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Abstract— Post-stroke therapy restores lost skills. Tradi-
tionally, patients are supported by skilled therapists who
monitor their progress and evaluate the program’s effective-
ness. Due to a shortage of qualified therapists, rehabilitation
facilities are both expensive and inadequate. Furthermore,
evaluations may be subjective and prone to errors. These
limitations motivate the researchers to devise automated
systems with minimal human intervention, therapist-like
assessment, and broader outreach. This article reviews
seminal works from 2013 onwards, qualitatively and quan-
titatively adapting the PRISMA approach to examine the
potential of robot-assisted, virtual reality-based rehabil-
itation and automated assessments through data-driven
learning. Extensive experimentation on KIMORE and UI-
PRMD datasets reveal high agreement between automated
methods and therapists. Our investigation shows that deep
learning with spatio-temporal skeleton data and dynamic
attention outperforms others, with an RMSE as low as 0.55.
Fully automated rehabilitation is still in development, but,
being an active research topic, it could hasten objective
assessment and improve outreach.

Index Terms— Automated stroke rehabilitation, VR-aided
rehabilitation, robot-assisted rehabilitation, data-driven
assessment, deep learning.

I. INTRODUCTION

STROKE is a common medical condition in which blood
supply to the brain is cut off, resulting in cell death. It is a

leading cause of disability worldwide [1]. A stroke may have
short or long-term consequences, as around 35% of patients
have deterioration in their cognitive and physical abilities [2].
However, many stroke patients can repair and re-learn motor
functions during the therapeutic time, according to study [3],
demonstrating the efficacy of rehabilitation therapy. Conven-
tionally, stroke rehabilitation begins when a physician deter-
mines the severity of the stroke. This rehabilitation process
can be of two types: inpatient rehabilitation, which takes
place in a hospital, and outpatient rehabilitation, which takes
place in the patient’s home. Inpatient rehabilitation treatments
often provide superior outcomes [4] as a consequence of the
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therapists’ continual supervision. On the contrary, outpatients
seldom have therapists there to help them through the recovery
process. Thus, the patients doing the exercises are not mon-
itored or assessed except during the follow up assessments.
This leads to a possibility that the patients are not doing the
exercises properly, resulting in subpar outcomes.

Despite the benefits of inpatient rehabilitation, treating every
patient in the hospital is not always practical. One of the
primary reasons for this is that it needs a significant amount of
physicians. There are around 300 trained therapists for every
million individuals in affluent nations such as the United States
or Australia [5]. This results in around 65% of persons in the
United States obtaining rehabilitation treatments [4]. This is
exacerbated in developing nations, where about 70% of all
stroke cases occur [6]. Given the high rehabilitation demands
in these nations, there are less than ten qualified therapists per
million persons [7]. In the United States, the average lifetime
cost of inpatient rehabilitation and follow-up care is around
140,048 dollars per person [8]. Another issue that emerges
in both inpatient and outpatient settings is that exercise eval-
uations, when they occur, are conducted by humans. This
might result in subjective and biased judgments, and ultimately
hinder the progress. While the expense of rehabilitation can
not be eliminated instantly, the paucity of qualified therapists,
the subjective nature of evaluation, and even the shortcomings
of at-home therapy may all be addressed by automating the
stroke recovery process.

Automated stroke therapy systems can be classified into
two categories: robot-assisted and virtual reality-based. In a
robot-assisted system, the patient is aided in doing the exer-
cises by a therapy robot or an exoskeleton. On the contrary,
in VR-assisted systems, patients are immersed in a virtual
environment, often a game, that assists them in doing the exer-
cises. In all cases, the overall process can be broken down into
three smaller tasks: assisting with exercises and subsequent
monitoring to gather data, evaluating the data, and producing
correct conclusions about the exercise’s quality. Each of these
three jobs is automatable. However, our review of the literature
reveals that automated control of the peripheral devices used
in stroke rehabilitation systems is almost never used. This
is possibly due to the hazards associated with such devices
such as device malfunctions, and abrupt behaviours in the
presence of the vulnerable patients. However, data collecting
and analysis are automated in many works, provided that the
peripherals are correctly installed. Additionally, therapists still
have a part to play in automated systems regarding initial
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Fig. 1. A comparative overview between traditional vs automated
post-stroke rehabilitation systems.

diagnosis, stroke severity analysis and planning the rehabil-
itation program. A comparative overview between traditional
vs automated post-stroke rehabilitation systems is drawn in
Fig. 1. The diagram above depicts the traditional process,
which need expert assistance at each stage. The image below
depicts the automated procedure, which still involves therapists
in the rehabilitation planning. However, the next steps only
require minimum human intervention. The second step (data
collection) entails gathering information from a variety of
sensors (Kinect v2 [9], Gyroscope [10], IR cameras [11],
Vicon [12]). Step three involves feeding this input data into an
assessment model, which then gives performance evaluation
and recommendations in step four. This is then forwarded
to both the doctor and the patient as feedback so that the
rehabilitation plan, as illustrated in step five, may be revisited
as well as enables patients to comprehend their performance
and make necessary adjustments.

A. Related Surveys

This section reviews surveys on automated rehabilitation
systems, broadly classifying them into two subcategories.

1) Robot-Assisted Stroke Rehabilitation Systems: The most
common application of robotics in automated rehabilitation
systems is actively assisting the patient using an exoskeleton or
a robotic manipulator. Frolov et al. [13] investigated the neuro-
physiological aspects of such devices in rehabilitation, whilst
Jarasse et al. [14] reviewed their potential for functional recov-
ery. Additionally, the study in [14] sought to identify flaws in
the mechanical designs and different control algorithms for
such systems. The authors in [15] explored the role of thera-
peutic robots such as ARMin [16], the HapticWalker [17], and
others in motor function rehabilitation, rehabilitation gyms,
and robot-assisted telerehabilitation. However, these studies
focused only on robot-assisted systems, leaving the automated
evaluation of exercises untouched.

2) VR-Assisted Stroke Rehabilitation Systems: Virtual
reality-enabled systems emulate real-world experiences in
a virtual environment, often via the medium of a game.
The patient gets engaged in exercise-like movements while
playing games, and their performance is assessed either by
the game score or an automated assessment performed by

TABLE I
A COMPARISON BETWEEN OUR STUDY AND RELATED SURVEYS

(‘-’ = ‘NOT APPLICABLE’,‘QA’ = ‘QUANTITATIVE ANALYSIS’)

machine learning models. Tamayo-Serrano et al. [18] identified
20 distinct features of VR-based systems’ quality, including
cost, difficulty, and rehabilitation types. However, they did
not incorporate any quantitative analysis. Authors in [19]
discussed the technical design aspects of VR-based neuro-
muscular rehabilitation systems and provided a comparative
perspective. Webster and Celik [20] conducted a comprehen-
sive assessment of the literature on the use of the Kinect
in elderly care and exercise monitoring (e.g., fall detection
and risk reduction), as well as exercise games. However, the
drawbacks of the surveys regarding robot-assisted systems are
persistent in the above surveys as well. Furthermore, none
of the aforementioned polls include a quantitative analysis of
available solutions.

Apart from the works mentioned above, Langan et al. [21]
reviewed stroke rehabilitation technologies via questionnaires,
revealing that traditional methods continue to outperform more
recent stroke rehabilitation systems that incorporate games,
virtual reality, and so on. Besides, authors in [22] covered
the wearable devices used to gather patient exercise data, and
according to their analysis, wearable gloves give the most
accurate measurements of all the devices. It is quite apparent
that the surveys of stroke rehabilitation systems are restricted
in scope, concentrating on either robot-assisted or VR-assisted
systems. Moreover, the techniques for exercise assessment
remain unexplored. This has brought out another gap in this
field: quantitative analysis of automated exercise assessment.
Our research attempts to provide a comprehensive picture of
rehabilitation systems by examining works on robot-assisted,
virtual reality-based rehabilitation and automated assessments
through data-driven learning. Table I provides a summary of
the existing survey papers discussed above.

B. Contributions

This is the only review article that we are aware of that
has a complete and systematic discussion on automated
stroke rehabilitation systems. Rather than focusing on a
single aspect or branch of rehabilitation systems, we examine
them from a broader perspective to see how state-of-the-art
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Fig. 2. The article selection process using PRISMA.

technology in automated rehabilitation systems functions.
We also shed light on the research challenges and the
direction of future research. In addition to the qualitative
discussion, we provide a quantitative analysis by evaluating
a variety of methodologies using publicly available datasets.
In particular, throughout this article, we opt to answer the
following research questions:
RQ1: Do automated rehabilitation systems function as
efficiently as traditional therapy?
RQ2: Are such efforts properly clinically validated?
RQ3: To what extent does automated diagnosis need human
intervention?
RQ4: How closely does an automated method’s diagnosis
match the physician’s assessment?
RQ5: Does deep learning outperform feature
engineering-based machine learning algorithms for exercise
assessment?
RQ6: Can we move past the existing challenges associated
with automated rehabilitation systems and exercise
evaluations?

C. Survey Methodology

The works included were chosen using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) technique [23]. As shown in Fig. 2, the selection
progressed through four phases: identification of relevant
papers; further screening of those based on title and abstract;
determining their eligibility against a specific set of criteria;
and lastly, inclusion of the chosen works. The works were
identified first by searching for “automated stroke rehabilita-
tion systems,” “robot-assisted stroke rehabilitation systems,”
“virtual reality-based rehabilitation systems,” and “machine
learning-based rehabilitation exercise assessment.” Hence,
61,900 publications relating to stroke rehabilitation systems
and evaluation were found. The following criteria apply to
the first screening: the article must have been published in a
peer-reviewed journal or conference and be deemed relevant to
this review based on the title and abstract. Following an initial
screening, the paper count was decreased to 700 papers. The
next step was eligibility, which considered the overall quality
of the article, including qualitative and/or quantitative analysis.
This resulted in the final inclusion of only 48 publications
on automated stroke rehabilitation systems and assessment,
including 24 articles on robot-assisted or VR-based systems,
7 datasets and 17 articles on machine-learning-based exercise
evaluation.

The remainder of the paper is structured as follows.
In section II, we review the notable works in automated stroke
rehabilitation systems. We discuss the work done in automated
exercise assessment methods, including available datasets,
in section III. Section IV offers a quantitative comparison of

several state-of-the-art assessment methods and a side-by-side
comparison of deep learning and feature engineering-based
learning approaches. We shed light on some of the existing
challenges in the field in section V. Section VI holds a
comprehensive discussion of the findings and answers to the
research questions presented before. Finally, in section VII,
we provide our conclusion and briefly address future prospects.

II. RESEARCH IN AUTOMATED POST STROKE

REHABILITATION SYSTEMS

This section reviews notable works in automated stroke
rehabilitation, broadly divided into two branches: robot-
assisted and virtual reality-assisted stroke rehabilitation sys-
tems. Since the exercise evaluation techniques are the same
for both branches, it is discussed later in Section III.

A. Robot-Assisted Systems

Robot-assisted stroke rehabilitation solutions include
exoskeletons and assistive or demonstrative robots. Although
similar systems, e.g., the hybrid assistive limb (HAL) [24],
have existed for some time, the cost has always been a
concern. However, recent advancements have resulted in a
cost reduction and performance on par with, if not better than,
traditional treatment [25]. Aprile et al. [26], conducted a study
in which three robots assisted 51 patients with shoulder, elbow,
and finger flexions while a sensor-based device recorded their
movements. To evaluate the patients, cognitive tests (e.g.,
digit span [27], Oxford cognitive test [28]), motor (FMA and
Motricity index [29]) and disability scales (modified Barthel
index [30]) were used. These measures improved significantly,
demonstrating the effectiveness of robot-assisted treatment.
Ou et al. [31] developed a wearable exoskeleton to allow more
thumb joint mobility of stroke patients. However, no clinical
evaluation of the exoskeleton was conducted.

Pilla et al. [32] suggested a randomized trial method based
on a robotic exoskeleton, the NEUROExos Elbow Module
(NEEM) to determine the effectiveness of a rehabilitation
system. The authors of [33] suggested a clinical study using
four distinct robotic setups for upper limb rehabilitation of
190 stroke patients. They reported that the mean FMA score
increased from the baseline by 8.50 and 8.57 points, respec-
tively, in the robot-assisted and conventional therapy group.
This indicates that, robotic rehabilitation barely outperforms
conventional therapy, albeit at a much higher cost. This is
consistent with the findings of [34].

A number of studies have examined the use of electromyog-
raphy (EMG) signals to control robotic systems. For instance,
Qian et al. [35] developed an EMG-driven neuromuscular
electrical stimulation (NMES) robotic arm for upper limb reha-
bilitation. They examined the device’s influence on the FMA
score, the Modified Ashworth Scale (MAS) [36], the ARAT
score [37], and the Functional Independence Measurement
(FIM) on 24 subacute stroke patients. The results indicated
remarkable improvements in all measures rehabilitated by the
NMES-robot. Similarly, authors of [38] used EEG and EMG
signals for brain intent recognition to develop a brain machine
interface (BMI) to enhance the functionality of an exoskeleton.
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Baca et al. [39] suggested a wearable, modular robotic system,
whereas Lu et al. [40] proposed an EMG-driven exoskeleton
hand controlled by the patients’ intentions. Apart from [39],
which did not have any clinical validations to date, all the
others indicate significant improvement in all metrics.

Some studies have sought low-cost alternatives to robotic-
assisted rehabilitation systems. The authors of [41] applied
their system in a treatment gym, and found the system
to be nearly 1.5 times less expensive than traditional one-
to-one therapy while still providing better results. Reduced
reliance on pricey hardware would be an alternate strat-
egy to increase cost-effectiveness. Using smaller end-effector
robotic devices instead of full-scale robots or exoskeletons can
lead to less expensive yet effective rehabilitation solutions.
Perfect examples are MIT-Manus [42] and REAplan [43].
These, when combined with appropriate software, can form
a reliable system. The initial study of [44] had explored
the neuro-rehabilitation capabilities of an MIT-Manus based
system, finding no negative consequences. This was further
proved in the work of Heins et al. [45], that presented
ROBiGAME, playable with a REAplan controller for improv-
ing stroke patients’ motor and cognitive functionality. A feasi-
bility study conducted with two stroke patients observed that
patients loved playing the game. However, the impact on stroke
patients’ rehabilitation has yet to be determined.

B. Virtual Reality Aided Post Stroke Rehabilitation
Systems

Virtual reality (VR) technology has experienced tremendous
success in recent years, gaining widespread appeal during the
previous decade. Rather than having physical rehabilitation
sessions, a simulated rehabilitation program can be held. These
novel systems are appreciated by the patients as well [46].
It is worth noting that, a few researches found that there is
no statistically significant advantage of VR over traditional
therapy in terms of overall performance. Adie et al. [47]
examined 240 patients with arm weakness who were randomly
assigned to daily exercise with a VR device or with simple
arm exercises performed at home. Nevertheless, there were
no significant variations in mean ARAT scores and other
measures between the two groups. Instead, the VR-based
rehabilitation would cost the patients an additional £336.
Rosiak et al. [48] found similar results with little difference
measured in the Vertigo Symptom Scale questionnaire [49].
Schuster-Amf et al. [50] did not find significant improvements
in their chosen parameters (Box and Block Test [51], the
Chedoke-McMaster Arm and Hand Activity Inventory [52],
Stroke Impact Scale (SIS) [53]) either.

In contrast to these, numerous studies revealed that
VR-based rehabilitation systems outperform conventional
methods. For example, Ho et al. [54] found that VR-based
treatment significantly improved NIHSS and modified Rank-
ing Scale (mRS) scores in an investigation with 100 stroke
patients. Similarly, Joo et al. [55] saw substantial improve-
ments in Jebsen Taylor hand function test (JTT) [56] and
Michigan Hand Outcome Questionnaire (MHQ) [57] scores.

The majority of the works mentioned above have taken
a gamified approach, that is, they have built games that
can be played in virtual reality and aid in the rehabilitation
process. In fact, this approach is predominant in almost all the
state-of-the-art works in VR-based rehabilitation. For instance,
Warland et al. [58] presented an upper limb rehabilitation
system that included both exercise and an apple catching
game. Overall, all evaluated parameters improved, with five
subjects reporting minor side effects. Elor et al. [59] also
presented an immersive VR game for stroke therapy based
on the Constraint-Induced Movement Therapy (CIMT) [60].
According to their findings, players expressed an interest in
utilizing their stroke-affected arms to enhance game rewards.
Compliance with affected arm usage was as high as 78% for
easy and medium difficulties, a substantial increase over the
32% compliance rate in traditional CIMT [61].

In contrast to gamified approaches, in which patient reha-
bilitation is directly linked to in-game scores, a few studies
have used external sensors to monitor and assess exercises
completed with the assistance of VR systems. For example,
Luca et al. [62] performed neurocognitive rehabilitation of
patients with the help of the BTs Nirvana system along with
an infrared video camera for monitoring and assessment. The
results indicated that patients in the VR group progressed
much more than those in the control group in cognitive
rehabilitation. A similar observation is made in [63], where
VR-based balance training improved patients’ foot placement
performance.

Additionally, a few studies have included internal EEG
and EMG signals to aid and assess rehabilitation progress.
Vourvopoulos et al. [64] presented a head-mounted brain-
computer interface (BCI) for post-stroke rehabilitation based
on the REINVENT system [65]. The authors of [66] compared
the performance of EMG and EEG signals used as biofeedback
in VR-based rehabilitation and found participants performing
much better with EMG than with EEG feedback. A summary
of the robot-assisted and VR-based works are presented in
Table II and Table III, respectively.

Discussion on RQ1 & RQ2
It is evident by the studies mentioned above that the

patients cope well with such systems, with initial feasibil-
ity assessments indicating high levels of agreement. Such
systems are comparable to traditional therapy and often
yield greater results, which answers RQ1. In response to
RQ2, Tables II and III demonstrate that the majority of
the works performed a clinical study. They conducted a
number of clinical trials and validations using a variety
of patients and therapists, confirming that automated
procedures are consistent with the clinical standard.

III. AUTOMATED EXERCISE ASSESSMENT

Automated stroke rehabilitation systems must incorporate
some form of assessment to monitor the system’s efficacy
and ensure optimum recovery. This section summarizes the
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TABLE II
OVERVIEW OF EXISTING ROBOT-ASSISTED STROKE REHABILITATION SYSTEMS (Y = YES, N = NO, M = MARGINAL, ‘-’ = NOT STUDIED)

research on automated exercise evaluation that has been con-
ducted. The majority of the works use some sort of supervised
learning, and therefore we begin with a discussion on the
datasets available for stroke rehabilitation.

A. Existing Datasets

In this section, we discuss some existing, publicly available
datasets that are directly applicable for post stroke rehabilita-
tion exercise assessment.

1) Selection of Available Datasets: The PRISMA
approach [23] was adopted for selecting datasets. The
identification was carried out using the keywords “Stroke
rehabilitation exercise dataset” and “Exercise dataset,” which
resulted in the selection of 12,600 papers. The initial screening
took into account the following criteria: dataset availability,
suitability for poststroke rehabilitation exercise evaluation,
whether the dataset is publicly available or not and whether
the datasets are meant for action recognition but can be used
in this context. After the initial screening, the number of
articles was reduced to 200. Following that, the datasets’
eligibility was verified, resulting in a further reduction to
25. The primary criterion was that the dataset be properly
annotated and that the data included be of high quality. This
reduced the number of datasets presented to only seven.

2) Overview of Selected Datasets: Here, we briefly describe
the datasets deemed to be related to the field of auto-
mated stroke rehabilitation systems and assessment. Table IV

presents a summarized description of the publicly available
datasets.

a) IntelliRehabDS (IRDS) dataset [67]: The dataset captured
the 3D data of nine gesture movements performed by 29 sub-
jects, with 15 being patients and the rest, healthy. Two separate
professionals annotated the type of gesture, position of the
subjects, as well as the correctness of the movements with
an agreement level of 88%. The patients were given the
choice to perform the movement either sitting or standing
while the healthy subjects perform the both. Even though the
dataset consists of both correct and incorrect movements with
appropriate labels, the ratio of them is highly unbalanced.

b) Quality of movement assessment for rehabilitation dataset
(QMAR) [68]: It is worth mentioning that the dataset is
comprised of movement data from 38 healthy participants
who were simulated to have Parkinson’s disease, a stroke,
or a limp. A physiotherapist trained the individuals to do
two movements: walking and sitting up and down, and their
performance was graded in three different ranges. The dataset
contains RGB, depth, and skeleton data pertaining to the
individuals’ motions, with six views accessible for the RGB
data and two views available for the depth and skeleton data.

c) The multi-modal exercise (MEx) dataset [69]: The dataset
contains 6262 occurrences of seven exercises carried out by
thirty people. 47% of individuals were between the ages of
18 and 24, while the remainder were between the ages of
24 and 54. At the start of each exercise, volunteers were
instructed to complete it for a maximum of 60 seconds while
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TABLE III
OVERVIEW OF EXISTING VR-BASED STROKE REHABILITATION SYSTEMS (Y = YES, N = NO, M = MARGINAL, ‘-’ = NOT STUDIED)

their movements were recorded using two accelerometers,
a pressure mat, and a depth camera.

d) KIMORE dataset [70]: The subjects were divided into
two groups: the control group (CG) and the pain and postural
disorders (GPP) group with chronic motor disabilities. The CG
group is further divided into two subgroups: expert physio-
therapists and non-experts. Clinicians chose the following five
exercises: upper limb movement stretching the trunk muscles,
trunk movement in each of the three planes, and lower limb
movement. Experts evaluated each exercise by watching the
videos and responding to a ten-item Likert questionnaire [71].
Three scores were calculated based on the responses: the
clinical total score, the clinical primary outcome score, and
the clinical control factors score.

e) UI-PRMD dataset [76]: The dataset contains joint angle
and position measurements from ten healthy people perform-
ing ten exercises. A Vicon optical tracker and a Kinect
camera were used for capturing the exercise motions from
22 different joints. Ten episodes of the ten exercises were
executed suboptimally by the individuals and are included as
instances of incorrect movements for the test set. The UI-
PRMD dataset only has correct/incorrect (binary) annotation
because it was originally designed for cassification tasks.
An annotation scheme based on a gaussian mixture model was
later proposed by Liao et al. [77] for producing assessment
scores. This model determines the deviation from the ideal
movement patterns, which are obtained from healthy patients

executing the exercises to their fullest potential. A monotonic
scoring function is used to further transform this deviation into
the 0–1 range. This scoring system may predict movement
patterns with a satisfactory level of justification, according to
experimental results from [77] and [87], with the reference
movement receiving a higher score and the incorrect move-
ment receiving relatively low scoring.

f) AHA-3D [83]: The dataset contains 79 skeleton videos
of exercises by 21 subjects. The skeletal data was collected
using Kinect v2 3D cameras in conjunction with RGB cam-
eras, and raw data were labeled using a custom-built GUI.
The subjects were instructed to perform four exercises: a 30-
second chair stand to assess lower-body strength; an eight-foot
up and go to assess fall risk; a two-minute step test to
determine functional fitness, and a unipedal stance to check
static balance.

g) Toronto rehab stroke pose (TRSP) dataset [84]: This
dataset includes motion data from subjects performing stroke
rehabilitation exercises. The stroke survivors had experienced a
subacute or chronic stroke with disability of their upper limbs.
A 2 DOF haptic robot was used to assist in shoulder and elbow
movement rehabilitation. In addition to the scripted motions
used with stroke patients, healthy participants were instructed
to do motions imitating common post-stroke compensatory
movements. The motions were classified and labeled by two
specialists as following: no compensation, leaning forward,
shoulder elevation, and trunk rotation.
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TABLE IV
OVERVIEW OF PUBLICLY AVAILABLE DATASETS

B. Works in Automated Exercise Assessment

Automated exercise assessment can be regarded as a classifi-
cation task, categorizing a movement into correct or incorrect,
or a regression task, predicting the score of a movement.
We continue our discussion by grouping the works in auto-
mated exercise assessment based on the task type and its
significance.

1) Exercise Correctness Classification: Exercises can be
classified according to the accuracy with which they are per-
formed. According to the literature, feature engineering-based
algorithms have been the most frequently used. For instance,
in [88], the authors used K nearest neighbor and SVM
classifiers to identify compensatory motions in the pressure
distribution, achieving F1 scores as high as 0.993. Jung
et al. [89] on the other hand used model trees [90] and found
modest results with an F-measure of 79.29 percent and a ROC
of 0.91.

Lee, in [91], used a hybrid approach that combines a
rule-based knowledge model and a predictive model for clas-
sifying the quality of motion as 0, 1, or 2. The findings
indicated a good agreement level with the therapists’ assess-
ments. On this basis, Lee et al. [92] investigated several such
hybrid models using a variety of classifiers, including Neural
Networks (NNs), SVMs, and others and discovered that NNs
produce an effective result. This was further demonstrated
in [93], which combined reinforcement learning with a variety
of classifiers. In [94], the authors developed an ensemble
learning model composed of 18 classifiers, each trained on
a random subspace. Using six categories, they found 92%
accuracy for Brunnstrom and 82 percent for FMA scoring
systems.

Another branch in the literature investigated the potential of
deep learning for exercise quality classification. Zhi et al. [85]
investigated the classification of compensatory motions in
rehabilitation using both SVM and RNN classifiers where
RNN did not perform as expected. Kaku et al. [95] also
achieved unsatisfactory results with their CNN architecture
paired with embedding modules, with an average accuracy of
70%. However, the work of [96] obtained great results, even
in semi and uncontrolled environments. Zhu et al. [97] was
also proven successful with their suggested multipath CNN,
which was composed of a dynamic convolutional network

called D-CNN and a state transition probability CNN called
S-CNN, claiming a test accuracy level greater than 90%.

2) Exercise Quality Score Prediction: Rather than anticipat-
ing discrete class labels as in classification approaches, the
work in this section attempts to assign a continuous value
as an assessment score compared to that of a professional
therapist. Typically, prior research in this field employs a
distance function to assess the quality of performed and
prescribed exercise [99], [100]. These approaches necessitate
multiple pre-processing phases, impeding the system’s end-
to-end processing. In fact, hand-crafted feature based works
are still prominent in the literature. The works of [101]
and [89] found great results with their selection of features.
Lee et al. [102] calculated the range of motion, their smooth-
ness, and the occurrence of correct and erroneous movements.
These features also worked well in score prediction, achieving
a high level of agreement with the therapists. In another
work, Liao et al. [77] presented a Spatio-temporal network
capable of evaluating an exercise. They enhanced performance
by combining temporal pyramids, multi-branch convolution,
and recurrent layers. They used convolutions on tensors of
joint data to disrupt the natural graph structure’s fine spatial
organization within the human body. Their approach yielded
an average absolute deviation of only 0.02527.

3) Data Input Length: Input length of the sensor data plays a
vital role in assessing the exercises. In many cases, the patient
might perform exercises at different speeds and the assessment
score should not vary if they are performed correctly. However,
most approaches keep the length of the exercise video fixed
while training models, causing useful information to be left
out. Some works such as [96] and [95] attempt to address this
by choosing an input length that provides sufficient to capture
movement data of all patients. But if a test sample contains
useful information exceeding the predefined length, the model
might fail to provide consistent results. One technique for
dealing with this is dynamic time warping [104], which can
handle temporal sequences of different lengths. This has been
a widely used technique of past assessment tasks [100], [103],
[105], [106] and even in recent works [107], [108]. A better
solution was proposed by Zhu et al. [97] that trained a separate
CNN network, D-CNN, to deal with dynamic input lengths.
Recently, Deb et al. [87] proposed graph convolution based
architecture for assessing the rehabilitation exercise to handle
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TABLE V
EXISTING REHABILITATION ASSESSMENT WORKS (SDP = STRUCTURAL DATA PRESERVATION, CC = CORRECTNESS CLASSIFICATION,

SP = SCORE PREDICTION, FE = FEATURE ENGINEERED, DM = DEEP MODEL, ACC = ACCURACY, MAD = MEAN ABSOLUTE DEVIATION)

variable length and preserve local connectivity between each
joint.

Table V presents a summarized description of existing
literature. One key observation is that only [97] and [87]
can deal with varied length inputs. Another issue is that
most works adhere to the upper body rehabilitation exercise.
It would be better to incorporate lower body rehabilitation
exercise data to make the algorithms more robust. Literature
suggests that preserving the topological structure of human
skeleton has become the trend in action recognition tasks
for its great performance [109], [110], [111]. In this line of
works, recently Deb et al. introduced graph convolution with
a dynamic attention module to assess rehabilitation exercises.
Their results significantly outperform the current research,
demonstrating the efficacy of structure-aware learning.

Discussion on RQ3 & RQ4
Our analysis here is tailored towards the research ques-

tions 3 and 4. In the 3rd research question about therapist
involvements, all of the works report the involvement of
therapists in one way or another. Thus, these systems do
not eliminate the need for therapists, but rather assist
them and alleviate some of the dependency on them.
The consequent research question is directly addressed
by the authors of [91], [92], [102] who directly report
high agreement levels among therapist and automated
assessment.

IV. QUANTITATIVE ANALYSIS

A qualitative analysis of the existing literature is presented
in Section III, where the datasets, number of subjects, and
evaluation protocols differ. This non-uniformity prevents us
from comparing the results of different methods on the
same scale. Therefore, we conduct a quantitative study in
which automated assessment methods are evaluated on two
datasets: UI-PRMD [76] and KIMORE [70], using following
performance metrics: Mean Absolute Deviation (MAD), Mean
Absolute Percentage Error (MAPE), and Root Mean Squared
Error (RMSE) [77], [87]. It should be noted that the results
reported in this section are generated in our own experimental
setup rather than being directly adapted from the research we
compared.

To draw the comparative analysis, we chose seven deep
learning methods, including [87] and [77], which were orig-
inally proposed for rehabilitative exercise assessment. Since
there is a limited corpus of work on exercise assessment in
the extant literature, the remaining five models are drawn from
human action recognition. Existing work on action recogni-
tion can be broadly classified as: CNN, LSTM, and graph
convolution-based approaches. Therefore, we choose [115]
as CNN, [114], [117] as LSTM, and [87], [109], [112],
[113] as graph-based regressors. For the feature engineering-
based learning, we apply four regressors: K-Nearest Neigh-
bour (KNN), Random Forest (RF), Support Vector Machine
(SVM), Neural Network (NN), on features generated by [116]
and [102].
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TABLE VI
ANALYSIS OF RESULTS BETWEEN DEEP LEARNING AND FEATURE ENGINEERING-BASED LEARNING APPROACHES ON KIMORE DATASET. THE

BOTTOM ROW INDICATES AVERAGE VALUE ACROSS ALL FIVE EXERCISES

The experimental results on the KIMORE dataset are pre-
sented in Table VI. We observe that, Deb et al. [87] (avg.
MAD 0.576) outperforms other methods in all the studied
metrics. This is articulated by the fact that they extended the
Spatio-temporal Graph Convolution Network (STGCN) with
a dynamic self-attention mechanism to extract discriminative
features from the structural information of the human skeleton.
Furthermore, because each exercise focuses on the movement
of a specific set of body joints, this self-attention mechanism
makes it easier for the network to include the role of joints in
varied exercises. In the squatting exercise (Ex 5), for example,
the ankle, knee, spine, and shoulder movement are critical,
whereas in the lifting arms exercise (Ex 1), the elbow, spine,
thumb, and wrist joint are more important than the rest of
the joints. Furthermore, they employ LSTM instead of global
average pooling to capture subtle sequential dependencies
residing in consecutive frames and to extract discriminative
temporal features from variable-length exercise data. The
approach by Liao et al. [77] (avg. MAD 0.960) came in
second best that adapted a 2D convolution based method.
However, 2D convolution treats the skeleton sequences in a
grid like fashion that unable to utilise the subtle information
contained in spatial characteristics. Yan et al. [109] (avg. MAD
1.124), used an STGCN that overlooked the sequential aspect
of the spatio-temporal features because of successive global
average pooling. Similarly, Song et al. [112] (avg. MAD 1.120)
proposed an STGCN utilizing multi-stream information with
joint attention mechanism. Furthermore, Li et al. [115] (avg.
MAD 1.384) proposed a hierarchical method as well and
aggregated features from point level to global co-occurrence
features. Multiple box filters are used in this hierarchical
convolution-based model to extract skeleton features, however
the spatial relationship between adjacent joints is missed,
making it unable to capture topological information.. Finally,
Du et al. [114] (avg. MAD 1.464) employed a hierarchical
RNN based approach. However, the RNN based approaches

only consider the temporal information but overlooks the
spatial information. Among the deep learning models, the
lowest agreement level with the therapists’ assessments is
acquired by the approach in [113] (avg. MAD 1.920) as
their model does not capture significant sequential connections
between subsequent frames due to many spatial and temporal
maxpooling layers.

Capacci et al. [116] and Lee et al. [91] adopted feature
engineering-based learning on KIMORE dataset to predict
the movement correctness score. However, the use of several
preprocessing stages restricts the model’s ability to capture
meaningful information from the movement data.

We conducted experiments on the UI-PRMD dataset in
Table VII. Here we found that graph convolution based
approaches, i.e., Deb et al. [87], Song et al. [112], Zhang
et al. [113] consistently outperform the rest of the approaches.
However, interestingly, Lee et al. [91], and Capecci et al. [116],
although being feature engineering-based approaches, perform
better than the rest of the deep learning methods. The reason
for this is that the UI-PRMD dataset contains a homogeneous
distribution of patients (i.e., ten healthy patients performing
10 exercises correctly and incorrectly) with a small number of
training samples. As a result, movement patterns became less
varied. As a consequence, unlike graph convolution-based
models, CNNs are unable to discern subtle differences
associated with each movement pattern due to disregarding
structural information.

A. Results Using RGB Camera

With the advancement of technology, depth cameras like
the Vicon, Kinectv1 [9], and Kinectv2 [9] are now more
affordable for use in healthcare facilities. However, rather
than solely relying on the advanced RGBD sensors, in this
section, we analyze the potential of using RGB cameras,
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TABLE VII
PERFORMANCE OF DEEP LEARNING VS. FEATURE ENGINEERING-BASED APPROACHES ON UI-PRMD DATASET USING MAD

a more economical solution for the assessment task Instead
of only relying on the more sophisticated RGBD sensors,
in this part we emphasize the more practical approach of
using RGB cameras for the assessment task. Since RGB
cameras are unable to provide skeleton information, we select
two 3D pose estimation algorithms: videopose3D [118] and
blazepose [119], to detect joint information automatically from
RGB information. Finally, we compare the performance with
RGBD sensors, i.e., Kinectv2 [9].

In Table VIII, we analyze the performances of the studied
approaches on RGB videos of patients performing exercises
as provided by the KIMORE dataset. To extract the 3D
poses from videos, we used two pose estimation algorithms:
BlazePose [119], (trained on MS Coco [120]) and Video-
Pose3D [118] (trained on Human3.6M [121]). We also com-
pare the results against the pose data extracted by Microsoft
Kinectv2 [9]. From the results, we observe that the Microsoft
Kinectv2 sensor surpasses the other two pose estimation
methods based on RGB cameras because it uses RGBD
information to detect human poses. In addition, GCN based
algorithms [109] perform well on BlazePose [119] because
they can exploit spatial information better than CNN based
approaches [77], [114], [115]. In the case of Deb et al. [87],
we found that BlazePose outperforms VideoPose3D since it
models the human skeleton with more joints (38 joints) than
the alternative (17 joints). The remainder of the approaches,
on the other hand, work rather well on VideoPose3D.
BlazePose adds unnecessary joint information that hinders
model performance for [77], [109], [114], [115], whereas Deb
et al. successfully ignores those via dynamic attention module.

B. Implementation Details

For models originally developed for assessing rehabilitation
exercises (i.e. [87] & [77]), we closely followed the proposed
architecture as described by the authors in the respective
papers. On the other hand, for human activity based models
( [109], [112], [113], [114], [115], and [117]), we replaced
the last softmax layer with a fully-connected layer with linear
activation in order to adapt them into the regression problem
setting. We use the skeleton data as provided by the KIMORE

and UI-PRMD to construct the skeleton graph for graph-based
approaches ( [87], [109], [112], [113]). Similarly, for CNN-
LSTM-based models ( [114], [115], [117]), we also use skele-
ton data as input and transform these sequences as proposed
by the respective authors. Regarding hyper-parameters, the
batch size, the learning rate, and the dropout rate are selected
from {16, 32, 64}, {2, 3, 4, 5, 6, 7}, and {10−2, 10−3, 10−4} via
grid search [122]. All the models are trained with the Adam
optimizer for a maximum of 100 epochs. The learning is termi-
nated if the validation loss does not decrease in consecutive
30 epochs. All the models are initialized randomly and the
results are reported by averaging over 10 runs.

For feature engineering-based methods, the features are
selected based on [116] and [102]. We used Neural Network
(NN) with the Adam optimizer for 500 epochs with a learning
rate of 0.0001, two hidden layers with 12 and 24 neu-
rons, respectively and Relu activation function. We also used
Random Forest (RF) with two maximum depths, K-Nearest
Neighbours (KNN) with 5 neighbors, and Support Vector
Machine (SVM) with a radial basis function (RBF) kernel.
We implement the machine learning algorithms (RF, KNN and
SVM) in sklearn.1 The NN models are implemented using
Tensorflow.2

Discussion on RQ5
This section attempts to provide a quantitative analysis of
some of the state-of-the-art works. Our analysis addresses
the fifth research question regarding hand-crafted features
and deep learning models. The results speak heavily
in favor of the deep learning models. In each of the
metrics, deep learning models performed considerably
better than feature engineering-based methods. This thus
proves conclusively that deep learning models should be
the primary modality in future research.

1https://scikit-learn.org/
2https://www.tensorflow.org
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TABLE VIII
RESULTS OF EXERCISE 5 OF KIMORE WHILE COLLECTING JOINT/SKELETON DATA USING VARIOUS POSE ESTIMATION ALGORITHMS

V. CHALLENGES IN AUTOMATIC STROKE

REHABILITATION

Devising an automatic stroke rehabilitation system suffers
from the unavailability of standard datasets, diversity in assess-
ment methods, high implementation cost, and subject’s safety
concerns which hinder its successful implementation. In this
section, we discuss these challenges in detail.

A. Inadequacy of Standard Data

Most stroke rehabilitation systems rely on data collected
from local IoT devices such as Kinect V2, BTs Nirvana,
and Vicon optical tracker, which are not publicly available.
Few datasets provide action recognition data that are con-
siderably different from rehabilitation exercises, particularly
in terms of motion profiles. Again, the majority of datasets
contain a limited number of samples from stroke patients,
while others contain just healthy participants imitating various
ailments [76]. Additionally, some datasets, such as UI-PRMD,
are not scored by medical specialists.

B. Non-Uniformity In Assessment

The assessment mainly examines the severity of a stroke
and the patient’s functional ability, which a therapist does in a
conventional system. This is highly subjective and frequently
varies from therapist to therapist. Even among therapists, there
is no universal agreement on using quantitative measures such
as the FMA, ARAT, or other custom scoring systems for
assessment purposes. The automated system also deals with
the same challenges, and therefore a universal method of
assessment is a must.

C. Increasing Cost of Rehabilitation

Our discussion, so far, indicates that automated systems
are, as of now, much more expensive than conventional
systems as the need for a skilled therapist still exists in both
systems for purposes such as rehabilitation program design
and final assessments. Automated systems provide superior
performance and acceptability while reducing reliance on
expert therapists, but at a higher expense. This increase in cost

can vary depending on the system. For example, the authors
in [47] reported that VR-based systems can cost on average,
£376 more than conventional therapy. Robotics-based systems
can cost significantly more. According to [34], such a system
could cost a patient between £666 and £1602 more than usual
care, depending on the intensity of the program. Nonetheless,
a trade-off exists between the expense of deployment and the
efficacy of rehabilitation methods. However, as technology
improves and costs decrease, automatic stroke rehabilitation
systems may eventually supplant traditional rehabilitation.

D. Safety Concerns

Safety concerns in such automated systems is a big con-
cern since it operates alongside patients in special care. For
instance, one critical feature is automatically detecting when
the patient or user of the system is experiencing discom-
fort [123]. Ergonomics of the devices used in the system
is another area of concern, with many of the works, such
as [45], [46], [59], and [66] reporting on the users’ affinity
with the system and ease of use. The system’s stability is
also a significant concern, given that the peripherals involved
in the system are in very close proximity with the users.
Although this is solely in the case of robotics aided systems,
other safety concerns mentioned above apply to immersive VR
based systems as well. Maintaining all of these safety features
is challenging since they add complexity to the system, making
mass deployment of such systems difficult.

Irrespective of that, getting over these hurdles and devel-
oping a safe-to-use rehabilitation system is crucial. Especially
since these systems promote at-home rehabilitation where the
patient is minimally supervised. Traditional inpatient rehabili-
tation therapy, despite its drawbacks, poses very few risk fac-
tors. Since the patients are constantly monitored, even if device
malfunctions occur, they are immediately resolved by experts.
Any sort of safety concerns can arise only at the time of
human negligence and extenuating circumstances. Also, since
the patient is observed and guided actively, negligence on the
patient’s part or misuse of assistive devices is minimal. On the
contrary, at-home rehabilitation systems pose significant risks
if not deployed correctly. Adding to the numerous safety
concerns mentioned above, negligence and device misuse by
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unsupervised patients can often create an unsafe environment
and lead to sub-optimal results.

E. Biological Implications

Although this paper focuses primarily on the technological
aspects of these automated systems, their biological implica-
tions should also be one of the main concerns. How such
systems interact with the physic of a patient must be studied
thoroughly before implementing such a system. Exoskeleton-
based systems often conduct such studies before designing
it [31], [39]. However, VR-based immersive systems rarely
mention such a design consideration. This might be because
such implications are less pertinent in their case. Nevertheless,
studying these implications could provide insights into a more
effective system overall.

Research shows that exoskeleton-based systems can reduce
muscle volume [124] and muscle force [125]. According to
these studies, exoskeletal assistance helps to activate muscles
better and achieve more efficient movements. In order to get
the optimal results, though, an early and intensive program
should be considered [126]. The severity of the stroke affected
also plays a part in rehabilitation [127]. One concern is
that over reliance on such assistive exoskeletons could create
problems with natural activation in the long run. In contrast to
robot-assisted systems, VR-based systems affect the users on a
psychological level as they engage the users to a great extent.
This has great implications as it can support behavioral and
habitual change [128], and increase their drive to complete the
exercises successfully. All of the works reporting on VR-based
systems demonstrate high user engagement and, in many
cases, improved performance in daily tasks.

F. Adaptation of Automated Rehabilitation Systems

As reported in [45], [46], [58], and [59], users show a
strong affinity for automated systems, despite some concerns
about higher costs. Some works report on the needs and
perspectives of the therapists involved in the deployment of
these systems. For instance, authors in [129] discussed the
key aspects for both improving patient movements and their
progress assessment. In addition, many studies have acquired
favor among physiotherapists as well [59] and [130]. Research
is still ongoing, though, to find out which modality (robotics
or VR) performs better, or which is more preferred.

Irrespective of that, there are also limitations to these
automated rehabilitation systems. One work has reported
on the poor generalization of results seen across such sys-
tems [131], which might not mirror the system efficacy. Skep-
ticism about the rehabilitation system itself is also reported
in the literature [132]. There also remains confusion and
a lack of available information on how to effectively use
the new technology [133]. Commercialization has also been
cited as a hindrance [132], as this can lead to biased results.
Finally, as of now, automated rehabilitation systems are quite
costly. Recent research, however, predicts that the shift toward
automating the rehabilitation system will reduce costs in the
future [127], [134], and allow better outreach. Thus, despite
these limitations, the world is moving in favor of such systems,

with the goal of providing affordable and available rehabilita-
tion to all.

G. Discussion on RQ6

Our final research question inquired about the possi-
bility to overcome the hurdles associated with automated
systems. We have already discussed some of the works
tailored to addressing these challenges. With constant
breakthroughs and efforts in the field, it is safe to predict
that these obstacles will be overcome in the near future.

VI. TAKEAWAYS

In this section, we present our findings according to the
research questions posed in Section I.

RQ1: Our first research question challenged the scope and
efficacy of automated rehabilitation systems. The literature
review in Section II clearly shows that automated systems
often exhibit better results than the conventional. Despite, the
scopes of such systems are still in doubt due to the costs
involved. Perhaps an automated system shared by a community
would be the answer to this problem.

RQ2: Our subsequent research question raised concerns
about the clinical validation. The standard approach towards
this is to take a population and divide them into two groups,
control and experimental. They are given therapy and the
results are evaluated in different stages, using different metrics.
From Table II and III, it is evident that most of the devel-
oped systems have either already completed clinical trials or
awaiting one.

RQ3: Regarding the question of human involvement in
automated systems, we have noticed that most of the works
involve therapists in one way or another. Even though we are
discussing automated systems, the exercise plan is always laid
out by skilled professionals. Human supervisors are used in
many of the works to assist and dictate the exercises, and also
annotate datasets. RQ4: As to the answer to the following
research question about the efficacy of such assessments, many
of the works feature high agreement levels with the therapists’
assessments [91], [92], [93], as well as high accuracy [94],
[96], [97] and F1 scores [88], [91] in exercise correctness
classification. This removes any doubts regarding the efficacy
of such systems.

RQ5: Our fifth study topic posed an age-old question:
is handmade feature-based learning better than deep learn-
ing methods? We show conclusive quantitative proof that
when compared side by side on two standard datasets such
as KIMORE (Table. VI) and UI-PRMD (Table. VII), deep
learning algorithms are superior compared to the traditional
hand-crafted. Especially in KIMORE, deep models conclu-
sively outperform the hand-crafted methods in every exer-
cise. In UI-PRMD dataset however, feature engineering based
learning performs better than all the deep learning methods
except for the work of Deb et al. [87]. The reasons for which
has been discussed in detail in section IV.

RQ6: Our final query was whether we can move past the
existing challenges. We have already discussed some of the
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approaches to solving the associated problems. A collective
approach can solve the inadequacy of data, which solely
depends on the enthusiasm of the researchers involved. A simi-
lar statement could be made for the non-uniformity issue. Even
the issue of increasing cost can be dealt with soon enough.
However, dealing with the safety concerns will be a daunting
task.

VII. CONCLUSION

The scope and promise of automated stroke rehabilitation
systems with minimum human intervention are presented in
our study. We have discussed cutting-edge methods for post-
stroke rehabilitation, as well as data-driven exercise assess-
ments. Our review of the literature suggests that automated
rehabilitation systems have a lot of promise and can outper-
form traditional therapy. It has shown high levels of agreement
with therapists’ ratings in a number of studies. On two
standard datasets, KIMORE and UI-PRMD, we offered a
quantitative study of several state-of-the-art evaluation meth-
ods and a side-by-side comparison of deep learning and
feature engineering-based learning approaches. The findings
show that the deep models that incorporate spatio-temporal
skeletal data and a dynamic attention module is extremely
useful in rehabilitation assessment. We believe these auto-
mated technologies have the potential to make rehabilitation
treatments more widely available. Future studies in this sector
should undoubtedly focus on finding a cost-effective solution.
Deep learning models should be investigated further, and an
integrated strategy to gather real-world exercise data should
be actively sought. Few shot [135] or zero shot [136] learning
methods could be tried out in the absence of substantial
datasets. These developments could eventually lead to a
society where everyone has access to efficient rehabilitation
services.
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