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A Lightweight Segmented Attention Network for
Sleep Staging by Fusing Local Characteristics

and Adjacent Information
Wei Zhou , Hangyu Zhu , Ning Shen , Hongyu Chen , Cong Fu, Huan Yu , Feng Shu,

Chen Chen , and Wei Chen , Senior Member, IEEE

Abstract— Sleep staging is the essential step in sleep
quality assessment and sleep disorders diagnosis. How-
ever, most current automatic sleep staging approaches use
recurrent neural networks (RNN), resulting in a relatively
large training burden. Moreover, these methods only extract
information of the whole epoch or adjacent epochs, ignor-
ing the local signal variations within epoch. To address
these issues, a novel deep learning architecture named seg-
mented attention network (SAN) is proposed in this paper.
The architecture can be divided into feature extraction (FE)
and time sequence encoder (TSE). The FE module consists
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of multiple multiscale CNN (MMCNN) and residual squeeze
and excitationblock (SE block). The former extracts features
from multiple equal-lengthEEG segments and the latter rein-
forced the features. The TSE module based on a multi-head
attention mechanism could capture the temporal informa-
tion in the features extracted by FE module. Noteworthy,
in SAN, we replaced the RNN module with a TSE module
for temporal learning and made the network faster. The
evaluation of the model was performed on two widely used
public datasets, Montreal Archive of Sleep Studies (MASS)
and Sleep-EDFX, and one clinical dataset from Huashan
Hospital of Fudan University, Shanghai, China (HSFU). The
proposed model achieved the accuracy of 85.5%, 86.4%,
82.5% on Sleep-EDFX, MASS and HSFU, respectively. The
experimental results exhibited favorable performance and
consistent improvements of SAN on different datasets in
comparison with the state-of-the-art studies. It also proved
the necessity of sleep staging by integrating the local char-
acteristics within epochs and adjacent informative features
among epochs.

Index Terms— Sleep stage, deep learning, EEG, multiple
multiscale convolutional neural network, residual squeeze
and excitation block, time sequence encoder, multi-head
attention.

I. INTRODUCTION

SLEEP is an important activity for human beings. High-
quality night sleep contributes to maintaining physical and

mental wellbeing [1]. While lack of sleep, sleep disorders
can lead to adverse cardiometabolic risks such as obesity,
hypertension, diabetes and cardiovascular disease [2], [3], [4],
[5], [6]. Thus, it is necessary to monitor sleep quality and treat
sleep disorders expeditiously. In clinical practice, the sleep
condition is usually measured using polysomnography (PSG)
device, consisting of electroencephalogram (EEG), electroocu-
logram (EOG), electromyogram (EMG), electrocardiogram
(ECG) and so on [7]. Physicians will manually interpret the
PSG recording and divide it into the corresponding sleep
stage according to the Rechtschaffen and Kales (R&K) [8],
which divides sleep into six stages, i.e., wake (W), rapid eye
movement (REM) and four non-REM stages (S1, S2, S3 and
S4) or American Academy of Sleep Medicine (AASM) [9],
which divides sleep into five stages, i.e., wake (W), rapid eye
movement (REM) and non-REM stages (N1, N2 and N3).
Manual sleep staging is a very tedious and laborious task.
It usually takes more than 4 hours to label a full night’s sleep
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recordings. Therefore, to alleviate the manual interpretation
burden on physicians, automatic sleep staging is deemed to
be an effective alternative.

The automatic sleep staging methods can be roughly catego-
rized into machine learning-based approach and deep learning-
based approach. Whereas, in recent years, deep learning
approaches [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23] have gradually replaced tradi-
tional machine learning approaches [24], [25] in automated
sleep staging. As traditional machine learning methods require
extraction of hand-crafted features, which is time-consuming
and proven to be unreliable when tested on unseen data.
In contrast, deep learning methods can avoid these problems
by using neural networks for adaptive and adequate feature
extraction. The majority of existing deep learning-based sleep
staging approaches are using convolutional neural network
(CNN) architecture [26], [27], [28]. To illustrate, Yang et al.
extracted features from raw EEG by using CNNs, and
applied Hidden Markov Model (HMM) refinement as a
post-processing step to correct the unreasonable sleep stage
transitions of adjacent EEG epochs [27]. Perslev et al. pro-
posed U-Sleep based on a fully convolutional neural network
and evaluated it across several clinical studies [28]. A number
of studies are using recurrent neural network (RNN) archi-
tectures such as long short-term memory (LSTM) and gated
recurrent unit (GRU), where temporal features can be fully
learned and explored. For example, H. Phan et al. proposed
an architecture named SeqSleepNet to process the sequential
signal based on RNN, which exhibited excellent performance,
while it also suffered from a considerable amount of time
consumption for training [16]. Dong et al. applied multi-layer
perception (MLP) and LSTM to address the temporal pattern
recognition challenge [14]. A few approaches proposed to
combine CNN and RNN in order to extract both temporal
and spatial information in the biomedical data [29], [30], [31].
Supratak et al. proposed an architecture named DeepSleepNet
which was the combination of the CNN and RNN and the
five-class sleep staging results can reach 86.2% [10]. Sun et al.
proposed an architecture that considered both automatic and
manual features based on CNN and RNN [11].

Although favorable results can be achieved by most of the
existing automatic sleep staging approaches, they still face
several enormous challenges. Firstly, for those architectures
based on one RNN or multiple RNNs, it results in high model
complexity mainly caused by computational approach and
structural design of RNN [32]. Since the hidden states in RNN
can only be calculated in serial, it relies on the information
from the previous moment and therefore requires a lot of time
to train the model. It is detrimental to transfer the model to
new datasets, considering that most existing methods are lack
of strong generalization capabilities. On a huge amount of
sleep data, the application of RNN undoubtedly increases the
computational time and the model complexity significantly.
Secondly, in CNN based structures, only the characteristics
of whole epoch or adjacent epochs are considered, and the
local signal variations within epoch have been ignored [10],
[11], [12], [17], [18]. The entire 30s EEG signal is usually
fed directly into the network in these works, and features

are extracted from the signal by convolutional kernels of
different sizes. However, according to the American Academy
of Sleep Medicine (AASM) rules [9], sometimes features of
different sleep stages appear simultaneously in the same frame
of the sleep record. This will then determine which sleep stage
the sleep recordings in this frame belong to, based on the
length of time that the features of the different sleep stages
last. When feeding the 30s EEG signal into the CNN, it may
cause some degree of confusion if there is a transitioning in
the sleep stage and features are extracted in generalized whole
epoch. On the one hand, extracting features from segmented
signal can avoid this drawback and yield the contribution of
different regions to the decision outcome. On the other hand,
the segmentation operation actually divides the model into
several submodules and the joint collaboration of multiple
submodules facilitates the overall performance.

In this paper, a lightweight segmented attention network
(SAN) model for automatic sleep staging is proposed. This
model consists of two main constructions: feature extraction
(FE) and time sequence encoder (TSE). The FE module
is composed of multiple multiscale CNN (MMCNN) and
residual squeeze and excitation block (residual SE block). The
30s EEG signal is divided into multiple equal-length segments,
and then each segment is processed by a multiscale CNN
for feature extraction. Multiscale CNN has both large and
small convolutional kernels to fully extract the information
in each EEG signal segment. By segmenting the EEG signal
before feature extraction, the signal features can be fully
extracted, and then features from different regions can be
integrated. The residual SE block can adjust the weight of
features and enhance them. The time sequence encoder is used
to learn the temporal information from the extracted features
and its core structure is multi-head attention. The multi-
head attention can process data in parallel, greatly improving
learning efficiency, which is different from RNNs. We also
apply a data augmentation approach to address the imbalance
issue in sleep data and improve the generalization ability of
the model. The main contributions are summarized as follows:

1) In consideration of exploring extensive characteristics
within an epoch, we divided the whole epoch into
multiple equal-length segments and fully investigated
the local information of each segment and temporal
information among segments. By integrating these char-
acteristics, a comprehensive feature that can represent
various regions is provided.

2) We propose MMCNN which consists of several multi-
scale CNN with large and small convolutional kernels to
fully extract features from the EEG signal. Features with
different temporal frequency resolutions are acquired
and then residual SE block is used to focus on the
channel-wise informative features.

3) Instead of using RNN, a time sequence encoder that
mainly consists of a multi-head attention mechanism is
proposed. This will significantly reduce the complexity
of the network while ensuring efficiency. It can run in
parallel, to learn time sequence information between
features. Thus, the model can obtain the contribution
of different segments to the classification results.
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Fig. 1. The overall architecture of the proposed network. First the signal is divided into L segments and L-1 50% overlap segments, which means
there is n = 2*L-1 segments in total. Then the segmented signals are fed into the feature extraction module for feature extraction using multiple
multiscale CNN and SE block. After that, the feature map is sent to the TSE module to capture the impact of different segments on the weight of
subsequent decisions. Finally, the features of multiple segments jointly decide the sleep stage of the signal of this epoch.

This paper is organized as follows: Section II illustrates the
details of the proposed model. In Section III, we introduce
the datasets, the experimental process and the evaluation
indicators. The sleep staging results of the proposed model
on different datasets are shown and discussed in Section IV,
where we also explore the computation efficiency of the
proposed model and compare our approach with that of others.
At last, we draw the conclusion in Section V.

II. METHOD

In this section, we introduce our proposed segmented atten-
tion network model for sleep staging using single-channel
EEG signal.

A. Overall Structure of the Segmented
Attention Network Model

Fig. 1 shows the overall structure of our SAN model. In the
process of feature extraction, to preserve as much as possible
the local characteristics of the different regions of the signal,
we divide the signal into fixed-length segments and maintain
a 50% overlap, which helps prevent discontinuities in the
signal. We also explore how the variation of segment length
impact performance, which is illustrated in Section IV. Then
the feature extraction is applied to deal with these segmented
signals, which is composed of multiple multiscale CNNs used
to extract the feature from the 30-second EEG signal. Multiple
multiscale CNNs are designed to better extract comprehensive
features at various temporal resolutions. Each multiscale CNN
includes small kernel convolutions and large kernel convolu-
tions. It is worth mentioning that in each multiscale CNN there
is residual SE block [33], which can make the feature more
distinctive. After the feature extraction, the TSE module is
employed to learn the time sequence information from the
features extracted by multiple multiscale CNNs. The time
sequence encoder consists of positional embedding, multi-head
attention and feed-forward parts. And the output of the TSE
is connected to a fully connected layer with softmax classifier.
In this work, to address the imbalance problem in the sleep
stages, we adopt various data augmentation strategies to enrich

the diversity of the input signals, such as adding Gaussian
noise, scaling, etc. In the following subsections, the detail of
the blocks is presented.

B. Feature Extraction

An epoch of EEG signal is divided into several segments
after data augmentation. Each segmented signal is fed into
corresponding multiscale CNN and residual SE block. After
the multiple multiscale CNNs and residual SE block, all the
features are integrated by a connection layer as the feature
information.

1) The Segment of EEG Signal: As shown in Fig. 1,
we divide the 30s single-channel EEG signal into segments.
With the use of segmentation, which is equivalent to adding
windows to the signal, we turn the segment of signal into a
quasi stationary. Therefore, the model can learn more stable
statistical properties and acquire robust features. Each segment
of the EEG signal is fed separately into the multiscale CNN
for feature extraction. It is worth mentioning that in order to
prevent information loss between segments due to split signals,
there is a 50% overlap between two adjacent segments. For the
30s EEG signal, the length of each segment can be calculated
as follows.

length = 30s

L
(1)

where L represents the number of selected segments. When
L is determined, there are L − 1 overlap segments, and the
total number of segments is n = 2 ∗ L − 1. We refer to the
model with different L segments as SAN-L, and we explored
the effect of different number of segments on final results in
Section IV.

2) Multiple Multiscale CNN: Fig. 2 shows the specific struc-
ture of the multiscale CNNs applied for feature extraction
from a segment of 30s single-channel EEG signal. We propose
MMCNN to fully extract the features of different sleep stages
in 30s single-channel EEG signal. The input of each multiscale
CNN is a segmented EEG signal. As shown in the Fig. 2,
each multiscale CNN has two branches: one branch with small
kernel convolutions is applied to extract the detail features
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Fig. 2. Structure of the multiscale CNNs. To ensure that the model can
capture information at different scales, two CNNs with different kernel
and stride are used to extract features of the segmented signal.

and high frequency components of the segmented EEG signal.
Another branch with large kernel convolutions is applied to
extract the morphological features and low frequency infor-
mation. In multiscale CNN, three convolution layers and two
max-pooling layers are performed for each scale. The first
convolutional layer is to reduce the dimensionality of the
input signal for subsequent feature extraction. The last two
convolutional layers are applied for feature extraction, so the
parameters of the last two convolutional layers in both scales
are similar. In each convolutional layer, there is a batch
normalization layer [34] that aligns the data and a ReLU
that acts as an activation function. To prevent overfitting,
dropout was performed after the max-pooling layer and the
data concatenation of two scales.

3) Residual Squeeze and Excitation Block: Residual network
can prevent gradient disappearance and gradient explosion
while the network deepens [33]. Recently it has been improved
and enhanced by many researchers. Hu et al. [35] proposed
Squeeze and Excitation block (SE block), which can enhance
the features that have a significant impact on the results and
weakens the features that have a small impact on the results by
scaling the extracted features. The structure of the module is
shown in Fig. 3. In the residual SE block, it combines residual
network and SE block. Given the input X ∈ RH×W×C ,
which is the output of the multiscale CNN. The residual
layer is mainly composed of convolutional layers. After the
residual layer, we get the X1 ∈ RH×W×C . Next, the SE block
compresses the extracted features. The global pooling is used
to reduce the dimensionality of features, changing the X1 ∈
RH×W×C toX2 ∈ R1×1×C . Afterwards, two fully connected
layers and ReLU layer are applied to parameterize the pass
selection mechanism, reinforcing the important features of the
center and weakening the features of the edge. The following
sigmoid activation function is used to give the proportion of
weights for each feature. The entire process is shown in the

Fig. 3. Structure of the residual SE block. This module enhances the
features and prevents gradient disappearance.

following equation:
U = σ (F2 (ReLU (F1 (X2)))) ∈ R1×1×C (2)

where the F1(·) means the first FC layer, the F2(·) means the
second FC layer, the ReLU(·) means the ReLU activation func-
tion and the σ(·) means the sigmoid activation function. Then,
the feature weights are reassigned by matrix multiplication:

V = U × X2 ∈ RH×W×C (3)

Finally, shortcut connection is finally used to superimpose
the original special input and the enhanced features. The final
input results are as follows:

X̃ = X1 + V ∈ RH×W×C (4)

C. Time Sequence Encoder (TSE)

The function of the TSE module is to perform temporal
learning on the extracted features. TSE module consists of a
multi-head self-attention layer, an add and normalize layer and
a feed forward layer. In the following subsections, the detail
of the layers is presented.

1) Multi-Head Attention: Inspired by [36], an attention mech-
anism to obtain temporal features is proposed. It is more
efficient than RNN and consists of several self-attention. Self-
attention predicts the final outcome by focusing attention on
different features. As shown in the Fig. 4, given the input
signal X ∈ RN×M , the three matrices of Query (Q ∈ RM×dK ),
Key (K ∈ RN×dK ), and Value (V ∈ RN×dV ), are obtained
by multiplying with the linear transformation matrix W Q ∈
RN×dK , W K ∈ RM×dK , W V ∈ RM×dV . The dimensions of Q
and K must be the same, and the dimensions of V and Q can be
inconsistent. The lengths of K and V must be the same because
K and V essentially correspond to representations of the input
signal on different spaces. Finally, the output of self-attention
is calculated by the following equation:

Attention(Q, K , V ) = so f tmax(
QK T

√
dk

)V (5)
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Fig. 4. Structure of the muti-head attention.

where the scaling factor 1√
dk

is to make the final distribution

result independent of the elements in Q, K and to keep the
gradient values stable during the training process.

Multi-head attention splices the results of h self-attention
layers:

headi = Attention (Qi , Ki , Vi ) 1 ≤ i ≤ h

(6)

Multihead (Q, K , V ) = Concat (head1, . . . , headh)W o (7)

where W o is the additional weight matrix, and it will be
jointly trained in the model to adjust the weights. Compared
with a single self-attention layer, multi-head attention extends
the ability of the model to focus on different positions and
gives multiple representation subspaces of the self-attention
layer, which can find correlations between sequences from
different angles, and reduces the dimensionality of each vector
when calculating the attention of each head, which can prevent
overfitting

2) Add and Normalize Layer: In the TSE module, there are
two add and normalize layers. One is after the multi-head
attention layer and the other is after the feed forward layer.
It adds the input signal to the output via the residual connec-
tion, and then normalize the sum. The process can be explained
as follows:

output = Layer Norm(x + SubLayer(x)) (8)

where the x is the input signal of the multi-head attention or
the feed forward layer and the SubLayer(x) is the output of
the multi-head attention or the feed forward layer. The use of
residual connection helps in feature learning, prevents gradient
disappearance, and can speed up learning.

3) Feed Forward Layer: Feed forward layer is after the
multi-head attention. Feed forward layer contains two linear
transformation layers and the activation function between the
two linear transformation layers is ReLU. The addition of
feed forward layer introduces nonlinearity (ReLU activation
function) and transforms the space of multi-head attention
output, thus increasing the expressiveness of the model. The

operation of the feed forward layer can be defined as follows:
FFLoutput = F4(δ(F3(x))) (9)

4) Mask: In TSE module, for the model to learn only
information before the current moment and not to leak infor-
mation after the current moment, we add the mask function
to multi-head attention layer. Specifically, the matrix is made
to be a lower triangular matrix after performing the operation.
The operation can be defined as follows:

Mask (X) = (

x1 0
x1 x2

· · · 0
· · · 0

...
...

x1 x2

. . . 0
· · · xn

) (10)

where X = (

x1 · · · xn
...

. . .
...

x1 · · · xn

) ∈ RN×N . The operation will be This

operation will be performed after the calculation of QK T .
Therefor the equation (5) can be updated to:

Attention(Q, K , V ) = so f tmax(
Mask(QK T )√

dk
)V (11)

In this way, at moment t, which is the t row of the matrix,
only information from the first moment to the t moment can
be read. Information after the t moment cannot be read.

D. Data Augmentation

In this work, We have made some transformations to
the input signal. Specifically, we have designed three ways
to perform data augmentation: 1) Adding Gaussian noise.
2) Inverting, that is, multiplying by a factor of −1. 3) Scaling,
where the input signal is multiplied by a random factor which
is in the range from 0.5 to 2. We use different combinations of
the above three methods to produce sufficient signal variation.
By applying various transformations to the input signal, we can
achieve a more robust model.

III. EXPERIMENT

Our proposed new model is extensively validated on three
datasets, including two public datasets and one clinical dataset.
In this section, we introduce the database used for the exper-
iment, and the process of our experiment.

A. Database

In this work, we apply Sleep-EDFX and MASS two public
datasets and a clinical dataset called HSFU collected in
Huashan Hospital, Fudan University, Shanghai, China, during
2019-2020 to validate the effectiveness of the proposed model.

1) Sleep-EDFX: The Sleep-EDFX dataset recorded the
sleeping data of healthy subjects (sleep cassette) and people
with mild sleep disturbances (sleep telemetry) [37]. In the
dataset, the doctor manually divides all the 30-secend sleep
periods in to eight stages. The sleeping periods are as follows:
W (wake), 1 (S1), 2 (S2), 3 (S3), 4 (S4), R (rapid eye move-
ment), M (body movement) and the ’unscored’ (unidentifiable)
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are marked with 0, 1, 2, 3, 4, 5, 6 and 9. By discarding
the abnormal stages like M and 9, six stages are remained.
In our experiments, we used the sleep cassette dataset, which
included 78 subjects, and adopted the Fpz-Oz EEG channel.

2) Montreal Archive of Sleep Studies (MASS): Montreal
Archive of Sleep Studies (MASS) is a large dataset which was
collected from a number of different hospitals [38]. It has the
whole-night sleep recording from 200 subjects (97 females and
103 males) aged from 18 to 76 years old. It has five subsets:
SS1-SS5. The epoch of the recordings was manually labeled
based on the AASM standard [9] and the R&K standard [8].
The length of the epoch in SS2, SS4 and SS5 is 20 seconds and
the length of the epoch in SS1 and SS3 is 30 seconds. Each
epoch recorded the EEG signals, EOG signals, EMG signals
ECG signals and other signals. In our experiments, we used
SS3 subset and adopted the C4 EEG channel.

3) Huashan Hospital Fudan University (HSFU): A non-
public database collected in Huashan Hospital, Fudan Uni-
versity, Shanghai, China, during 2019-2020. The research
was approved by the Ethics Committee of Huashan Hospital
(ethical permit no. 2021-811). It consists of 26 clinical PSG
recordings, which were acquired on patients diagnosed with
obstructive sleep apnea, insomnia, and restless legs syndrome.
The PSG recordings were annotated by one qualified sleep
expert according to the AASM standard. We adopted the C4
EEG channel in this study.

B. Data Preprocessing

In this experiment, all used EEG signals are filtered by
a notch filter and bandpass filter to eliminate industrial fre-
quency interference. Then signals are resampled to 100 Hz
to fit the model. EEG signals are normalized to zero mean
and standard deviation of one to reduce differences between
individuals. All the EEG signals were split into 30s epochs
without overlap between each epoch. Each epoch of the EEG
signal has a corresponding sleep stage label.

C. Evaluation Indicators

To evaluate the model performance, we adopt a series of
commonly used evaluation metrics. Accuracy (Acc) shows the
proportion of correctly predicted samples to the total samples.
Macro-F1 score (MF1) is an evaluation metric that takes into
account both precision and recall, and can evaluate model
performance in multi-classification problems on imbalanced
datasets. Cohen Kappa (κ) assesses the consistency of classi-
fying the samples. Specificity (Spec) and Sensitivity (Sens)
measure the ability of the model to correctly classify in
positive and negative cases, respectively. They are calculated
as follows.

Acc = 1

N

K∑
i=1

T Pi (12)

M F1 = 1

K

K∑
i=1

2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli
(13)

Speci f ici ty = 1

K

K∑
i=1

T Ni

T Ni + F Pi
(14)

Sensi tivi ty = 1

K

K∑
i=1

T Pi

T Pi + F Ni
(15)

where True Positives (T Pi ), False Positives (F Pi ), True Neg-
atives (T Ni ) and False Negatives (F Ni ) mean the number
of correct or incorrect categories identified for the i-th class.
Precisioni = T Pi

T Pi+F Pi
, Recalli = T Pi

T Pi +F Ni
. N is the total

number of samples and K is the number of sleep stages.
We also evaluated the running time of each network to

choose an efficient and expeditious model. The average time
for each model to run a fold is recorded as an evaluation
reference.

D. Baseline Networks and Setup

In this experiment, we compared the proposed approach
with several baseline networks with good performance, namely
DeepSleepNet [10], SeqSleepNet [16] and SimpleSleep-
Net [20]. A brief description of these networks is given below.

• DeepSleepNet [10]: An architecture proposed in
2017 used for sleep staging, which consists of a
multiscale CNN and an LSTM with shortcut residual
connection. This structure combines the capabilities
of two networks for feature extraction and temporal
learning.

• SeqSleepNet [16]: A hierarchal bi-directional RNN struc-
ture. SeqSleepNet converts the raw EEG signal into
power spectrum images by Short-time Fourier transform
(STFT), which allows the signal to be characterized in
both the time and frequency domains.

• SimpleSleepNet [20]: It consists of two bidirectional
Gated Recurrent Unit structure. It also converts the raw
EEG signal into power spectrum images and the channels
and frequency of the power spectrum images are recom-
bined after STFT. This network has few parameters and
small hidden layer size so that it runs very fast.

To avoid serendipity as well as to accurately test the
performance of the models, we took a 10-fold cross-
validation approach for each model, on each dataset. In each
cross-validation, we tested the models using the leave-one-
subject-out method. We finally superimposed the results of
10 cross-validation tests as the final test results of the model.
In addition, for the comparison of running times, we calculated
the time to train one-fold for each model. We adopted the early
stop method and terminated training when the validation set
loss does not decrease for a consecutive period.

IV. RESULT AND DISCUSSION

A. Effect of Different Number of Segments

In order to investigate the effect of different number of
segments on the final result, we conducted experiments on
three different numbers of segments, SAN-0 (no segments),
SAN-5 (L = 5, each segment length is 6s), SAN-10 (L = 10,
each segment length is 3s) and SAN-15 (L = 15, each segment
length is 2s) and then performed 10-fold cross-validation to
evaluate the impact of segmentation on model performance.

As shown in Fig. 5, within a certain range, from SAN-0
to SAN-10, indicators of the model on three datasets, such
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Fig. 5. Comparison with different number of segments on three datasets.
The results of each model on different datasets are shown from top to
bottom. Within a certain range, from SAN-0 to SAN-10, all the evaluation
metrics of the model increase as the number of segments increases.
Sequentially when the number of segments increases to a certain point,
the performance of the model stabilizes and stops rising. The values of
the evaluation indicators show the results of SAN-10.

as the accuracy, MF1 score and kappa coefficient, have
increased steadily. As the number of segments increases,
more regions will be divided and a relatively comprehensive
result originating from these regions is provided. It plays a
similar role to ensemble learning, where multiple submod-
ules collaborate together to enhance the overall performance.
However, segmentation with shorter duration may destroy
the original morphological characteristics, and thus degrade
the performance. This is why SAN-15 performs worse than
SAN-10. It indicates that the appropriate segment length is
also an important parameter. Besides, the running time and
complexity of the model gradually increases as the number
of segments increases. SAN-5 requires about four times the
runtime of SAN-0, and SAN-10 requires about six times the
runtime of SAN-0.

B. Effect of the Number of Heads in Multi-Head Attention

We explored the effect of the number of heads on the
model performance in our experiments. With other parameters
fixed, we will do the validation on the MASS dataset using

Fig. 6. The performance of SAN-10 on MASS dataset with different
number of heads.

models with different number of heads. As shown in Fig. 6,
the number of heads does not have a significant impact on
the performance of the model, and the values vary only in
a small range. However, it can be seen that as the number
of head changes, a relatively good setting can be found,
which will have some improvement on the model performance.
While when the number of heads increases to 18, the model
performance decreases a bit. In our experiments, we set the
number of heads to 6 in SAN in order to accurately assess the
impact of the segmentation we are interested in.

C. Hypnogram

Fig. 7 shows the hypnogram output using our proposed
method as well as the real hypnogram and the posterior prob-
ability distribution per stage of sleep of a subject of the Sleep-
EDFX dataset. It can be seen that the output hypnogram aligns
very well with the corresponding ground truth. And the model
discriminates the wrong sleep stage mostly in the stage of sleep
stage transition. This result suggests that the transitioning sleep
stages are much harder to correctly classified compared to the
non-transitioning ones. The rationale is that the transitioning
epochs often contain information of two or three sleep stages.
Even with segmentation of the EEG signal to extract feature
information, there are still difficulties in discriminating the
sleep stages in the transitioning sleep stages. As a result,
these present stages are active as indicated in the probability
distribution in Fig 7. However, we need to pick one of them
as the final discrete output label for the sleep staging task.

D. Compared With State-of-the-Art Approaches

We compared our proposed method with some state-of-
the-art approaches. The accuracy, MF1, kappa coefficient,
sensitivity, specificity and runtime of these methods were
compared on three datasets.

As shown in the Table. I, compared with state-of-the-art
methods, our proposed method obtains the best results on
the Sleep-EDFX dataset and HSFU dataset, and only slightly
inferior to SeqSleepNet on the MASS dataset. The reason
why SAN is inferior to SeqSleepNet in MASS is attributed
to the fact that the input to SeqSleepNet is multiple 30s EEG
signals that capture the information of adjacent sleep stages.
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Fig. 7. Visualization of the hypnogram for one subject of Sleep-EDFX. (a) The ground-truth hypnogram; (b) the output hypnogram where · indicates
the misclassified epochs; and (c) the probability output.

TABLE I
COMPARED WITH STATE-OF-THE-ART APPROACHES ON THE THREE DATASETS. IN ADDITION TO COMPARING METRICS SUCH AS ACCURACY AND

F1 SCORE, THE AVERAGE TRAINING TIME FOR TRAINING AND TESTING DATASETS WERE ALSO COMPARED

Specifically, we observed that SAN is more accurate than
other methods in determining wake, N2 and N3 stages. This
is made possible by the feature extraction for segmentation
of EEG signals and the learning of temporal information by
TSE in SAN. However, our proposed method is somewhat less
accurate in discriminating the N1 and REM stages. In terms
of running time, our proposed method requires the least
amount of time, regardless of whether it is SAN-5 or SAN-
10. DeepSleepNet, SeqSleepNet and SimpleSleepNet can only
run serially during the runtime because of the RNN structure
used, which greatly increases the runtime. In contrast, our
proposed network only processes the time-domain data and
uses CNN combined with attention mechanisms instead of
RNN, so it occupies less time. The results show that this

segmented attention mechanism is superior to other algorithms
in terms of running time.

In out proposed model, the signal of an epoch is divided
into different segments, and different segments may have dif-
ferent features of sleep stages. Along with these features, our
proposed network model integrates them to output a decision
in which all segments contribute, and thus a fairly robust
performance can be obtained. If the duration of certain feature
is short, the contribution of that segment may be overwritten
by other segments. Despite the attention mechanism adopted
to try to solve this problem, more satisfactory results are still
not obtained for the N1 period. The proposed SAN obtained
good results in tests on all three datasets. Although the SAN
is slightly less effective than SeqSleepNet on the MASS
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Fig. 8. Ablation study conducted on the three datasets.

dataset, it is noteworthy that SAN can significantly improve the
discrimination accuracy of wake, N2 and N3 stages compared
to other approaches, especially in HSFU clinical dataset. The
excellent performance of the SAN in these stages makes it
potentially useful for the diagnosis and prevention of a number
of sleep disorders. It is unlikely that SAN trained directly on
MASS, Sleep-EDFX, and HSFU would work well for record-
ing sleep disorders because the structure and features of the
data samples are different. However, we can use SAN to train
on the dataset of sleep disorders or fine-tune transfer learning
based on MASS, Sleep-EDFX, HSFU datasets. Whereas the
short running time of SAN provides the basis for relatively
fast training and transfer learning on new dataset.

E. Ablation Study

As shown in Fig. 8, we present an ablation study conducted
on three datasets to analyze the effectiveness of each module
in our SAN. Our proposed SAN consists of MMCNN, residual
SE block and TSE modules. Specifically, we derive four model
variants as follows.

1) MMCNN: MMCNN module only.
2) MMCNN+residual SE block: MMCNN and residual SE

block without TSE.
3) MMCNN+TSE: MMCNN and TSE without residual SE

block.
4) SAN: MMCNN, residual SE block and TSE.

By comparing the results in Fig. 8, we can conclude the
following points. First, adding either the SE block or the TSE
module alone after the MMCNN leads to some degree of
performance degradation. It is difficult for the network to learn
the deep features and the connections between these features
when using only one of the module. Second, by combining
the residual SE block and the TSE module, the model can
further improve its performance, and the network can be more
efficient by obtaining deep features and internal associations.
The results on three datasets illustrate the importance of the
combination of these modules.

V. CONCLUSION

In this paper, we proposed a novel architecture called SAN
for sleep stage classification by single EEG channel. We used
multiple multiscale CNN for feature extraction of different
segments of EEG signal, applied residual squeeze and excita-
tion block to enhance the feature and assigned weights to the
features in different regions based on the multi-head attention
mechanism. In addition, we added noise to the raw EEG signal
for data augementation to solve the class imbalance problem.
The method improved the system performance by making
decisions based on each segment feature in an integrated
manner. The proposed method performed well on two public
datasets and one clinical dataset. We compared it with recent
state-of-the-art researches and demonstrate the effectiveness of
the algorithm. The results showed that our proposed method
is competitive and can obtain a better performance on the
sleep stage classification. In future work, the idea of object
detection could be used to clearly locate the features at
different locations in the signal segment, thus achieving higher
accuracy identification and facilitating the diagnosis of related
sleep disorders.
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