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(MI), motor preparation (MP), and motor execution (ME).
Motor-based BCIs provide an active rehabilitation scheme
for post-stroke patients. However, BCI based solely on
MP was rarely investigated. Since MP is the precedence
phase before MI or ME, MP-BCI could potentially detect
brain commands at an earlier state. This study proposes a
bipedal MP-BCI system, which is actuated by the reduction
in frontoparietal connectivity strength. Three substudies,
including bipedal classification, neurofeedback, and post-
stroke analysis, were performed to validate the performance
of our proposed model. In bipedal classification, functional
connectivity was extracted by Pearson’s correlation model
from electroencephalogram (EEG) signals recorded while
the subjects were performing MP and MI. The binary clas-
sification of MP achieved short-lived peak accuracy of
73.73(±7.99)% around 200-400 ms post-cue. The peak accu-
racy was found synchronized to the MP-related potential
and the decrement in frontoparietal connection strength.
The connection strengths of the right frontal and left parietal
lobes in the alpha range were found negatively correlated to
the classification accuracy. In the subjective neurofeedback
study, the majority of subjects reported that motor prepara-
tion instead of the motor imagery activated the frontopari-
etal dysconnection. Post-stroke study also showed that
patients exhibit lower frontoparietal connections compared
to healthy subjects during both MP and ME phases. These
findings suggest that MP reduced alpha band functional
frontoparietal connectivity and the EEG signatures of left
and right foot MP could be discriminated more effectively
during this phase. A neurofeedback paradigm based on
the frontoparietal network could also be utilized to evaluate
post-stroke rehabilitation training.

Index Terms— Brain–computer interface, functional
connectivity, motor preparation, motor imagery,
neurorehabilitation.

I. INTRODUCTION

BRAIN-COMPUTER interfaces (BCIs) are an emerging
technology that allows users to communicate with exter-

nal devices such as computers and exoskeletons by modulating
their brain activity. Major efforts have focused on the develop-
ment of BCIs. Numerous research have showed the possibility
of computer-embedded devices such as robot [1], cursor [2],
exoskeleton [3], wheelchair [4] and speller [5] to be controlled
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using electroencephalogram (EEG) signals. Steady-state visual
evoked potential (SSVEP) and P300 evoked potential are
exogenous BCI control signals, which require users to gaze
at external stimuli such as flickering frequency or flashing
letters to generate specific brainwaves [6], [7]. SSVEP and
P300 BCI systems require little training time compared to
MI-BCI. However, SSVEP and visual-based P300 require
visual stimulus and tend to fail to generalize to patients suffer-
ing from uncontrolled eye movement [8]. On the other hand,
an endogenous BCI system based on motor imagery (MI) sen-
sorimotor rhythms requires no exogenous stimulus [9]. In the
development of MI-BCI, users have to be trained to produce
overt imagery movement of body parts such as arm, foot,
or tongue [10], [11]. However, the performance of lower limb
MI remains low because the motor cortex areas responsible
for the activity in each foot are anatomically close to each
other [12]. Studies based on functional magnetic resonance
imaging [13], functional near-infrared spectroscopy [14], and
EEG band power [15] found no significant difference between
foot MI. Recent research attempted to classify lower limb
motor activity based on the beta rebound and reported an
average accuracy of 69.3% [16].

Functional connectivity estimated from macro-scale brain
areas has been extensively studied to characterize various neu-
rological disorders, such as schizophrenia [17], epilepsy [18],
[19], Parkinson’s disease [20], [21], Alzheimer’s disease [22],
mood disorders [23], [24] and attention deficit hyperactivity
disorder [25]. A recent review [26] has discussed the appli-
cations of EEG-based functional connectivity and effective
connectivity computed by Pearson’s correlation, magnitude
squared coherence, phase-locking value, transfer entropy, mul-
tivariate autoregression, directed transfer function, and partial
directed coherence in the domain of upper limb MI-BCI.
Moreover, given the fact that the cortices of the lower limb are
anatomically close to each other [12], functional connectivity
derived from EEG has shown superiority in distinguishing both
upper and lower limb MIs compared to localized features such
as common spatial pattern and band power [27], [28].

Despite major advancements in BCI research, around
15-30% of the population underperformed in producing neural
signals to operate BCI systems [29], [30]. Recent studies have
identified the inter-subject functional frontoparietal connectiv-
ity markers that contribute to the upper limb MI-BCI per-
formance [31], [32]. However, the intra-subject mechanism of
imagery that contributes to the enhanced MI-BCI performance
was not investigated. These frontoparietal connections could
potentially act as a BCI actuator, to filter the BCI commands
estimated as low performing. Besides that, motor activities
are mainly comprised of two modes, which are covert motor
preparation (MP) or covert imagery of motor execution (MI)
and overt motor execution (ME). Conventional MI-BCIs rarely
independently evaluate the performance of MP or MI. In most
cases, the performance was evaluated from time-series EEG
signals which span both MP and MI. These indiscriminate
paradigms were unable to pinpoint the exact mechanisms for
high-performing motor-based BCI. Although several efforts
have attempted to classify upper limb MP prior to both ME
and MI [33], [34], the classification performances of MP and

ME/MI were not simultaneously compared. The classifica-
tion of MP would allow a more natural and instant control
as brain commands could be detected in the early phase.
Hence, we demonstrate the feasibility of a frontoparietal-
connectivity-actuated lower limb MP-BCI system, using a
wearable wireless EEG system. We also showed that this
system could provide a new method of neurorehabilitation
based on functional frontoparietal connectivity, to monitor the
recovery outcome of rehabilitation therapy in real time.

The main novelty of this study is the implementation
of a frontoparietal-connectivity-actuated lower limb MP-BCI
system. Previous literature on connectivity methods has not
investigated how the functional frontoparietal connectivities
correlate to the bipedal classification performance during MP
and MI phases. This study is an extension of our previous
study. In [28], we successfully classified the functional con-
nectivities of healthy individuals in 1-second bipedal motor
imagery tasks with promising accuracy. Hence, in this current
study, we further evaluate the distinguishability of functional
connectivities during bipedal MP and MI tasks. The main
objectives of this study are (1) To demonstrate the system
design of the frontoparietal-actuated lower limb MP-BCI sys-
tem; (2) To compare the classification performance of lower
limb MP and MI; (3) To understand the subjective motor expe-
rience corresponds to frontoparietal functional connectivities;
(4) To propose the application of the system for post-stroke
lower limb rehabilitation.

II. CONNECTIVITY-BASED MP-BCI SYSTEM

A frontoparietal-connectivity-actuated lower limb MP-BCI
system was proposed. The main components of the system
included a wearable EEG device, functional connectivity
analysis algorithm, and machine learning classifier. Users were
embedded with a wireless EEG device for real-time EEG
signal recording. The recorded signals were transmitted to
a signal processing computer through Bluetooth. Functional
frontoparietal connections were extracted to estimate the per-
formance of MP-BCI commands. Simultaneously, brain-wide
functional connectivity was computed from the EEG signals
for the detection of left or right foot MP. The low-performing
commands (brain-wide connectivity features) were filtered,
to improve the general usability of the MP-BCI system. The
system design was visualized in figure 1. The frontoparietal
actuator developed in this study could also be used as a
neurofeedback post-stroke rehabilitation paradigm.

A. Wearable EEG Device

The wearable EEG device used in the proposed MP-BCI
system was St. EEGTM Vega manufactured by Artise Bio-
medical Co., Ltd [35], Taiwan. This system was previously
used in [36] to study the EEG activity of human attention.
St. EEGTM Vega consisted of a detachable amplifier, where
signals were transmitted wirelessly through Bluetooth. It came
with 35 water-based sponge sensors, including 32 record-
ing electrodes located according to the international 10/20
placement, A1 and A2 reference electrodes, and FPz ground
electrode. The recording electrodes encompassed FP1, FP2,
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Fig. 1. The system design of frontoparietal-connectivity-actuated lower limb MP-BCI system, which includes a wearable EEG device connected
to a computer via Bluetooth, functional connectivity analysis algorithm for the computation of brain-wide and frontoparietal networks, and machine
learning classifier for the discrimination of left and right foot MP. The frontoparietal connectivity model could be used in post-stroke rehabilitation to
monitor neural activity and provide a neurofeedback training paradigm (red lines).

AF3, AF4, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8,
T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3,
Pz, P4, P8, O1, Oz, and O2. The detachable water-based
sensors promote both the practicality and comfortability of
the wearable EEG system. EEG signals were recorded using
the device-accompanied Cynus data acquisition software with
a sampling rate of 500 Hz. The recorded EEG signals were
transferred via Bluetooth to a computer for the extraction of
functional connectivity.

B. Functional Connectivity Analysis

Functional connectivity features were extracted from
N-channel EEG epochs (N = 32) when subjects perform MP.
The bivariate functional connectivity was extracted using Pear-
son’s correlation from signals in all pairs of EEG electrodes.
The computed correlation coefficients rxy ∈ [−1, 1] repre-
sent the weighted but undirected connectivity between brain
regions. Based on this estimation, the connection strength
is proportionate to the synchronization of voltage fluctuation
between two recorded EEG signals, x and y. Pearson’s cor-
relation is the division of the covariance of signals x and
y by the product of their standard deviations, as shown in
Eq. 1. Weighted connections carry more information compared
to unweighted connections, which could allow the machine
learning classifier to learn from more informative features.

rxy =
∑T

i=1(xi − x̄)(yi − ȳ)√∑T
i=1(xi − x̄)2

√∑T
i=1(yi − ȳ)2

(1)

where x̄ and ȳ are the mean amplitude of signal x and y,
while T is the length of time series. Positive correlation rxy >
0 indicates that the amplitude of both signals are synchronized;
while the amplitude of x and y are inverted in negative

correlation rxy < 0. The assembly of pairwise correlation from
each pair of EEG signals produce a N × N symmetric connec-
tivity matrix, R, which each element of the matrix represents
the connectivity strength between two spatially distinct brain
regions. To preserve the spatially proximal and weak con-
nections, no additional preprocessing and thresholding were
performed on the extracted functional connectivities. Since the
MP/MI tasks were conducted with random stratification, the
spurious connections would be present during both left and
right foot tasks. These inherent spurious connections would
not likely to pass statistical tests and affect the classification
performance. The extracted brain-wide connectivity was used
to train the machine learning classifier to distinguish left or
right foot MP. Besides that, frontoparietal connections were
extracted for the development of actuator to evaluate BCI
performance.

C. Frontoparietal Connections and Classifier

The five frontoparietal connections (P7-C4, P7-Cz, P7-FC4,
P7-FCz, P7-FC3) were by referring to [32], where the reduc-
tion in functional frontoparietal connectivity strength hinted
at the commencement of motor-related BCI commands. The
brain-wide connectivity estimated from temporal EEG signals
with reduced frontoparietal connections would proceed to the
classification step. A linear support vector machine (SVM) was
shown to be able to classify connectivity features generated
from lower limb MI with promising accuracy [28]. Hence,
the machine learning classifier used in this system was linear
SVM. SVM could maximize the distance between separating
hyperplane and support vectors [37], in order to classify
features extracted from different classes. SVM is a widely used
machine learning algorithm because of its efficiency in solving
classification problems. The diagonal (self-correlation, D) and
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Fig. 2. Two data acquisition schemes were conducted in this study. The first experimental scheme (blue) was conducted for two sessions, where
left or right arrows were prompted on a screen to cue the subjects to perform respective lower limb MP and MI. The second experimental scheme
was a connectivity-based neurofeedback paradigm to investigate the relationship between subjective experience and neural activity during lower
limb MP/MI.

the same connections in the symmetrical N × N connectivity
matrices were removed, generating a feature dimension of
1/2 × (N × N − D). The EEG signals were recorded with
32 electrodes in this study, and the number of features fed
into the classifier was 496. The output of the SVM classifier
was binary (−1/ + 1), as of left or right foot MP.

III. FRONTOPARIETAL CONNECTIONS

IN LOWER LIMB MP

To demonstrate the feasibility of the proposed system, the
system components were validated. The event-related poten-
tials (ERPs) between MP and MI were visualized. As the first
component of the proposed system, the classification accuracy
of MP was evaluated and compared with the performance of
MI. While in the second component, the evidence of the rela-
tionship between frontoparietal connectivity and classification
performance was illustrated.

A. Experimental Paradigm

Eleven subjects with a mean age of 25.27(±3.44) were
recruited for this study. Two independent data acquisition
schemes were conducted in this study, as shown in figure 2.
This study was approved by the Institutional Review Board
(IRB) of National Yang Ming Chiao Tung University with the
case number NYCU-REC-110-011E.

1) Classification Paradigm: The first experimental scheme
was conducted for two sessions. Subjects were required
to perform covert motor activities, including MP and MI.
Since MP precedes motor activities [38], the experiment was
designed to resemble the natural motor sequence, as such
that each MP cue was followed by a MI cue [33]. A trial
was initiated with a fixation cue for 2 seconds, followed by

a 1-second white arrow directed to the left or right. The
direction of the white arrow prompted for left or right foot
MP. During this period, the subjects were requested to prepare
for lower limb motor movement (isometric muscle tension)
without carrying out the motor movement itself. The MP
paradigm was designed by referring to previous study, which
the participants were told which limb to move before they
were asked to move [38]. After 1 second, the color of the
white arrow will be changed to either green or red. The green
arrow prompted the subjects to carry on the lower limb MI
(imagining motor movement), with the foot corresponding to
the direction of the arrow. During this period, the subjects
were instructed to perform kinesthetic MI, which is the
imagination of the feeling of movements, without any real
physical movement. The red arrow acted as a control measure
and the subjects have to remain at rest throughout the period.
Afterward, a fixation point remained on screen for 2 seconds,
reminding the subjects to fix their gaze on the point. In each
session, each colored (green/red) arrow was prompted exactly
50 times.

The sampling frequency of the recorded EEG signals was
downsampled from the original 500 Hz to 125 Hz, and a
notch filter was applied to attenuate 60 Hz power line noise.
The mean impedance of the detachable gel-free Ag/AgCl
electrodes was kept below 100 k� throughout the experi-
ment, which falls within the reliable range to record EEG
signals [39], [40], [41]. A digital bandpass filtering was
performed to obtain a physiological frequency range within
8-50 Hz [42], and remove low and high-frequency artifacts.
To further ameliorate overfitting due to high-dimensional con-
nectivity features, linear SVM was selected and trained with
ten-fold cross-validation (90% training data and 10% testing
data). The accuracies reported in this manuscript were the
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Fig. 3. The ERPs time-locked to MP and MI cues. Time 0 indicates
the initiation of MP, while the black vertical lines indicate the onset
of MI. The mean of windowed ERD (red) was compared with the
mean amplitude of surrounding signals (yellow). Significant motor-related
desynchronization was observed in both MP and MI phases (pairwise
Wilcoxon signed-rank test: ∗ ∗ p < 0.01).

testing set accuracies across ten-fold. The random threshold
for two-class classification was 50%.

2) Neurofeedback Paradigm: The second experimental
scheme was designed to investigate the subjective neurofeed-
back experience during lower limb MP/MI. The experiment
was started with a 180-second resting phase, followed by
six stratified left and right foot cues that lasted for 120 sec-
onds, which were set apart by 5 second resting period.
The subjects were asked to imagine lower limb movement
during the 120-second imagining phase. A real-time func-
tional connectivity-based neurofeedback was projected on the
monitor during the imagining phases. The five alpha band
(8-13 Hz) frontoparietal connections (P7-C4, P7-Cz, P7-FC4,
P7-FCz, P7-FC3) used in this study were shown negatively
related to the MI-BCI performance in the previous study [32].
The functional connections were extracted in real-time from a
1-second (downsampled to 125 Hz) time-series EEG window,
bandpass filtered within 8-13 Hz. The connectivity was mea-
sured as in section II-B. The neurofeedback was presented on
a computer screen, with varying shades of blue lines on a scalp
image, which were inversely proportionate to the strength of
five connections, as shown in figure 2. There are mainly two
types of MI, which are kinesthetic imagery of movement and
visual imagery of movement [43]. Subjects were given the
freedom to test and perform any kind of lower limb MP/MI,
including visual imagery of movement, kinesthetic imagery
of movement, and isometric muscle tension or stiffness. The
subjects were asked to be aware of the type of MP/MI
that could produce the most significant negative (dark blue
lines) frontoparietal connections. The subjects were required
to discuss their experience after the neurofeedback session
was completed. No classification was performed within the
neurofeedback paradigm.

B. Event-Related Potential

ERPs are the average potential of time-locked EEG signals
with respect to the initiation of cue [44]. Averaging EEG
signals from multiple trials could eliminate random noise and
increase the prominence of a task-related waveform. Since
the somatosensory region of lower limbs is located at the
midline of central and parietal lobes [12], the ERPs of EEG
signals recorded from Cz and Pz were visualized in figure 3.
Event-related desynchronization (ERD) was present around
200-400 ms after both MP and MI cues. The significance of

ERDs was evaluated using the technique adopted from [45],
by comparing the mean of the windowed trough (WE R D) and
the mean signal amplitude pre- and post-trough ERD±(0.5 ×
WE R D). Both ERDs after MP and MI demonstrate significant
depression (pairwise Wilcoxon signed-rank test: p < 0.01).
It was noted that the ERDs during MI were more prominent
than the ERDs during MP. These results are consistent with
previous studies [46], [47] which showed that MP cue evoked
200-500 ms ERD that was slightly less prominent than the
ERD of motor execution [45].

C. Classification Accuracy - Static

The recorded EEG trials were truncated into a full 1-second
MP phase and 1-second MI phase. Functional connectivities
were extracted from each phase, as computed in equation 1.
The connectivity matrices of both phases were vectorized and
independently fed into linear SVM to classify left or right-foot
motor intentions. Subject-specific trials were randomly par-
titioned into ten equal portions, where nine portions were
used to train the classifier and the remaining one was used
to evaluate the trained model. This process was repeated ten
times until each of the ten portions was evaluated exactly
once. To allow fair comparisons, no hyperparameter tuning
was performed for all classifiers. The accuracy across ten folds
was reported. The results in table I suggest that the left and
right foot motor intentions were more distinguishable in the
MP phase, compared to the MI phase (pairwise Wilcoxon
signed-rank test: p < 0.05). Classification of left and right
foot MP achieved an average accuracy of 72.18(±14.42)% and
77.45(±10.86)% for the first and second session respectively,
while the MI phase reported accuracies of 56.91(±11.15)%
and 58.82(±10.81)%. We further investigated the accuracy
of two additional classifiers, linear discriminant analysis
(LDA) and k-nearest neighbor (KNN; k = 3) in classifying
MP and MI. Table II indicates that SVM outperformed LDA
and KNN in discriminating left and right foot MP. In all
three classification schemes, MP performed significantly better
than MI (pairwise Wilcoxon signed-rank test: p < 0.05),
suggesting that lower limb MP is more classifiable than MI.
The classification of EEG during the post-cue fixation period
was also analyzed. The lasting effect of MI was observed,
where the classification accuracy gradually decreased after
the disappearance of the MI cue, reporting 57.73(±9.79)%
and 59.45(±12.16)% in the first second after the onset of
fixation cue. The accuracies decreased to random guessing
(47.64(±8.23)% and 53.27(±6.83)%) in the 1-2 seconds of
post-cue fixation, suggesting that the brain activity returned
to the resting state within this period. The distinguishability
between MI (trials during green arrow) and rest (trials during
red arrow) were 56.73(±9.64)% and 64.59(±8.07)% in session
1 and session 2. This showed that the functional connectivity
of MI and rest were classifiable to some extent.

D. Classification Accuracy - Time-Varying

To pinpoint the frequency band and transient time window
when lower limb MP/MI could be classified with the highest
accuracy, a sliding window approach was implemented on the
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TABLE I
CLASSIFICATION ACCURACY-STATIC

TABLE II
CLASSIFICATION PERFORMANCE BY THREE CLASSIFIERS-STATIC

1-second EEG data from section III-C. The EEG signals were
filtered into three main frequency ranges, which were alpha
(8-13 Hz), beta (14-30 Hz), and low gamma (31-50 Hz)
bands. We applied a sliding window, with a length of 200 ms
(100 time points) and a stride of 20 ms (10 time points), to the
filtered time-series EEG data. Functional connectivity features
were extracted from each window and were trained and tested
with 10-fold cross-validation. In the training phase, three SVM
classifiers were independently trained with the same 90% of
trials from each of the three frequency bands. The testing
phase was initiated by the independent prediction of the class
labels (10% testing trials) from each trained classifier. The
trained classifiers were ensembled by the majority voting
technique [48], [49], where the mode of predicted labels from
three classifiers was determined. The mode of three predicted
labels was the final predicted class of the ensemble classifier.
The classification accuracy of each window was computed as
the performance evaluation metrics.

We observed that all subjects exhibit varying peak clas-
sification accuracy within 200-400 ms of the MP phase,
with maximum mean accuracies of 70.64(±13.94)% and
73.73(±7.99)% respectively in session 1 and session 2. This

trend was consistent across three motor-related frequency
bands, and thus, majority voting generated similar results.
To further validate the findings, the averaged time-varying
accuracy during MP/MI was compared with the accuracy
during the 2-seconds fixation phase. Moreover, MP/MI signals
back-projected from independent component analysis [50]
(abbreviated as ICB, to distinguish from component-based
signals) were also evaluated to rule out eye movement artifacts.
Components prone to eye movement artifacts (Fp1, Fp2, F7,
F8, FT7, FT8, T7, T8) were strictly removed. The clean
components were back-projected to channel-based signals to
retain consistent feature dimensions. As shown in figure 4 and
table III, the accuracy trend of both filtered feature and ICB
feature were similar. The accuracy trends during 200-400 ms
were significantly different compared to the fixation phase
(pairwise Wilcoxon signed-rank tests; p < 0.05). This further
suggests that functional brain connectivity could distinguish
left and right foot MP more efficiently than MI. However,
as shown in the subject-specific results in Table III, the intra-
and inter-subject variability in classification performance were
present in the MP phase. For example, the peak performance
of subject 2 and subject 11 varied across two experimental
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Fig. 4. Mean time-varying accuracy of session 1 and session 2. The
classification accuracy of MP/MI and ICB showed significant differences
with fixation (green shaded background; pairwise Wilcoxon signed-rank
test: p < 0.05).

TABLE III
THE PEAK CLASSIFICATION ACCURACY WITHIN

200 MS - 400 MS WINDOWS

sessions, while subject 7 performed comparatively poorer in
both sessions.

E. Correlation Between Connectivity and Accuracy

Parietal functional connections in the range of alpha-band
were found correlated to the upper limb MI-BCI perfor-
mance [32]. Five frontoparietal connections (P7-C4, P7-Cz,
P7-FC4, P7-FCz, P7-FC3) were extracted from each window
(as in session III-D) and aligned with time-varying accuracy.
Similar to the previous study [32], subjects showed decreased
alpha-band connections within the 200-400 ms of MP period,
which this time frame also achieved the best classification
accuracy as shown in section III-D. Pearson’s correlation
coefficient (PCC) was computed between five connections
and classification accuracy. The average correlation across
subjects was tabulated in table IV. Two out of five connections
(P7-C4 and P7-FC4) showed moderate negative correlation
(0.5 > |PCC| > 0.3) with the accuracy during MP phase.
On the other hand, the MI phase showed insignificant PCC
between frontoparietal connectivity and accuracy. This indi-
cates that alpha-band frontoparietal functional connectivity is
correlated to the distinguishability of the lower limb during
MP. We also compared the time-varying frontoparietal con-
nectivity during the appearance of green (MP-MI) and red

TABLE IV
CORRELATION BETWEEN ALPHA BAND FRONTOPARIETAL

CONNECTIVITY AND CLASSIFICATION ACCURACY

(MP-Rest) arrows, and during the fixation phase. As shown
in figure 5, significant reduction (pairwise Wilcoxon signed-
rank tests; p < 0.05) of frontoparietal functional connections
were found in MP (in both MP-MI and MP-Rest) com-
pared to fixation phases. The difference was more prominent
around 200-400 ms of P7-FC4 connections. By comparing the
connections between MP-MI and MP-Rest, significant lower
frontoparietal connectivities (pairwise Wilcoxon signed-rank
tests; p < 0.05) were found around 200-350 ms after MI
cue, especially in P7-Cz and P7-FCz connections. The results
suggest the difference in neural mechanisms underpinning MP
and MI.

IV. PRECLINICAL TRIALS IN POST-STROKE PATIENTS

Previous sections demonstrated the functional frontoparietal
network in healthy individuals, the connectivity of post-stroke
patients was further validated in this section. Since post-stroke
patients experience muscle stiffness corresponding to the
damaged brain area, we further investigated the alpha band
functional frontoparietal connections of post-stroke patients
from EEG data published in [51]. The EEG data were recorded
from eight healthy subjects and nine post-stroke patients. All
patients were suffering from walking difficulty due to lower
limb stiffness. The subjects conducted 30 seconds of standing
phase (Stand 1), followed by 60 seconds of walking phase
(Walk) and another 30 seconds of standing phase (Stand 2).
The EEG data were acquired through the NuAmps EEG sys-
tem (Compumedics Neuroscan, Inc.) with 32 wet electrodes,
at a 1 kHz sampling rate and impedance under 20 k�.

The comparisons were to be performed with the P7-FC4
connection, which was reported with the highest correla-
tion in table IV. However, due to the reason that the EEG
modality used did not contain P7 channels, nearby P3-FC4
connections were selected instead. The difference in P3-FC4
connection strength between healthy subjects and post-stroke
patients during standing and walking phases was investi-
gated. The intra-subject comparisons were performed with
pairwise Wilcoxon signed-rank test and the inter-subject com-
parisons were conducted using the pairwise Mann-Whitney
U test. The bar chart in figure 6 shows that post-stroke
patients indeed have significantly lower P3-FC4 connections
compared to healthy subjects. Furthermore, in healthy indi-
viduals, walking produced significantly stronger connections
than standing. These prove that the reduction of frontopari-
etal connections was related to isometric muscle preparation
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Fig. 5. Parietal connectivity in different tasks, including two MP phases
(MP-MI (green) and MI-Rest (purple)) and a fixation phase (yellow).
Significant differences were found during MP and fixation (green shaded
areas), as well as between MP-MI and MP-Rest (purple shaded areas).

during standing, as well as the muscle stiffness in post-
stroke patients. This also showed the capacity of our proposed
frontoparietal-connectivity system to provide neurofeedback
for the monitoring of brain recovery in the course of reha-
bilitation therapy.

V. DISCUSSION

A. Lower Limb MP-BCI System

We demonstrate the feasibility of the development of
the frontoparietal-connectivity-actuated lower limb MP-BCI

Fig. 6. Comparison of functional frontoparietal connections (P3-FC4) in
healthy subjects and post-stroke patients. The intra-subject comparisons
(black solid lines) were performed with pairwise Wilcoxon signed-rank
test and the inter-subject comparisons (red solid lines) were conducted
using pairwise Mann-Whitney U test.

system. Consistent with previous literature [46], [47],
we found that MP-related potential appeared around
200-400 ms post-cue. The amplitude of MP-related potential
was slightly lower than the amplitude of MI-related potential.
This was the primary distinctive EEG feature between MP
and MI. By classifying lower limb MP/MI, results showed
that MP could achieve higher accuracy than MI. Our sta-
tic classification accuracies achieved 72.18(±14.42)% and
77.45(±10.86)% in two sessions. Previous lower limb MI
studies reported classification accuracy of 63.0%, 69.3%,
and 83.82% by using EEG frequency power [52], beta
rebound [16], and the combination of intrinsic time-scale
decomposition and artificial neural networks [53], respectively.
Although our results showed accuracy lower than [53], our
proposed model implemented by SVM carries a relatively
lower computational cost than artificial neural network. This
could facilitate the usage of the lower-limb BCI system in a
real-world setting.

The peak of accuracy was prominent around 200-400 ms
post-cue, which was in sync with MP-related potential. This
short-lived performance peak in MI was also observed in [54],
which they reported an accuracy peak of 80.0% - 83.6%. This
suggests the feasibility to classify motor-related brain activity
by transient EEG signatures. However, since MP/MI/ME are
continuous sequential processes [38], we could not infer the
benefit of reducing the trial time of motor-based BCI. Future
study will be carried out to investigate and compare the per-
formance of different MP/MI periods. The peak performance
found in our study was moderately correlated to the negativity
of left parietal and right frontocentral connections (P7-FC4 and
P7-C4). Published literature had investigated the inter-subjects
relationship between BCI performance and EEG features, such
as power spectral density of C3 and C4 [29], [55], theta activity
of frontal lobe [56], gamma activity of frontal and central
cortices [57], and frontoparietal resting network [58]. Our
study emphasized on intra-subjects variability demonstrates
the decrement of functional frontoparietal connectivity during
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MP was correlated to the increment of lower limb classification
accuracy.

B. SVM Features Weights

The weights of linear SVM trained to classify broadband
(8-50 Hz) left and right foot MP functional connectivity
were extracted to investigate the most distinguishing features.
To equally analyze the feature importance, the linear SVM
was trained with all MP trials and the feature weights were
ranked. From each subject, the top ten weighted features were
selected for comparison purpose. We tabulated these connec-
tions based on the connections between different brain areas,
namely frontal (F), central (C), parietal (P), temporal (T), and
occipital (O) regions. The quantitative summary in table V
is the total number of top ten weighted connections between
predefined brain areas. The results suggested that frontocentral
(24) connections contributed the most to the classification
of left and right foot MP, followed by frontotemporal (15),
centrocentral (12), and parietotemporal (11) connections. The
reported features were consistent with previous lower limb MI
study [28]. Central motor cortices were long found to con-
tribute to motor activity [12]. Anterior prefrontal regions were
also proposed to be involved in decision-making during the
preparation of foot movement [59]. Motor planning was found
accompanied by the activation of the parietal cortex [60],
[61]; while the temporal lobe was hypothesized to be related
to the learning of performing MI [28]. Our results show
that the integration of functional connections from different
brain areas could distinguish lower limb MP better than MI.
However, the performance of classifying lower limb MP was
not generalized within and across subjects. Future study could
implement transfer learning techniques [62] such as deep
learning-based adversarial variational autoencoders [63] to
improve the generalizability of MP-based BCI.

C. Subjective Experience of Functional Frontoparietal
Connections

This section elaborates on the subjective experience during
connectivity-based neurofeedback. As written in section III-
A.2, real-time alpha band frontoparietal connectivities were
projected on a computer screen when the subjects were
performing MI. In this experimental paradigm, subjects were
given the freedom to test and perform any kind of lower limb
MP/MI, and report the type of MP/MI that they found could
produce the most negative frontoparietal connections. Nine out
of eleven (81.82%) subjects revealed that the negativity of
frontoparietal connections was increased when they perform
MP, including the isometric muscle strain, muscle tension,
and muscle stiffness. The remaining two subjects (18.18%)
informed that attention increased the negativity of their func-
tional frontoparietal connections. These results propose that
the muscle strain during MP could be related to the negativity
of functional frontoparietal connections within the range of
the alpha band.

Existing human study based on positron emission tomog-
raphy has visualized that frontal and parietal lobes were
activated during MP [64]. High-level motor behaviors such

TABLE V
QUANTITATIVE REPRESENTATION OF TOP TEN WEIGHTED

CONNECTIONS BETWEEN PREDEFINED BRAIN AREAS

as motor planning, the formation of motor intention, and
sensory-motor integration were correlated to the activity of
the parietal cortex [60]. The dorsal premotor cortex (PMd)
located at the lateral prefrontal cortex was also found involved
in MP [65]. Transient frontoparietal activation was also found
around 300-450 ms of motor intention [66]. These findings
are consistent with our results which frontoparietal and cen-
troparietal connections (P7-FC4 and P7-C4) are transiently
correlated (|PCC| = 0.49 and 0.47) to MP. Additional
EEG analysis from healthy subjects and post-stroke patients
further support the neuromechanism between isometric muscle
strain and the negativity of frontoparietal connection (the
functional connectivity changes in post-stroke patients were
reviewed in [67]). This suggests the potential development of
a frontoparietal-connectivity-based neurofeedback system to
evaluate the recovery outcome of the central nervous system
during rehabilitation training.

VI. CONCLUSION

We proposed a wearable frontoparietal-connectivity-
actuated lower limb MP-BCI system for the detection of
bipedal lower limb MP. We found that the lower limb MP
could achieve significantly better accuracy in classifying left
and right foot, compared to the motor imagery. Frontocentral,
frontotemporal, centrocentral, and parietotemporal connections
were found to contribute the most to the distinguishability of
left and right foot MP. The peak classification accuracy was
around 200-400 ms of the MP phase, which was accompanied
by the reduction of P7-FC4 and P7-C4 connectivity strength
in the alpha range. The decrease in connectivity strength was
suggested to be related to the isometric muscle preparation.
These results validated the utilization of the motor preparation
with reduced frontoparietal connectivity to achieve better
performance in discriminating left and right foot brain
activities. In future study, MP-BCI users could be trained
to modulate their alpha band frontoparietal connectivity to
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improve BCI efficacy. Furthermore, a similar neurofeedback
paradigm could be also implemented to monitor motor-related
brain activity during post-stroke rehabilitation training. One
of the limitations of this study is the lack of system validation
on post-stroke patients. In the future, we will perform clinical
trials to evaluate the performance of the proposed system
during rehabilitation training, and analyze the relationship
between the frontoparietal connectivity and muscle stiffness
in post-stroke patients. Moreover, the study could extend the
current synchronous system to an asynchronous BCI system
to provide a more natural MP/MI paradigm.
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