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Abstract— Bimanual coordination is common in human
daily life, whereas current research focused mainly on
decoding unimanual movement from electroencephalogram
(EEG) signals. Here we developed a brain-computer inter-
face (BCI) paradigm of task-oriented bimanual movements
to decode coordinated directions from movement-related
cortical potentials (MRCPs) of EEG. Eight healthy subjects
participated in the target-reaching task, including (1) per-
forming leftward, midward, and rightward bimanual move-
ments, and (2) performing leftward and rightward unimanual
movements. A combined deep learning model of convo-
lution neural network and bidirectional long short-term
memory network was proposed to classify movement
directions from EEG. Results showed that the average peak
classification accuracy for three coordinated directions of
bimanual movements reached 73.39 ± 6.35%. The binary
classification accuracies achieved 80.24 ± 6.25, 82.62 ±
7.82, and 86.28 ± 5.50% for leftward versus midward,
rightward versus midward and leftward versus rightward,
respectively. We also compared the binary classification
(leftward versus rightward) of bimanual, left-hand, and right-
hand movements, and accuracies achieved 86.28 ± 5.50%,
75.67 ± 7.18%, and 77.79 ± 5.65%, respectively. The results
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indicated the feasibility of decoding human coordinated
directions of task-oriented bimanual movements from EEG.

Index Terms— Brain–computer interface (BCI), coordi-
nated directions, deep learning, electroencephalogram
(EEG), task-oriented bimanual movement.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) can provide a
communication pathway between the brain and external

devices [1], [2]. To date, a large number of studies have
demonstrated that kinematic parameters of hand movements
are strong relative to non-invasive electroencephalogram
(EEG) signals [3], [4], [5]. Parameters such as position [6],
[7], speed [7], [8], and direction [9], [10], [11] have been
successfully decoded from these recordings. It is believed
that such investigations focusing on hand kinematics decoding
can potentially lead to intelligent manipulation of upper limb
robots [12] and hand-related rehabilitation [13].

Bimanual coordination is very important in daily life
and necessary in arm rehabilitation to achieve complete
functional recovery. Two hands are mostly required to be
used simultaneously to manipulate an object or perform a
task [14]. Bilateral coordination training plays an irreplaceable
role compared with unilateral training in robot-assisted
rehabilitation and thus has been attracting lots of attention
[15], [16]. Furthermore, direction decoding is one of the most
popular BCI topics to achieve independent multidimensional
control, which can be used in many rehabilitation applications
[17]. These motivated us to verify the feasibility of decoding
coordinated directions of task-oriented bimanual movements
[18] from EEG, which has been reported in very few studies.

Currently, most existing studies in decoding hand directions
from EEG signals are limited to a single hand. Some
studies focused on classifying any two directions of four
orthogonal directions (a total of six binary classifications)
[19], [20], [21]. For example, Robinson et al. decoded
orthogonal directions of a single hand using a wavelet-
common spatial pattern algorithm with an average accuracy
of 87.85% across six binary classifications [19]. In a similar
paradigm, Chouhan et al. achieved an average accuracy of
76.85% via wavelet phase-locking values [21]. There is also a
study in which a four-class classification of decoding center-
out single-hand movement directions was performed with the
phase-locking value method, achieving an average decoding
performance of 67% [9].
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Compared with the majority of studies focusing on single-
hand kinematics, to the best of our knowledge, there is
only one study that attempts to classify bimanual directions
from EEG signals in 2021 [11]. The authors conducted
a multiclass classification, including two unimanual and
four bimanual movements, by means of linear discriminant
analysis (LDA) and support vector machine (SVM) classifiers
based on temporal and spectral features. The experimental
paradigm was designed as follows: (1) regarding the right
hand for a dominant role and left hand for secondary
movement, (2) moving the right hand in horizontal directions
(right or left) and left hand in vertical directions (up or
down). The peak accuracy reached 70.29% ± 10.85%.
One point to be noted is that this study used orthogonal
manipulation of both hands in asymmetric space (right hand
along with horizontal directions and left hand for vertical
directions). Such bimanual mode is uncommon in daily life.
In contrast, some practical life tasks require the parallelly
coordinated use of both hands in symmetric space [22],
[23], such as moving a heavy box and pulling a chest
expander.

Decoding natural bimanual movements has also been
investigated, but mostly on non-human primates utilizing
invasive brain signals. Two typical examples, Ifft et al. [24]
developed a BCI that enables monkeys to control two avatar
arms simultaneously in two-dimensional reaching tasks via
decoding large-scale neuronal signals recorded by implanted
multielectrode arrays. Choi et al. [25] decoded monkeys’
bimanual movements of three-dimensional reaching tasks, but
with a different type of signal (epidural electrocorticography).
Although these techniques have decoded bimanual arm
movements from brain signals successfully, problems related
to security and the long-term usability of invasive BCI can
lead to limited clinical applications [26], [27].

To summarize, while bimanual movements are indispens-
able to activities of daily life, effective decoding of them from
non-invasive EEG signals is still in a very primitive stage
for potential robotic control or rehabilitation purposes. Hence,
this study proposes a BCI to decode coordinated directions
of task-oriented bimanual movement from EEG recordings.
Compared with decoding bimanual movements in asymmetric
spatial orientations [11], the proposed BCI paradigm focuses
on task-oriented coordinated movements in spatial symmetry,
which is more natural to match real-life tasks. The
main contributions of this study include: (1) a new BCI
paradigm of task-oriented bimanual movements for decoding
coordinated directions was proposed for the first time; (2) its
feasibility was experimentally demonstrated with eight human
subjects.

The paper is organized as follows: Section II presents
the experimental paradigm, human participants, and data
processing, together with a hybrid classification model by
combining convolution neural network (CNN) and bidirec-
tional long short-term memory (BiLSTM) neural network [28];
Section III presents the experimental results in terms of brain
activity analysis and classification performance; Section IV
presents the discussion, followed by the conclusion in
the end.

II. METHOD

A. Subjects and Experimental Paradigm

Eight healthy subjects (5 males, and 3 females), aged
between 21 and 28 years, participated in the experiment. This
study was approved by the Ethics Committee of the Southern
University of Science and Technology (20190004), Shenzhen,
China. All participants signed informed consent and were
confirmed to be right-handed by the Edinburgh Handedness
Inventory.

The experimental setup is illustrated in Fig. 1 (a). The
experiments were carried out in an electromagnetically
shielded room. The subjects were required to sit on a chair
in front of a desk. A 43-inch display monitor, showing the
rectangle target and the dots representing hand position, was
placed at a comfortable viewing distance of approximately 2 m
from the subject. A guide rail was used to direct subjects to
move hands in one-dimensional space. The tasks performed
in the experiment involved bimanual and unimanual target-
reaching movements. For bimanual movements, the target
randomly appeared on the left, middle, or right of both
hands, as indicated in Fig. 1 (b), respectively, corresponding
to leftward, midward, and rightward bimanual movements.
Differently, the target randomly appeared on either left or right
for unimanual movements as shown in Fig. 1 (c) and (d). Both
hands needed to reach the appeared target during bimanual
tasks simultaneously. In the unimanual version of tasks,
subjects only moved a single hand to the appearing target but
remained the other hand still.

Subjects were pre-trained on the tasks for about 15 mins
before the formal experiment and were asked to avoid
blinking and body movements during experiments. The formal
experiments were divided into three sessions: both-hand, left-
hand, and right-hand movements. Each session contained six
runs, with a rest period of 2 mins between two runs. Each run
of bimanual session consisted of 15 trials that are five leftward,
five rightward, and five midward movements. Each run of
unimanual sessions included 10 trials that are five leftward and
five rightward movements. Thus, there were a total number of
210 trials for each subject.

The timeline of a single trial was consistent across all
sessions. An example of bimanual movements is presented in
Fig. 1 (e). To be specific, each trial started with the appearance
of one red rectangle target on the monitor. After a 2 s
preparation, two dots appeared at home positions indicated
by virtual hands in Fig. 1 (b). The home position was defined
as the starting position of movement and was fixed across
all trials. Both hands needed to move back to the home
positions before the next trial. During movement, the red dot
position was controlled directly by the real-time position of
human hands along the guide rail. The task required human
participants to reach the target within 5 s and then hold on
for 1 s. Only when the center of the red dot entered the
red rectangle within 5 s, a trial was considered successful.
Otherwise, trials were aborted and considered unsuccessful
if the dot had not reached the target after 5 s. A successful
trial was indicated by the target changing from red to yellow.
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Fig. 1. Experimental setup and protocol (the red dots represent the
real-time hand position, the red rectangle is the target, and the virtual
hand is labeled as starting position of hand movement). (a) Experimental
setup, including a monitor, the Leap motion, EEG cap, and guide rail.
(b) Experimental protocol of bimanual movement: subjects are required
to control two dots to reach the target in three coordinated directions.
(c) and (d) Experimental protocol of left-hand and right-hand movement
respectively: subjects are required to control one dot to reach the target in
leftward and rightward directions. (e) An example of timeline in bimanual
movement.

After that, all visual cues disappeared on the monitor and
subjects had a rest of 5 s before the next trial.

B. Data Acquisition

EEG signals of 64 channels were collected from eight
subjects by the g.HIAMP 256 biosignal amplifier (g.tec
medical engineering GmbH, Austria) at a sampling rate
of 256 Hz. Electrode impedances were calibrated to be less
than 30 K�. The electrode locations were referred to as the
international 10-10 system with a forehead ground electrode at
AFz. A notch filter of 50 Hz was used to remove the powerline
interference. The movement position and velocity of both
hands were captured by an optical hand tracking module called
Leap Motion Controller (Ultraleap Inc., California, USA).

C. Data Preprocessing

EEG signals were first band-pass filtered from 0.1 to 30 Hz
by using a zero-phase filter and then down-sampled to
100 Hz. Generally, the bad channels appear noisier than the
other surrounding channels and their spectra are outliers.
Therefore, the bad channels were first identified visually by
browsing the raw data and confirmed by channels’ spectra.
Then bad channel repair was implemented using spherical
spline interpolation [29]. In this method, all channel locations
were projected onto a unit sphere and the signal at the

bad locations was interpolated based on the signals at the
good locations. Next, the EEG data were re-referenced to the
averaged earlobes (i.e., A1 and A2) and the common average
of all channels successively. The motion-related artifacts
were removed by the artifact subspace reconstruction (ASR)
algorithm [30]. Additionally, eye blinks and eye movement
artifacts were visually identified and removed from EEG
using the independent component analysis (ICA) method [31].
The EEG signal generally consists of a mixture of various
brain and noise sources. ICA is a widely-used blind source
separation technique and is particularly useful for the removal
of artifacts embedded in EEG. First, the raw multichannel
EEG was decomposed into a sum of temporally independent
components (ICs) by the ICA algorithm. Then, ICs related to
eye movements and blinks were identified and removed by
their tempo-spectral features and scalp distribution. Finally,
the artifact-corrected EEG was reconstructed using the inverse
ICA transformation on the remaining ICs.

In general, there is a delay from movement cue onset to
actual movement onset because of reaction time, and the
delay is subject-specific across trials and individuals according
to personal response-ability. Hence, we calibrated the time
of actual movement onset by Leap Motion Controller for
each participant, defined as subjects-specific actual movement
onset. The 2 s epoch between −0.5 and 1.5 s from the actual
hand movement onset during each trial was extracted from
EEG for analysis. Each epoch was then baseline corrected by
subtracting the average voltage of data between −0.5 and 0 s
of movement onset. Finally, we performed a bandpass filter
between 0.1 and 4 Hz to epochs before feeding them into the
decoding model. Unsuccessful trials of approximately 5.6%
were deleted, which may cause a side effect on classification
accuracy. We implemented all data preprocessing in open-
source MNE-Python software [32].

D. Decoding Model

The changes of spatial and temporal dynamics in different
EEG frequency bands are related to directions of hand
movements. Therefore, effective extraction of corresponding
features is the key to high decoding performance. In this work,
we proposed a hybrid deep learning model based on CNN and
BiLSTM to extract complex features automatically from EEG
and decode movement directions. The visualization and full
description of the network architecture are shown in Fig. 2
and Table I, respectively. The structure and parameters are the
same for multiple or binary classification used in this study
except for the last full connection layer and activation function.

1) Network Architecture: The proposed architecture was built
on temporal CNN block, spatial CNN block, and temporal
BiLSTM block, enabling spatial-temporal frequency features
extraction. All related features were integrated within the
final fully connected layer for calculating output classification
probability. The CNN-based layers were configured without
a bias and followed by a batch normalization (BatchNorm),
exponential linear unit (ELU) activation function, dropout, and
average pooling layers except for the first full convolution. The
temporal and spatial CNN block was inspired by EEGNet [33].
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Fig. 2. Illustration of the proposed hybrid network architecture. Blocks A, B, and C were utilized to extract spatio-temporal features of EEG in different
frequency bands. Block D was used for classification by softmax activation function after a fully connected layer (FC).

TABLE I
THE NETWORK STRUCTURE AND TRAINING PARAMETERS OF THE PROPOSED MODEL. L IS DATA LENGTH, Nc IS THE NUMBER OF EEG

CHANNELS, N1 IS THE NUMBER OF FILTERS IN CONV2D, D IS DEPTH MULTIPLIER, N2 IS THE NUMBER OF POINTWISE CONVOLUTION IN

SEPARABLECONV2D, C IS THE CELLS NUMBER OF BiLSTM, AND H IS HIDDEN UNITS IN EACH CELL. HERE, L = 100, Nc = 62,
N1 = 8, D = 2, N2 = 16

EEGNet has proven to be an effective model for EEG feature
extraction, which has compact architecture and generalization
ability across different paradigms. These abilities are very
important, especially for our small EEG dataset. Hence, the
same structure of EEGNet was used in this study to learn EEG
features. Whereas, the parameters configuration was adjusted
and optimized according to our paradigm. For example, the
kernel size of the first convolution layer was set to be (1, 50)
due to the lower sampling rate of EEG. The dropout rate was
0.3, and the kernel size of the pooling layer was (1, 2). More
details are described as follows.

In the temporal CNN block, we fitted eight convolution
filters of size (1, 50). The output of eight-channel feature
map contained the EEG signal at different frequency bands.
No activation function was used after the first convolutional
layer because it had no significant effect on the final accuracy.

In the spatial CNN block, we performed two CNN
layers in sequence, called the DepthwiseConv2D layer
and SeparableConv2D layer, respectively. Sixteen-channel
feature map were outputted by applying a depthwise spatial
convolution with a kernel size of (Nc , 1) and depth multiplier
D = 2, where Nc indicates the number of EEG channels.



252 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

The depthwise convolution acted on each channel of feature
map separately. To combine the information across the feature
map channels, the SeparableCon2D layer was then used, which
consisted of first performing a depthwise convolution followed
by a pointwise convolution. The pointwise convolution
performed 1 × 1 convolution to capture new features by
mixing the resulting output channels of feature map.

It is well known that BiLSTM can effectively increase the
amount of information available to the network by learning the
temporal dependence in both forward and backward directions
of time series [28], [34]. Considering the information in
EEG signals before and after actual movement, which may
contribute to coordinated directions classification, BiLSTM
was used to further extract temporal features of EEG following
CNN blocks.

In BiLSTM block, input data was first fed into the forward
LSTM layer, and then reversed and fed into the other backward
LSTM layer as shown in block C of Fig. 2. Each layer of
LSTM contains 25 LSTM cells, each of which consists of
16 hidden units. A single LSTM cell was implemented and
updated as follows:

ft = σ(W f · X + b f ) (1)

it = σ(Wi · X + bi ) (2)

ot = σ(Wo · X + bo) (3)

ct = ft � ct−1 + it � tanh(Wc · X + bc) (4)

ht = ot � tanh(ct ) (5)

where W f , Wi , Wo denote the weighted matrices and bi , b f ,
bo denote the biases in LSTM cell. σ and � are the sigmoid
function and element-wise multiplication, respectively. ht

indicates a hidden state. The output of BiLSTM at the step
t is represented as follows:

ht = [ f ht , bht ] (6)

where f ht and bht correspond to forward and backward
LSTM, respectively.

2) Training Strategy: Before training the network, input data
were preprocessed as follows: (1) data normalization, (2) data
reshape. By subtracting the mean and then dividing by the
standard deviation, data normalization first transformed data to
be zero mean and unit variance for improving model accuracy.
Then we reshaped three-dimensional sample data with format
(Ns , L, Nc) to four-dimension with format (Ns , L, Nc , 1),
where Ns is the number of input samples, L is the data length
of EEG, and Nc is the number of EEG channel. Models
were trained using an adaptive moment estimation (Adam)
optimizer. For multi-classification, binary cross-entropy and
softmax were selected as loss function and activation function
in the final layer, respectively. In contrast, cross-entropy loss
function and sigmoid activation function were used for binary
classification.

To obtain the optimal hyperparameters such as epoch, batch
size, and the number of neurons in LSTM cells, a grid
of parameter values with epoch in [50, 100, 150, 200],
batch size in [8, 16, 32, 64], and the number of neurons
in [16, 32, 64] were defined. The best parameters were

Fig. 3. Grand average of time-frequency representations from all
subjects at C3 and C4 channels. The actual movements started from
0 s, and baseline was selected as (−0.5 s, 0 s). The grey rectangle
highlighted the rhythmic activities in frequency band of interest starting
from movements onset.

determined by grid search techniques for the highest cross-
validation score. First, 10-fold cross-validation was used to
split the entire dataset into 10 non-overlapping groups. Then,
nine folds were used as a training set and the remaining one
fold was used as a hold-out set for validation. This process was
repeated 10 times and each time a different fold was used for
testing. Therefore, a total of 10 models were trained to cover
all combinations of parameters. The combination that yielded
the best average performance over 10 models was identified as
the optimal parameter. Furthermore, to avoid data leakage, data
preparation such as normalization was prepared only on the
training set instead of on the entire dataset, and then applied
to the training and test sets within each fold of the cross-
validation. That is, we first split data into training and test
sets, then fitted the data preparation on the training set, and
applied the transform to the training and test sets. Finally, the
hyperparameters were set to epoch = 150, batch size = 16,
and number of neurons = 16.

Furthermore, there are a total of 6307 and 6241 trainable
parameters for multiple and binary classification used in this
study as shown in the 5th column of Table I. To avoid
overfitting during training these complex models, several
measures were taken: (1) the 10-fold cross-validation was used
to assess the overall performance of the model, (2) dropout was
added after each convolutional layer to reduce the complexity
of the model, (3) we would also early stop the learning
process when noticed the accuracy on the validation set
remained unchanged or even decreased over a series of epochs.
(4) learning decay with a factor of 0.2 were implemented
to adjust the learning rate only when the optimizer cannot
improve the results over a patience number of epochs.

E. Statistical Analysis
To estimate the differences between the groups and

conditions, a one-way analysis of variance (ANOVA) was
used. Classification results were tested for normality by using
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Fig. 4. Average topographic maps of EEG amplitude from one subject during different movement conditions. The maps from left to right were plotted
every 0.1 s within the time windows of interest between −0.5 and 0.9 s with respect to actual movement onset.

the Shapiro-Wilk test. Leven’s test was then applied for the
homogeneity test. Results with significance were calculated
for all pairwise comparisons with Tukey’s honest significant
difference method. A significance threshold was set to
p = 0.05 in all tests. The classification accuracies were
presented as mean ± standard deviation (std) in all
tables.

III. RESULTS

In this section, we first analyzed brain activity changes
related to bimanual and unimanual movements in time and
frequency domains, including event-related desynchroniza-
tion/synchronization (ERD/ERS), topographical maps, and
movement-related cortical potentials (MRCPs). Then, three
coordinated directions (i.e., leftward, midward, and rightward)
were classified to validate the feasibility of decoding bimanual
movements. Finally, to compare the decoding performance
of bimanual and unimanual movements, we calculated binary
classification accuracy in the leftward and rightward directions
of both bimanual and unimanual movements.

A. Movement-Related Changes in EEG Activities

1) Time-Frequency Representation: Task-related imagery
and execution of movements have been found to lead to
amplitude (or power) decrease in the alpha band of EEG,
known as ERD. We computed time-frequency representation
to observe this physiological pattern using the Morlet wavelet
transform.

Fig. 3 showed the averaged time-frequency representation
at C3 and C4 channels across subjects. The ERDs associated
with movement execution were observed on the alpha band
under all movement conditions. Strong ERDs were presented
in the contralateral hemisphere during the unimanual tasks,
which reflected sensorimotor activations at C4 and C3 during
left-hand and right-hand movement, respectively. These con-
tralateral ERDs were also accompanied by weaker ipsilateral
ERDs during unimanual tasks. In contrast, symmetrical

bilateral ERDs were evident during bimanual movement,
which indicated the cooperative activations of two cerebral
hemispheres.

2) Topological Maps: Fig. 4 showed the topographical
maps in the time window from −0.5 to 0.9 s of actual
movement onset for all EEG channels. The obvious changes
of evoked potential occurred around 0 s. Under unimanual
movement conditions, noticeable evoked potential changes
were observed over the contralateral brain hemisphere.
However, bilateral activations were apparent during bimanual
movements. These patterns were broadly consistent with the
findings in time-frequency representation analysis mentioned
above. Furthermore, most of these patterns were located on
C3, C4, and the surrounding areas.

3) Movement-Related Cortex Potentials: To further study
the differences under different movement conditions, we also
investigated the averaged MRCPs on C1, Cz, and C2 channels
as shown in Fig. 5. The first row in Fig. 5 presented the
MRCPs of bimanual movement along directions of leftward,
midward, and rightward. A positive peak appeared at about
−0.25 s before the actual movement onset. Thereafter,
the amplitude pronouncedly decreased to the negative peak
which occurred between 0.25 and 0.75 s after movement
onset. To compare the difference of MRCP patterns between
bimanual and unimanual movements, the curves of MRCP
under leftward and rightward movement conditions were
presented in the second row of Fig. 5. It is noted that
MRCP during bimanual midward movement was not provided
here due to no so-called unimanual midward movements.
Similar results were found between bimanual and unimanual
movements in terms of the occurrence of positive and negative
peaks. In addition, to further compare their difference in
amplitude, a statistical analysis was performed on the negative
and positive peaks of MRCP, as shown in Figs. 6 and 7,
respectively. Bimanual movements generated a lower negative
peak of MRCP compared with unimanual movements in spite
of no significance in some cases. However, no similar results
were found for positive peaks.
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Fig. 5. Average MRCPs of C1, Cz, and C2 channels under different movement conditions across all subjects with confidence interval (alpha =
0.05). From left to right column, (a) and (d) from C1 channel, (b) and (e) from Cz channel, and (c) and (f) from C2 channel. Time = 0 s represented
the actual movement onset.

Fig. 6. The average amplitude of negative peaks in MRCPs generated
by bimanual and unimanual movements along different directions.
(a) leftward and (b) rightward.

B. Decoding Bimanual Movements Performance

To verify the feasibility of decoding coordinated directions
of bimanual movements, a multi-classification by the proposed
model was performed. Table II presented the accuracies
of classifying three coordinated directions (i.e., leftward,
midward, and rightward) from EEG. The mean and std in the
last row indicated the grand average and standard deviation of
mean values on all subjects. The grand average peak accuracy
of decoding bimanual movement directions reached 70.10% ±
6.88% in the 2nd column of Table II. This grand average peak
accuracy was calculated using a general time window (0 s,
1 s) corresponding to the start time point of 0 s (green dot)
as shown in Fig. 8. The subject-specific model performances
in Fig. 8 were calculated using a shifted window with a fixed
length of 1 s and a step size of 0.1 s. The start time points of

Fig. 7. The average amplitude of positive peaks in MRCPs generated
by bimanual and unimanual movements along different directions.
(a) leftward and (b) rightward.

shifted windows ranged from −1.4 to 1.4 s of actual movement
onset. For each shifted window, we trained and evaluated the
model based on 10-fold cross-validation for each subject. Each
value of accuracies for each subject was the average from 10-
fold cross-validation. Consequently, each subject had a specific
accuracy peak (red dots in Fig. 8) at a different starting time
point. The mean value of subject-specific peak accuracies
reached 73.39 ± 6.35% as shown in the 3rd column of Table II.
It was noted that all subject-specific peak accuracies occurred
after the visual cue onset, more specifically, between visual
cue and actual movement onset. This time interval was defined
as visual-motor reaction time, which was presented by the
green arrow in Fig. 9. The visual-motor reaction time was
subject-related, and even not equal between trials within one
experimental run. Obtaining such visual-motor reaction time
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Fig. 8. The classification accuracies for eight subjects and their grand
average with different start points of shifted windows from −1.4 s to 1.4 s
of actual movement onset. Each value of accuracies for each subject
was the average from 10-fold cross-validation. The red dots represented
the subject-specific peak accuracies. The green dot indicated the grand
average peak accuracy.

Fig. 9. The collected positions of left hand from subject No.6 during
a single run of unimanual movement task. The vertical dashed lines
split the data into 15 time windows from the visual cue to reaching
the target. The black and blue dots indicated the visual cue and actual
movement onset, respectively. Visual-motor reaction time identified by a
green double arrow indicated the reaction time from receiving visual cue
to actual movement.

in each trial, all trials were aligned to the actual movement
onset which is marked as t = 0 s in Fig. 8.

Furthermore, we performed binary classification for direc-
tions of leftward versus midward, rightward versus midward
and leftward versus rightward during bimanual movements.
The results were presented in Table III. The mean and std in
the last row indicate the grand average and standard deviation
of mean values on all subjects. The time window was set to
(0 s, 1 s). The highest accuracy was obtained for the leftward
versus rightward classification with a mean accuracy of
86.28 ± 5.50%. The average classification accuracies

TABLE II
SUBJECT-SPECIFIC MULTI-CLASSIFICATION GRAND AVERAGE AND

SUBJECT-SPECIFIC PEAK ACCURACIES OF BIMANUAL MOVEMENTS

USING THE PROPOSED METHOD

TABLE III
GRAND AVERAGE PEAK ACCURACIES OF BINARY CLASSIFICATION FOR

BIMANUAL MOVEMENTS USING THE PROPOSED METHOD

for leftward versus midward, rightward versus midward
achieved 80.24 ± 6.25% and 82.62 ± 7.82%, respectively.
No significant difference was found for pairwise comparison.

C. Decoding Performance Between Bimanual and
Unimanual Movements

We also compared the decoding performance between
unimanual and bimanual movements for classifying directions
of leftward and rightward. The results were shown in
Table IV. Two traditional feature-based methods (i.e., LDA
and SVM) used in the previous work [11] and three deep
learning-based methods including BiLSTM, EEGNet, and
the combination of ShallowConvNet [35] and BiLSTM were
also used for comparison. All models were trained in the
same way. The mean and std indicate the grand average
and standard deviation of mean values on all subjects.
Results showed that our proposed method yielded the highest
average accuracies across eight subjects under all movement
conditions. For example, compared with SVM, 14.61%,
17.38%, and 12.56% average increase was found in decoding
accuracies under left, right, and bimanual movements,
respectively. The average increase of 2.67%, 1.89% and
4.28% was achieved compared to ShallowConvNet+BiLSTM
model. In addition, all models obtained higher classification
accuracies on bimanual movement task than unimanual task
as shown in the last row of Table IV, reaching 72.44 ± 8.12%,
73.72 ± 6.45%, 78.07 ± 4.02%, 80.09 ± 3.11%,
82.00 ± 5.61%, and 86.28 ± 5.50%, respectively.



256 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE IV
ACCURACIES OF BINARY CLASSIFICATION FOR UNIMANUAL AND BIMANUAL MOVEMENTS USING DIFFERENT MODELS

To assess the statistical differences of classifications
under three movement conditions using different methods,
an ANOVA was performed for accuracies of eight subjects
(Table IV). The statistical results were presented in Fig. 10.
It can be seen from Fig. 10 (a) that the proposed method
significantly surpassed LDA and SVM methods under all
movement conditions. Our proposed model also achieved
higher accuracies compared with the other three deep learning-
based models under unimanual movement conditions, but
there was no significant difference. Especially, the proposed
method significantly performed better than BiLSTM and
EEGNet under bimanual movement conditions. In Fig. 10 (b),
the decoding performance was compared between unimanual
and bimanual movement conditions. The proposed method,
ShallowConvNet+BiLSTM, LDA, and SVM performed
significantly better on decoding bimanual than unimanual
movements. It also should be mentioned that no significant
difference was found between left- and right-hand movement
decoding based on all methods.

IV. DISCUSSION

Bimanual coordination is an important and complex daily
skill [14]. In this work, we presented the decoding of
coordinated bimanual movements in leftward, midward, and
rightward directions for the first time. The experimental results
showed that the proposed deep learning model based on the
combination of CNN and BiLSTM achieved the accuracy of

70.10 ± 6.88% for classifying three-directional coordinated
movements from EEG signals. We also compared the decoding
performances of bimanual and unimanual movements in
leftward and rightward directions. The binary classification
accuracies reached 86.28 ± 5.50%, 75.67 ± 7.18%, and 77.79
± 5.65% for bimanual, left- and right-hand, respectively, based
on our proposed method. In addition, the performance of
the proposed decoding model surpassed not only traditional
LDA and SVM which are highly dependent on hand-
crafted features, but also deep learning-based models including
BiLSTM, EEGNet, and ShallowConvNet+BiLSTM.

Five different methods were used to decode coordinated
bimanual movements. BiLSTM and EEGNet have proven to
be great potential in EEG-based BCIs [33], [34]. Effective
feature extraction by learning enables them to perform better
than traditional methods depending on hand-crafted features.
EEGNet constructed by convolutional layers mainly learns
temporal and spatial features of EEG but is unable to
capture long temporal dynamics. In contrast, LSTM can
identify time dependencies on a time series by introducing
memory cells [28], which is important in temporal information
classification. Consequently, a combined architecture including
both EEGNet and BiLSTM was used for the classification of
coordinated directions. The results in Fig. 10 (a) indicated the
benefit of the combined model with higher accuracy than a
single network architecture. Furthermore, a similar approach
which consists of ShallowConvNet and BiLSTM was utilized
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Fig. 10. Statistical comparisons of decoding performance for eight subjects using ANOVA with significant analysis: (a) across classification models,
(b) across movement conditions. The significance threshold was ∗ p < 0.05. “ns” within groups denoted non-significant.

for further comparison. ShallowConvNet originally reported
by [35] is another popular used model for EEG decoding.
It was found that ShallowConvNet tended to perform worse
than EEGNet in the case of MRCP classifications [33].
This is the possible explanation for the lower accuracy of
ShallowConvNet+BiLSTM than EEGNet+BiLSTM.

Differences in EEG activities between bimanual and
unimanual movements were found in this study. Unimanual
movement execution led to a significant contralateral ERD
in the alpha band. Interestingly, this ERD was accompanied
by a weaker ipsilateral ERD during unimanual tasks, which
was consistent with findings reported by [36] in unilateral
wrist extension tasks. Similar to previous work [37], a clear
bilateral ERD was observed during coordinated bimanual
movements. Our results also showed that the MRCPs began
with an upward deflection at around 250 ms before the
actual movement onset. Afterward, a slow negative shift
was observed, followed by a negative peak after movement
execution, which was identified in the work [38]. We also
found that bimanual movements generated a lower negative
peak of MRCP compared with unimanual movements as
shown in Fig.6. This is consistent with the studies of local field
potential based on invasive techniques, in which the authors
concluded that the amplitude of movement-evoked potentials
in both supplementary motor area (SMA) and primary motor
cortex (M1) is larger during bimanual than during unimanual
movements [39]. In fact, we also found many previous
studies have explored the cortical mechanisms of bimanual
coordination based on functional imaging or EEG approaches.
Three definite special brain activations of the coordination can
be concluded: (1) interhemispheric interactions contribute to
bimanual synchronization, and they are significantly higher
during bimanual tasks compared with unimanual conditions
[40], (2) brain activation levels during bimanual coordination
exceed the sum of the activation during single-limb task [14],

[24], [43], (3) the primary motor cortex, premotor cortex,
and supplementary motor area are more involved during
coordination tasks [14], [44]. These special characteristics
of the coordination also support that bilateral activation of
the brain during bimanual movement may provide more
discriminable information in EEG for direction classifications
than unimanual movement. This was implied by the higher
classification accuracy of bimanual movement (Fig. 10 (b))
compared with unimanual movement.

Bimanual coordination requires two sides of the body to
actively and cooperatively act in executing tasks. There are two
basic models in bimanual coordination (i.e., spatial symmetry
and asymmetry). The former requires both limbs to move in
parallel. This can be further subdivided into isodirectional and
opposite movement patterns. In contrast, the latter refers to that
the limbs move orthogonally. Compared with the orthogonal
mode in [11], the parallel movement pattern in our paradigm
is less influenced by spatial interference and exhibits tighter
inter-limb synchrony [22], [23]. In general, the parallel mode
can be more natural to match task-oriented movements.

One limitation of this study is that the MRCP associated
with only actual movements was processed for direction
decoding. Motor execution (ME) and motor imagery (MI) are
two popular kind of tasks in EEG-based BCI [5]. Many studies
have confirmed their consistency in brain activity modulation
[41], [42], [43], such as the ERD/ERS [3] and MRCP [36]. For
example, the MRCP occurs consistently between ME and MI
[44], [45]. Therefore, although we did not take into account
the MI task, it is reasonable that the proposed method for
decoding ME task can be transferred to MI tasks, as has been
done in [46]. This suggests the potential of the proposed BCI
paradigm be integrated with our previously developed bilateral
robot [12]. Under this circumstance, the patients will be able to
control a bilateral robot by simply imagining hand movement
without ME. These have been confirmed in unimanual MI
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tasks on stroke patients [17] and bimanual tasks on monkeys
[24]. However, it is also important to note that ME has been
shown to provide a higher decoding performance compared to
MI due to more pronounced MRCPs [46], [47].

It is well known that task-oriented bimanual movements
can happen along one, two, or three dimensions in our daily
life. In contrast, the proposed paradigm was implemented in
only the horizontal dimension, which can be considered as the
other limitation of this study. As for the cases with multiple
dimensions, they will be investigated in the future. However,
to our best knowledge, this is the first study attempting
to decode task-oriented coordinated movements. This study
focuses on validating the feasibility of the proposed BCI
paradigm as a preliminary study. Furthermore, future research
also may consider the perspectives that participants can try
MI tasks [48]. In this way, stroke patients are likely able to
control the bilateral robot by simply imagining the actions
of the bimanual movement guided by the target. We will
further validate the rehabilitation outcome of the patient due to
MI-based bilateral physical training.

V. CONCLUSION

In this paper, we aimed to decode the coordinated
directions of natural bimanual movements from EEG. For
that, a bimanual task-oriented BCI paradigm of performing
target-reaching tasks was designed. The experimental results
mainly showed that (1) peak classification accuracy of
73.39 ± 6.35% was obtained in three coordinated direc-
tions (i.e., leftward, midward, and rightward) through a
hybrid CNN-BiLSTM model; (2) the binary classification
accuracies achieved 80.24 ± 6.25, 82.62 ± 7.82, and
86.28 ± 5.50% in coordinated directions of leftward versus
midward, rightward versus midward and leftward versus
rightward, respectively; (3) the binary classification accuracies
(leftward versus rightward) of bimanual, left-hand, and right-
hand movements achieved 86.28 ± 5.50%, 75.67 ± 7.18%,
and 77.79 ± 5.65%, respectively. These findings support the
feasibility of decoding coordinated directions of task-oriented
bimanual movements from EEG.
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