to effectively introduce deep learning technology into TruST’s
BAANC design and thereby achieved accurate real-time pre-
diction for our dynamic boundary design. This approach might
also work in the intelligent dynamic BAANC design for other
rehabilitation robotic platforms.

APPENDIX

Algorithm 1 High-Level Controller of TruST’s BAANC
1: Get Vicon signal Xt until t = 50
2: Initialize: y(1)

51 = f (1)(X[1,51)); y(2)
51 = f (2)(X[1,51));

direction: D = 0; amplitude: A = 0; angle threshold: δ,
status indicator (boundary has been set or not): Flag =
False; Direction and amplitude prediction error tolerance:
T1, T2; step: n = 0; patience: N ; Patient body weight: W ;

3: repeat
4: Get current Vicon signal Xt ;
5: Predict boundary point direction and amplitude: y(1)

t =
f (1)(X[t−�t,t)), y(2)

t = f (2)(X[t−�t,t));
6: if Flag = False and y(1)

t > 0.1 and y(2)
t > 0.1 then

7: Calculate direction and amplitude Differences
between two frames: E1 = |y(1)

t −y(1)
t−1|, E2 = |y(2)

t −y(2)
t−1|;

8: if E1 < T1 and E2 < T2 then
9: n + +;

10: if n ≥ N then
11: D = y(1)

t , A = y(2)
t , Flag = True;

12: else n = 0;
13: else n = 0;
14: if Flag = True then
15: if y(1)

t < 0.1 and y(2)
t < 0.1 then

16: D = 0, A = 0, Flag = False;
17: else
18: Calculate the patient’s COM: C = 〈r, θ〉
19: if |θ − D| < δ and r > A then
20: Activate force:
21: F = 〈10% × W, � θ + 180◦〉;
22: t + +;
23: until Training End

ACKNOWLEDGMENT

The authors would like to thank all of the participants in
this article.

REFERENCES

[1] A. Eizad, H. Lee, S. Pyo, M.-K. Oh, S.-K. Lyu, and J. Yoon, “Study
on the effects of different seat and leg support conditions of a trunk
rehabilitation robot,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30,
pp. 812–822, 2022.

[2] Y.-C. Hung, M. B. Brandão, and A. M. Gordon, “Structured skill
practice during intensive bimanual training leads to better trunk and
arm control than unstructured practice in children with unilateral
spastic cerebral palsy,” Res. Develop. Disabilities, vol. 60, pp. 65–76,
Jan. 2017.

[3] V. Santamaria et al., “Promoting functional and independent sitting in
children with cerebral palsy using the robotic trunk support trainer,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 12, pp. 2995–3004,
Dec. 2020.

270 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

[4] M. I. Khan et al., “Enhancing seated stability using trunk support trainer
(TruST),” IEEE Robot. Automat. Lett., vol. 2, no. 3, pp. 1609–1616,
Jul. 2017.

[5] V. Santamaria, T. Luna, M. Khan, and S. Agrawal, “The robotic trunk-
support-trainer (TruST) to measure and increase postural workspace
during sitting in people with spinal cord injury,” Spinal Cord Ser. Cases,
vol. 6, no. 1, pp. 1–7, Dec. 2020.

[6] R. Gassert and V. Dietz, “Rehabilitation robots for the treatment
of sensorimotor deficits: A neurophysiological perspective,”
J. NeuroEngineering Rehabil., vol. 15, no. 1, pp. 1–15,
Dec. 2018.

[7] S. Y. A. Mounis, N. Z. Azlan, and F. Sado, “Assist-as-needed con-
trol strategy for upper-limb rehabilitation based on subject’s func-
tional ability,” Meas. Control, vol. 52, nos. 9–10, pp. 1354–1361,
Nov. 2019.

[8] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow,
“Optimizing compliant, model-based robotic assistance to promote neu-
rorehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 3,
pp. 286–297, Jun. 2008.

[9] A. Duschau-Wicke, J. V. Zitzewitz, A. Caprez, L. Lunenburger, and
R. Riener, “Path control: A method for patient-cooperative robot-aided
gait rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18,
no. 1, pp. 38–48, Feb. 2010.

[10] M. I. Khan, Trunk Rehabilitation Using Cable-Driven Robotic Systems.
New York, NY, USA: Columbia University, 2019.

[11] A. Eizad, H. Lee, S. Pyo, M. R. Afzal, S.-K. Lyu, and J. Yoon,
“A novel trunk rehabilitation robot based evaluation of seated balance
under varying seat surface and visual conditions,” IEEE Access, vol. 8,
pp. 204902–204913, 2020.

[12] T. D. Luna, V. Santamaria, I. Omofumal, M. I. Khan, and
S. K. Agrawal, “Control mechanisms in standing while simultane-
ously receiving perturbations and active assistance from the robotic
upright stand trainer (RobUST),” in Proc. 8th IEEE RAS/EMBS
Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Nov. 2020,
pp. 396–402.

[13] P. A. Gribble, J. Hertel, and P. Plisky, “Using the star excursion
balance test to assess dynamic postural-control deficits and outcomes in
lower extremity injury: A literature and systematic review,” J. Athletic
Training, vol. 47, no. 3, pp. 339–357, May 2012.

[14] J. H. van Dieën, T. Luger, and J. van der Eb, “Effects of fatigue on
trunk stability in elite gymnasts,” Eur. J. Appl. Physiol., vol. 112, no. 4,
pp. 1307–1313, Apr. 2012.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[16] T. Ormsby, E. Napoleon, R. Burke, C. Groessl, and L. Feaster, Getting
to know ArcGIS Desktop: Basics of ArcView, ArcEditor, and ArcInfo.
Redlands, CA, USA: ESRI, 2004.

[17] M. Abadi et al., “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems,” 2016, arXiv:1603.04467.

[18] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent network
models for human dynamics,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 4346–4354.

[19] G. Zhang and A. Etemad, “Capsule attention for multimodal EEG-
EOG representation learning with application to driver vigilance estima-
tion,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1138–1149,
2021.

[20] J. Tresilian, Sensorimotor Control and Learning: An Introduction to the
Behavioral Neuroscience of Action. London, U.K.: Bloomsbury, 2012.

[21] J. Chen, L. Cheng, X. Yang, J. Liang, B. Quan, and S. Li, “Joint learning
with both classification and regression models for age prediction,”
J. Phys., Conf., vol. 1168, Feb. 2019, Art. no. 032016.

[22] O. Rivera et al., “Index of physical activity and fall efficacy scale
classification through biomechanical signals and machine Learning,” J.
Eng. Res., May 2022.

[23] P. J. Huber, “Robust estimation of a location parameter,” in
Breakthroughs in Statistics. New York, NY, USA: Springer, 1992,
pp. 492–518.

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2980–2988.

[25] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A ConvNet for the 2020s,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 11976–11986.

[26] H. Guo, G. Wang, X. Chen, and C. Zhang, “Towards good practices for
deep 3D hand pose estimation,” 2017, arXiv:1707.07248.

[27] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013,
arXiv:1312.4400.

[28] S. Ruder, “An overview of multi-task learning in deep neural networks,”
2017, arXiv:1706.05098.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

