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Sound Target Detection Under Noisy
Environment Using Brain-Computer Interface

Ruidong Wang, Ying Liu, Jianting Shi, Bolin Peng, Weijie Fei, and Luzheng Bi

Abstract— As an important means of environmental
reconnaissance and regional security protection, sound
target detection (STD) has been widely studied in the
field of machine learning for a long time. Considering the
shortcomings of the robustness and generalization perfor-
mance of existing methods based on machine learning,
we proposed a target detection method by an auditory
brain-computer interface (BCI). We designed the experimen-
tal paradigm accordingto the actualapplicationscenarios of
STD, recorded the changes in Electroencephalogram (EEG)
signals during the process of detecting target sound, and
further extracted the features used to decode EEG signals
through the analysis of neural representations, including
Event-Related Potential (ERP) and Event-Related Spectral
Perturbation (ERSP). Experimental results showed that the
proposed method achieved good detection performance
under noisy environment. As the first study of BCI applied
to STD, this study shows the feasibility of this scheme
in BCI and can serve as the foundation for future related
applications.

Index Terms— Sound target detection, BCI, auditory ERP,
ERSP, SVM.

I. INTRODUCTION

SOUND target detection (STD) refers to detecting the target
in the sound stream. Categorically, it belongs to the prob-

lem of sound event detection (SED). STD can serve as a part of
a public safety surveillance or military reconnaissance system
to detect potentially dangerous targets (such as Unmanned
Aerial Vehicles (UAVs)), demonstrating vital practical values
of STD.

Many researchers have proposed various methods for STD
by using signal processing and machine learning. Taking the
UAV detection (i.e., judging the presence of UAVs from the
sound stream) as an example, Yang et al. [1] used short-time
Fourier Transform (STFT) to extract the sound signatures of
UAVs during flight and proposed a real-time detection system
based on support vector machine. Solis et al. [2] discussed
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the performance of support vector machine and convolutional
neural network classifiers for UAV sound detection. They used
Mayer cepstrum coefficients of UAV sound as the classification
features, and the results showed that the detection accuracy of
the convolutional neural network classifier for UAVs was only
60-69%. In contrast, the classifier based on the support vector
machine completed the classification task with an accuracy
of 92%.

Although there have been many studies on the STD, the
STD in noisy environments is still challenging. In a real
scenario, the signal-to-noise ratio (SNR) of the target sound
relative to the noise is likely to be at low levels and may
change (such as UAV sound frequency changes caused by
a sudden increase or decrease of rotor speed), leading to a
substantial performance decline of STD based on machine
learning. In 2005, Clavel et al. [3] pointed out that the SNR
reduction causes a sharp decline in detection performance.
On the premise of the same training strategy, the detection
accuracy significantly decreases when the SNR decreases from
20 dB to 5 dB. Papadimitriou et al. [4] also found this problem.
For the same SED model, 30 dB SNR data were used for
training, and then 30 dB SNR and −5 dB SNR data were
used for testing. The performance of the model in the low
SNR test set was much lower than in the high SNR test
set (precision decreased by 36.51%, and recall decreased by
57.58%). Ren et al. [5] demonstrated the influence of SNR
on the detection performance in the study of the dangerous
SED. In the same noise scene, the detection error rate of
the same sound target on the test set reached 37.38% when
the SNR was −15 dB and increased by 30.2% compared
with the condition of −5 dB. This phenomenon also exists
in [6]. Turpault et al. [7] pointed out that the performance
of the algorithm decreases greatly when the algorithm tries
to recognize the new sound clips that do not appear in the
training set for the top acoustic event recognition algorithms in
the 2019 DCASE (Challenge on Detection and Classification
of Acoustic Scenes and Events) Challenge. They draw this
conclusion by using the top 10 algorithms in the acoustic event
detection problem in 2021 DCASE Task 4 [8]. By establishing
four evaluation datasets, under the same training baseline,
the effects of sound event occurrence density, occurrence
time, duration, non-target aliasing, and reverberation on the
performance of the algorithms were tested. It can be seen from
the results that when any one of the above factors changes,
there is a great influence on the performance.

One of the main reasons for the above phenomenon
is that the algorithm models cannot achieve robustness to
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Fig. 1. Details of paradigm design. In each single trial, The subjects were
given up to 5s to prepare, followed by a 30s period of natural wind noise
with the target sound appearing at random timings. Once the subject
perceived the presence of the target, the space bar on the keyboard was
pressed as soon as possible. Each session consisted of 12 consecutive
trials, and the whole experiment lasted at least 10 sessions.

environmental noise and sound signature change of targets.
Brain-computer interfaces (BCIs) have been demonstrated
to be capable of decoding human brain activity to visual
target recognition to improve the performance of image target
detection [9], [10]. In the same spirit as [9] and [10], in this
article, we propose an EEG-based decoding method to trans-
late the neural signature of human auditory target recognition
to perform the STD.

The contribution of this paper is that it is the first work to
develop a BCI to decode EEG signals associated with human
auditory target recognition to detect sound targets. This work
makes it possible for people to participate in the detection
system efficiently when the confidence of the auto-detection
algorithm drops and opens a new avenue to the research and
development of STD techniques and advance the study of
BCIs. The rest of this paper is organized as follows: Section II
gives a detailed description of the stimulus and experiment
paradigm. Section III describes the EEG data preprocessing
pipeline and shows our method details for analyzing auditory
ERP and ERSP. Section IV presents the process of feature
extraction and the establishment and validation of the decoding
model. Section V presents all the results of analysis above.
Section VI gives a discussion based on our result and relevant
study, and presents the summary and conclusion.

II. PARADIGM AND DATA ACQUISITION

A. Paradigm Design
In this paper, we took the sound detection of UAVs as a sam-

ple. We only considered the variation of the target sound and
the environmental noise. In the experimental paradigm of this
paper, we used the wind recorded outdoor as the environmental
noise and the sound segments emitted by three different kinds
of UAVs in random flight as the target sounds to be recognized
(to simulate the change of the target itself). We designed
the following experimental paradigm. The information about
sound materials is shown in Section II.B.

The details of the paradigm design are shown in Fig. 1.
During the whole process of the experiment, the subjects

sat in a comfortable chair in a relaxed posture within a
reasonable range, and wore an EEG collecting cap (NeuroScan
SynAmps2, NeuroScan, America) and in-ear headphones, and
were told to look directly at the commands on the screen
in front of them not to make large movements during the
experiment.

In every single trial, there were a preparation phase and an
experimental phase. In the preparation phase, the screen first
showed a line of words, “press any button when you are ready
for the next trial”, and then the subjects were given 5 seconds
to prepare. In 5 s, they could actively skip the process by
pressing a button when they were ready. Then the experimental
phase started.

In the experimental phase, subjects heard a sound clip
containing a natural wind background sound and target sounds
(via in-ear headphones). The target sound (lasting 5 s) was
inserted in this sound clip at random moments. In a single
trial, only one of the three kinds of target UAV sounds were
inserted. The subjects were asked to judge the presence of
the target and press the key “space” on the keyboard with
the index finger of their right hands as soon as possible. The
reason for using button pressing as a response to hearing the
target was to make sure that subjects heard the target sound
and calculate their reaction time (RT). Once the background
sound was finished, this trial was complete, and a new
trial started. The experimental paradigm was implemented by
PsychoPy.

For one single session, there were 12 trials. Because we
used three kinds of UAV sounds as targets, target sounds
appeared in pseudo-random order (four times for each kind).
After completing a session, the subjects were given a three-
minute break. For the entire experiment, the total duration
of the 10 sessions and breaks was no more than two
hours.

B. Stimulus Materials
In this paper, the sounds of three types of UAVs were

used as the target sounds for auditory target detection. DJI3,
DJI Tello, and a UAV powered by a duct fan. We recorded
the sounds of three kinds of UAVs in a soundproof chamber
(length 15 meters, width 10 meters). For recording, single-
channel microphones were placed in the middle of a sound-
proof chamber where the UAV flew.

The background wind noise was collected manually by the
microphone of the mobile phone outdoors. While collecting,
the sound collector was placed on the support rack in a fixed
position outdoors. When we collected the sound, the outdoor
wind was at Beaufort scale 4-5.

Since most STD studies focus on the condition of SNR (in
most of the research on sound event detection, 0dB∼-5dB is
considered as the low level of SNR. For example, [4], [5],
and [6], we calculated the SNR of the target sound relative to
the background sound. As the background noise used in this
study was the wind recorded in the field, the intensity of sound
changed over time. Table I shows the maximum, minimum,
and average SNR of the three target sounds used relative to
the same segment of background noise.
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TABLE I
SNR OF EACH SOUND TARGET

C. EEG and Behavior Data Acquisition

Continuous EEG data (sampling frequency: 1000 Hz) were
recorded from 60 Ag/AgCl sintered electrodes using standard-
ized EEG recording sites (Fp1, Fpz, Fp2, AF7, AF3, AF4,
AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2,
C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8,
P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO5, PO3, POz,
PO4, PO6, PO8, O1, Oz, O2). Electrodes were mounted on
a Neuroscan EEG cap. The electrode sites of this montage
were arranged according to the international 10/20-system.
Forehead electrode AFz was used as a ground electrode.
All electrode impedances were kept below 10 k�.

A total of eight students participated in the experiment.
Physical examination results showed that these students had no
hearing impairment or brain-related diseases, had slept well the
day before the experiment, and had not taken alcohol or psy-
choactive drugs. All students were confirmed to have a basic
understanding of drones (having heard or used one) before
the experiment began. This study adhered to the principles of
the 2013 Declaration of Helsinki.

The moment the target voice appeared was transmitted via
parallel communication from the computer to the Neuroscan
acquisition device via PsychoPy. We defined the response
time of the subjects as the difference between the time the
target was onset and the time the subjects responded to the
button (recorded by PsychoPy). Since the later parts of this
paper involve the analysis of neural representations and the
establishment of decoding models, we choose to use the EEG
segments time-locked to stimulus onset.

III. DATA ANALYSIS

A. EEG Preprocessing

Generally, EEG data was first baseline-corrected(using the
average of the first second for each EEG 8s segment from
each channel) to remove the drifting. All trials with amplitude
distortion were abandoned, and the remaining trials were
FIR bandpass filtered (1-49Hz). Then all the EEGs were
re-referenced to the common average (CAR). Finally, inde-
pendent component analysis (ICA) was applied to remove eye
movement and EMG artifacts. We used EEGlab to implement
the entire preprocessing above.

In particular, the ICA label algorithm in EEGlab was used to
determine the category of each independent component in the
process of eye movement artifacts and EMG artifacts removal.
Eye movement artifacts correspond to the “eye” category
and EMG artifacts correspond to the “Muscle” category. For

each decomposed independent component, as long as the
“eye” category discriminant confidence or “Muscle” category
discriminant confidence was greater than 80%, the component
was removed.

On average, 2.5 trials were discarded for each subject(due to
amplitude distortion or invalid reaction time) and most of the
trials (more than 98%) were finally used for ERP and ERSP
analysis.

B. ERP Analysis

Previous research on auditory target detection has shown
that the process of perceiving an auditory target causes EEG
changes in the central region of the brain. Thus, ERPs from
channels Fz, FCz, Cz, CPz were mainly focused on. We seg-
mented preprocessed EEG signals into epochs from -5000 to
3000 ms relative to the onset of the target sound.

C. ERSP

Previous studies have shown that, in addition to ERP, the
presence of target sounds affects the spectrum of EEG signals
in different brain regions. Most current studies measured this
change using ERSP. In this article, ERSP was calculated
using “Time-Frequency Analysis” in EEGlab. We applied a
three-cycle wavelet with an expansion factor of 0.5 to complete
the time-frequency decomposition. Stimulus-locked epochs
consisted of 200 time points between –1000 and 2000 ms
relative to the target sound onset. Computations were based
on frequencies ranging from 1.2 to 20 Hz with a step of 0.1 Hz.
This band covers the delta, Theta, alpha, and beta bands of the
EEG rhythm.

IV. AUDITORY PERCEPTION DECODING MODEL

A. Dataset Establishment and Feature Extraction

The EEG decoding model is used to detect the sound
target, so the decoding model needs to distinguish between
the EEG signals corresponding to the subjects’ “normal state”
and “perceived sound target”. In this paper, two kinds of
EEG features were used in the decoding model, namely, EEG
amplitude and time-frequency power spectrum.

For each trial, the EEG signals in the [−3s,−2s] interval
were taken as non-target samples and EEG signals in the inter-
val [0s,1s] as target samples (RT data showed that basically
all subjects detected targets in this interval, see section V.A).
We down-sampled the sampling frequency of the 60-channel
EEG 1s segment to 100 Hz.

For all selected samples, we extracted the time-frequency
features using the short-time Fourier Transform (STFT). The
Time-Frequency(TF) information of each channel was a matrix
with F row and T column, and we rearranged the time-
frequency information from 60 channels (with a size of
[F,T,60]) into a 1-dimensional vector as the raw time-frequency
feature vector of this sample. The selected frequency band
was set to 1-12Hz. All the raw feature vectors obtained from
target and non-target samples constituted the Time-Frequency
data set. In addition, the STFT was implemented through the
Spectrogram() function in MATLAB with a window length of
32 and a window shift of 20.
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Fig. 2. Definition of performance metrics.

B. Off-Line Training and Validation

In Section IV.A, the raw feature vector of the samples
contained all the amplitude or the time-frequency information
of the selected frequency band. We used principal component
analysis (PCA) to compress the original feature vectors. In this
paper, the PCA eigenvalue contribution rate threshold was
90%, and the dimension changes of all subjects’ data sets
before and after compression will be shown in the results.

We chose Support Vector Machine(SVM) as the algorithm
of sample classification and measured the performance of
our decoding model through the 5-fold cross-validation
method. In the process of SVM training, we used the
built-in ‘OptimizeHyperparameters’ option of Matlab to
optimize all the hyperparameters of the SVM model,
including ‘BoxConstraint’, ‘KernelFunction’ (i.e., the type
of KernelFunction), ‘KernelScale’, ‘PolynomialOrder’ and
‘Standardize’. The optimization algorithm was sequence min-
imum optimization (SMO), and the number of iterations
was 120 (See Matlab’s description of fitcsvm () for more
information).

C. Pseudo Online Test

To further validate the performance of the proposed sound
target detection method, we used pseudo online testing to
calculate the detection rate, false alarm rate, and detection
time of the method. As shown in Fig. 2, the detection rate
was defined as the proportion of the trials detected within 2 s
of the appearance of the target in all trials. The false alarm
rate was defined as the proportion of false alarm (misjudging
non-target as “target”) commands output by the BCI in all
non-targets. The detection time was defined as the lag time
between the earliest and correct detection of the target and
the occurrence of the target.

During the training of the SVM model used in the pseudo
online test, the process was the same as the offline part, the
only difference was that the number of non-target samples had
been expanded. We added the EEG signals corresponding to
[−3s,−2s] and [−1s,0s] to the non-target samples. That is,
each trial generated three non-target samples and one target
sample. To avoid the model shifting to one of the two classes
in the training process, we adjusted the misclassification cost
of non-target and target samples to 1:3 (originally 1:1).

It should be noted that for each subject, 80% trials (ran-
domly divided) were used to train ICA unmixing matrix
(for removing eye-moving artifact) in EEG preprocessing,
PCA feature compression matrix, and SVM model, and the
remaining 20% trials were used for testing. After completing
the bandpass filtering and common average re-reference of

the test EEG set, we directly used the information from
the training set for eye-moving artifact removal and feature
extraction of the test set.

After the training of the model and preprocessing of the
test EEG set were completed, the pseudo-online test was
started. During the test, the EEG window length was 1s,
starting from the -2s point (that is, the first EEG segment
was [−2s,−1s]), and the window shift was 50 ms. On this
basis, the detection threshold T hreshold was set (2, 3, 4,
and 5, respectively). If the model judges “target appearance”
for consecutive T hreshold times, it is considered that a sound
target appeared at this time; otherwise, it is considered that no
sound target appeared.

Besides the normal pseudo-online test, we cared about the
generalization performance of the detection model trained.
To testify the generalization performance, we used the EEG
from all subjects to train a generic model. During the process
of training, we only used the EEG trials corresponding to
2 targets (namely, tello UAV and duct fan UAV), and all the
EEG trials corresponding to DJI3 UAV consisted of the test
dataset. The other remaining steps were the same as the normal
pseudo-online test. The detection performance (detection rate,
false alarm, and detection time) was calculated on the training
dataset and test dataset, respectively.

V. RESULTS

A. Reaction Time Analysis

The results of RT statistical analysis are shown in Table II.
We saw that the detection rates of all eight subjects were high
(all over 97%, with an average of 99.08%; the detection rates
of Subjects 2, 4, 5, and 7 were 100%). The average RT of
4 subjects (1, 2, 4, 7) was around 0.7 seconds, whereas the
RT of the other four subjects was about 0.5 seconds (3, 5, 6,
8). For the successful trials, the standard deviation of RT was
around 20-196 ms. Thus, the neural signature corresponding
to the perceived sound target was located within 1s of the
target’s appearance in the vast majority of successful trials.

B. Neural Signature Results

1) ERP Results: In summary, after averaging the data from
all subjects, we observed significant ERP in the central area.
Fz, FCz, Cz, and Pz were selected as the representatives of all
channels to briefly display the results.

For the early stages of ERP, as shown in Fig. 3. ERP results
showed that there was a significant negative offset at around
130 ms (with an amplitude of around 0.8μV). We showed only
four channels near the central area. In fact, this offset was
widespread in those channels near the fronto-central region
of the scalp and showed an obvious left-right symmetry. The
topologies of 130 ms ERP are also demonstrated in Fig. 4.

Besides the early stage after the appearance of the stimulus,
a significant positive shift was observed near the frontal
parietal and parietal lobes at 300 ms after the appearance of
the stimulus with a magnitude of about 2.5 μV (Fz channel).
The amplitude of this positive offset decreased progressively
from the frontal to parietal lobes, as shown in Fig. 3 and
Fig. 4 (320ms). In addition, at the subsequent 570 ms, there
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TABLE II
RT STATISTICS OF EACH SUBJECT

Fig. 3. ERP from Fz,FCz,Cz, and CPz.

Fig. 4. ERP topology.

was a weak positive shift in the parietal lobe region, centered
on the Pz channel, with a magnitude of about 1.25 μV.

In the experimental paradigm, we used three different target
sounds. In Fig. 5, we gave the ERP waveforms corresponding
to three different targets. It can be seen that for the early
component of ERP, the N100 component induced by three
target sounds had the nearly same amplitude. For the late
component of ERP, P3 induced by target sound 3 reached the
highest amplitude, while the P3 component of target sound 1
and target sound 2 were only slightly different. On the whole,

the waveforms of ERP induced by the three target sounds were
the same.

2) ERSP Results: Fig. 6 shows the time-frequency informa-
tion changes of EEG signals in six main channels located in
the central region before and after the appearance of the target
sound. After the appearance of the target sound, the energy
changes of the six channels of EEG signals were significant
at 1-6Hz (covered Delta rhythm) and 8-14Hz (Alpha rhythm).
Specifically, the energy of delta rhythm increased significantly
after the presence of the target, lasting 800 to 1000 ms and
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Fig. 5. ERP similarity between different kinds of targets.

Fig. 6. ERSP of EEG signals from central area channels.

peaking around 300 ms. The energy of alpha rhythm decreased
significantly after the presence of the target, and the duration
varied from channel to channel. CPz and Pz channels were the
most significant in terms of the magnitude of the decline.

Similar to ERP, we also examined the ERSP of the three
target sounds in the P1, Pz and P2, as shown in Fig.7(From
top to bottom, the first row corresponds to P1, the second row
corresponds to Pz, and the third row corresponds to P2). For
the delta band, the presence of three different target sounds
all caused the energy of this band to rise (regardless of which
channel). The energy changes in the alpha band caused by the
three targets are slightly different. The energy drop in the alpha
band induced by target type1 and 3 have similar intensity in
all three channels. That induced by target type2 was slightly
weaker and not obvious in P1 and Pz channels. In general,
ERSP induced by the three target sounds showed the same
change trend, with only a difference in amplitude.

C. Decoding and Detection Performance
The performance of the decoding model is shown in Fig. 8

and Table III, including offline classification accuracy and
pseudo-online detection rate, false alarm rate, and detection

time. For the offline classification test, the average accuracy
of 8 subjects reached 81%, and 6 of them were over 80%,
with a small variation range. The highest accuracy came from
the decoding model for Subject 3, and the average accuracy
was 85% in the 5-fold cross-validation test.

In the pseudo-online test, different detection thresholds were
set. When the threshold was 2, the average detection rate of
the 8 subjects was 84%, the false alarm rate was 6%, and the
average detection time was 0.817 seconds. With the increasing
detection threshold (from 2 to 5), the average detection rate
decreased to 69%, the false alarm rate decreased to 2%, and
the detection time increased to 0.981s.The best detection per-
formance came from Subject 8. When the detection threshold
was 2 and 3, the detection rate was 100%, and the false alarm
rate was 3%-4%. When the detection threshold increased to 5,
the detection rate remained at 96%, and the false alarm rate
decreased to 1%.

To further show the performance of the proposed method,
we chose a sound target detection algorithm in DCASE
2020 (Detection and Classification of Acoustic Scenes and
Events) Task 2 as our benchmark[19]. This algorithm can
be briefly summarized as a detection algorithm based on
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Fig. 7. ERSP difference and similarity between different kinds of targets.

Fig. 8. Offline decoding and pseudo-online detection performance for each subject.

ResNet network, which extracts the logarithmic MEL fre-
quency feature (128∗128) of sound signals, and outputs the
two-dimensional detection results through operations, such as
convolution and pooling. The training dataset consists of 306
targets and 306 non-targets, including target sounds, such as
Tello UAV and Duct Fan UAV. The test dataset consisted
of 114 target samples and 114 non-target samples, and only
contained DJI3 target sound. The batch size was set to 32 in
the training process, and the Adams parameter optimizer was

used. The training lasted for 500 epochs. When the training
was completed, the loss had converged.

We defined the detection performance of the two methods in
the face of a new target (i.e., the test set) as the generalization
performance. We calculated the detection performance of the
two methods on the training set and the test set, respectively,
as shown in Table IV. Both methods achieved high detection
rate on the raining set(97.50% vs 99.85%), whereas the
false alarm rate of the BCI method was higher. The biggest
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TABLE III
PSEUDO-ONLINE DETECTION PERFORMANCE OF DECODING MODEL ACROSS SUBJECTS

TABLE IV
PERFORMANCE COMPARISON ON DIFFERENT DATASET

difference between the two performance was in detection rate
on the test set (43.00% vs 84.84%). It can be seen from
the results that the detection rate of the Benchmark method
decreased significantly (97.50% vs 43.00%) in the face of
targets that do not appear in the training set. However, the
detection rate of the BCI method only showed a relatively
smaller decrease (99.85% vs 84.84%). In addition, the new
target resulted in an increase in the average detection time for
both methods. However, there was a smaller increase for the
BCI method (0.33s vs 0.87s) than the benchmark.

VI. DISCUSSION AND CONCLUSION

In this paper, an STD method based on a BCI was proposed
to solve the problem of STD in the natural sound field with a
low SNR. We designed the experimental paradigm according
to the real STD scenario and analyzed neural representations,
including ERP and ERSP of the EEG signals induced by
the presence of target sound. We extracted two different
recognition features according to the observed neural repre-
sentation. Furthermore, we established an SVM-based EEG
decoding model to distinguish target and non-target, showing
the feasibility of using a BCI to detect a real sound target in
low SNR conditions. This work can lay a foundation of the
research and development of EEG-based STD.

From the perspective of neural signature, the early com-
ponents of ERP showed clear N100 (N1) components, indi-
cating that the target sound entered the auditory perception
pathway. On the other hand, the late component of ERP
showed a clear P3 component, indicating that the target
sound caused the cognitive activities of the subjects. The ERP
waveform obtained by us was similar to the results obtained

by Gabriela et al. [17] and Sujoy et al. [18]. In essence, these
ERP results reflect the cognitive activity of a few “deviant”
stimuli from the perspective of EEG signals.

In addition, ERSP results showed that the presence of targets
caused a significant decrease in alpha rhythm energy. The
results of neurological studies showed that the change of alpha
rhythm energy was related to the change of subjects’ attention,
such as selective attention [13], [14], [15], target detection,
and localization [11], [12]. Because the target sound in the
experimental paradigm was not as short as other literature
experiments of tens to hundreds of milliseconds. The reduced
alpha energy may reflect the attention of subjects to the
target sound in a period after the appearance of P3, which
was consistent with [16] and other previous literature on
alpha ERD.

We selected the time-frequency feature and built decoding
models. The results showed that our EEG decoding model
achieved reliable off-line decoding performance (the average
accuracy of the optimal model for a single subject is 81%).
The pseudo-online test results showed that our decoding model
had a good detection rate, acceptable false alarm rate, and
fast response time. On the whole, our results showed that in
the real environment, human perception of target sound under
low SNR conditions can be captured through EEG Decoding,
which can be used to perform sound target detection.

In addition to its reliable detection performance at the low
SNR, the proposed method has another advantage, namely,
its robustness to different sound targets. As can be seen
from the generalization test result, the performance of the
benchmark method dropped severely when the unseen sound
target appeared, whereas the proposed method still had good
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detection performance. Because the method proposed in this
paper does not rely on the sound data itself, but on the
prior knowledge of the sound environment and the ability
to infer from human perception and recognition, we believe
that as long as the target sound belongs to the category of
UAVs, the neural signature corresponding to the new sound
target should be close to the same as the three presented in
this paper, combined with our feature extraction process, this
characteristic makes the scheme proposed in this paper have a
certain robust performance for STD. In the practical use, this
characteristic makes BCI developers need to worry less about
the sound materials used in the paradigm, thus reducing the
cost of training, and developers also can take this method as
a complementary or collaborative approach to perform a more
robust target detection.

There are still some limitations in this paper, which need to
be further improved in our future work. First, in the aspect
of decoding EEG signals, we used SVM to make a basic
attempt, and the decoding model in this paper has some room
for improvement from the perspectives of channel selection,
feature extraction, and classifier algorithm. Second, in this
paper, the three sound targets all belong to the category of low
SNR. Thus, the relationship between decoding performance
and SNR of sound targets were not investigated. Such rela-
tionship should be explored. In addition, online verification
of the whole acoustic target detection system is an important
issue. In the final detection system, this method can co-work
with an automated detection algorithm (for example in this
paper, the benchmark method).
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