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Abstract— Deep neural networks (DNNs) have the power-
ful ability to automatically extract efficient features, which
makes them prominent in electroencephalogram (EEG)
based seizure prediction tasks. However, current research
in this field cannot take the model uncertainty into account,
causing the prediction less credible. To this end, we intro-
duce a novel end-to-end patient-specific seizure prediction
framework via model uncertainty learning. Specifically,
we propose a reparameterized EEG-based lightweight
CNN architecture and a modified Monte Carlo dropout
(RepNet-MMCD) strategy to improve the reliability of the
DNNs-based model. In RepNet, we obtain multi-scale feature
representations by applying depthwise separable convo-
lutions of different kernels. After training, depthwise con-
volutions with different scales are equivalently converted
into a single convolution layer, which can greatly reduce
computational budgets without losing model performance.
In addition, we propose a modified Monte Carlo (MMCD)
strategy, leveraging the samples-based temporal informa-
tion in EEG signals to simulate the Monte Carlo dropout
sampling. Sensitivity, false-positive rate (FPR), and area
under curve (AUC) of the proposed RepNet-MMCD achieve
93.1%, 0.033/h, 0.950 and 81.6%, 0.056/h, 0.903 on two public
datasets, respectively.We further extend the MMCD strategy
to the other baseline methods, which can improve the per-
formance of seizure prediction by a clear margin.
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I. INTRODUCTION

EPILEPSY is a common chronic brain disease, which is
caused by abnormal discharges of brain neurons. More

than 1% people are suffering from this disease worldwide [1]
and about one-third of them cannot be effectively controlled
by surgery [2]. With the development of recording electroen-
cephalogram (EEG) signals and continual exploration of brain
science, studies [3], [4], [5] have demonstrated the possibility
of using EEG to predict seizure onset. A timely manual
intervention before seizures can greatly reduce anxiety in
patients and improve treatment effectiveness. Therefore, it is
imperative to develop a high-precision EEG-based epilepsy
prediction system to predict the onset of seizures for patients.

Linear or nonlinear features extracted using traditional
machine learning methods, such as autoregressive coeffi-
cients [6] and Lyapunov exponent [7], are widely used to
predict seizures. Then, the binary classification of EEG pre-
ictal and interictal states is implemented using classifiers,
e.g. the k-nearest neighbor classifier [8] and the support
vector machine (SVM) [4]. These traditional methods have
achieved measurable improvements with well-handcrafted fea-
tures. However, these hand-extracted features typically require
extensive expertise and a lot of attempts. Besides, traditional
classifiers with handcrafted features weaken the robustness in
a more realistic setting with various artifacts affecting EEG
recording.

Deep learning (DL) is gaining more attention for its excel-
lent generalization and its powerful ability to automatically
learn efficient features, encouraging its application in the field
of epilepsy prediction. Many literatures [5], [9], [10], [11],
[12], [13], [14] have shown that leading performance could
be achieved with DNNs for seizure prediction, in contrast
to traditional machine learning methods. Several studies [9],
[12], [15], [16] have proposed methods to manually extract
features from complex raw EEG, which are widely used
to eliminate EEG artifacts. Khan et al. [15] processed the
raw EEG signal using wavelet transform. Truong et al. [9]
proposed to extract features from the raw EEG via the
short-time Fourier transform (STFT). Li et al. [12] introduced
a graph convolutional network that combines active learning
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and extracts information from the spatial-temporal spectrum
for seizure prediction tasks. However, these DNNs designed
using complex feature preprocessing of raw EEG signals typi-
cally require extra time and inevitably lead to information loss
in the feature extraction process. Recently, studies [17], [18]
have indicated that raw EEG signals could be used as inputs
directly for seizure predictions as well, e.g., 1D CNN [17]
and the binary one-dimensional convolutional neural network
(BSDCNN) [18]. Despite these networks being designed using
1D asymmetric convolutional layers or small kernel convolu-
tional layers (e.g., 3 × 3) to reduce the computational budget,
the network overhead is still unsatisfactory. In this study,
our reparameterized convolutional neural Network (RepNet)
is an end-to-end lightweight network stacked by depthwise
separable convolutions, which decomposes a standard convo-
lution operation into two steps (i.e., depthwise convolution and
pointwise convolution operations) to reduce complexity and
parameters budget. Inspired by the RepLKNet [19], we obtain
much larger effective receptive fields via the 5 × 5 depthwise
convolution. It helps to make up the optimization issue of large
convolution kernels and enhances the feature representation
capability by parallelizing with the 3 × 3 depthwise convo-
lution. After training, depthwise convolutions with different
kernels are fused into a single depthwise convolution layer,
reducing the inference cost significantly.

Although deep neural networks (DNNs) can map input sig-
nals to a low-dimensional representation space by outputting
a set of logits, these mappings are not unreservedly precise,
and situations opposite to the truth can emerge unexpectedly.
To overcome these challenges, researchers have proposed
many uncertainty learning techniques in various fields such
as hydrological forecasting [20], medical image analysis [21],
[22], semantic segmentation and speech recognition [23], [24]
over the last few years. However, an exploration of uncertainty
in EEG-based models is currently lacking.

In general, the types of uncertainty could be roughly divided
into data uncertainty and model uncertainty [25]. Data uncer-
tainty (aleatoric uncertainty) describes the noise inherent in the
EEG, such as muscle artifacts or electromagnetic interference
[26]. Model uncertainty (epistemic uncertainty) captures the
uncertainty of model parameters and can be reduced by
increasing training samples. Modeling epistemic uncertainty
has become attractive in improving the model performance
of DNNs. However, standard neural networks can only pro-
vide deterministic values of weights instead of uncertainty
estimates. Fortunately, Bayesian neural networks (BNN) [27],
[28] provide a mathematically based framework to analyze
uncertainty, which models uncertainty by considering model
weights as probability distributions rather than point estimates.
However, standard BNNs typically require a large number
of calculations, which is a challenge for training. There are
some Bayesian approximation techniques, and the MC dropout
(MCD) [29] is considered to be one of the current mainstream
approaches to capture the model uncertainty.

In the MCD method, a single sample is stochastically
predicted T times by the dropout layer during testing, which
usually increases the computational budget significantly. Gen-
eralization errors are reduced by using the average of the T

Fig. 1. Comparison of prediction process between MC dropout and
modified MC dropout in testing time. (a) The MC dropout samples T
times, each for 15 s, and the calibrated predicted probability is obtained
by the mean. (b) modified MC dropout (MMCD) aggregates D samples
into the final prediction.

models, as shown in Fig. 1 (a). We propose a modified MC
dropout (MMCD) strategy, utilizing the coherence and the
great informational similarity of the continuous EEG signals
to predict EEG samples. Specifically, the MMCD predicts
consecutive D samples during testing, and the calibrated
probability is obtained by averaging the predictions of these
D samples. Then, we perform D replications of the calibrated
prediction to replace the predictions of the previous consecu-
tive D samples (see Fig. 1 (b)). The proposed strategy requires
only one prediction for each sample, which can greatly reduce
the inference time and improve the performance of seizure
prediction significantly.

During the experiments, the Children’s Hospital Boston and
the Massachusetts Institute of Technology (CHB-MIT) [30]
and the American Epilepsy Society Prediction Challenge
(Kaggle) [31] databases are used as benchmarks to evaluate the
model performance. The following are our main contributions:

1) We propose a novel re-parameterized lightweight end-
to-end seizure prediction framework (RepNet-MCD)
with uncertainty learning for multi-channel EEG-based
seizure prediction. The proposed RepNet is able to
share rich feature representations from different scales of
depthwise convolutional layers with only the inference
budget of a single convolutional layer during model
deployment. Besides, we apply the MCD method for
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Fig. 2. Definition of interictal, preictal, SIH, SPH, SOP and seizure period (from the file chb01 03.edf).

uncertainty learning of the model and improve the model
performance. To the best of our knowledge, this is the
first time to combine DNNs with model uncertainty
learning for seizure prediction.

2) We propose a modified EEG-based MC dropout strategy
(RepNet-MMCD) that accelerates the inference speed
during testing. Through extensive empirical experiments
on two public datasets, our MMCD strategy significantly
improves the performance and even surpasses the MCD
approach in terms of effectiveness.

3) On 18 patients of the CHB-MIT database,
RepNet-MMCD obtains 93.1%, 0.033/h, and 0.950 on
sensitivity, FPR, and AUC respectively. In the Kaggle
dataset, the proposed model reached 81.6%, 0.056/h,
and 0.903 on sensitivity, FPR, and AUC, respectively.

The composition of the article is as follows. Section II
introduces the details of the proposed method for seizure
prediction. Experimental results on RepNet and other baseline
models are provided in Section III. Section IV presents our
discussion and Section V gives our conclusion.

II. DATASETS AND METHODS

A. Datasets

In this work, we train and test on the CHB-MIT
database [30] and the Kaggle database [31], respectively.
The CHB-MIT dataset contains scalp electroencephalography
(sEEG) signals from 23 pediatric subjects. These signals cover
844 hours of continuous EEG recordings with 182 seizure
events, recorded using 22 electrodes with a sampling frequency
of 256 Hz per second. In the Kaggle database, intracranial
EEG (iEEG) signals are available for 5 dogs and 2 patients.
There are 627.7 hours of interictal data with 48 seizure events
recorded, supplied as 1 hour per sequence. Each one-hour
sequence was divided into 10-minute segments, with the
intervention period (SPH) being defined by the organizer as
5 minutes before seizure onset. Dogs 1-4 had iEEG signals
collected with 16 electrodes at 400 Hz except Dog 5, which
used 15 electrodes. Patient 1 collected iEEG data using
15 electrodes at 5000 Hz, while Patient 2 used 24 electrodes.
We resample EEG signals in the Kaggle database to 200 Hz
per second followed by [9].

B. Preprocessing

Different from numerous methods [5], [9], [16], [18] that
take manually extracted features as input, our model automati-
cally learns deep discriminative representations from raw EEG

TABLE I
A SUMMARY OF THE CHB-MIT AND KAGGLE DATABASES

signals. It can reduce extra overhead in domain transformation
and potential information degradation of the raw EEG signals.
Besides, the sliding window analysis slices the long-range
EEG signals into signal segments to yield sufficient samples
available for training in deep neural networks. We adopt
the definition of brain states (i.e., preictal, interictal, seizure
inter-ictal horizon (SIH), seizure prediction period (SPH), and
seizure (SOP)) introduced by [9] and [32], as illustrated in
Fig 2. The SPH [33] refers to the intervention period before
seizures, where therapies (such as electrical stimulation) could
be performed. The SOP indicates the period when seizures
are anticipated to occur, which equals the preictal period in
duration. For both publicly available datasets, we follow the
5 minutes SPH definition introduced by [5], [9], and [12].
The preictal phase implies a potential pattern of upcoming
epilepsy, and the system alerts when patterns of interest are
predicted during this phase. We define the preictal state as the
30 minutes preceding the onset of SPH, as in most works. For
the CHB-MIT dataset, we used the setting of the 30 minutes
SOP in [5], [9], and [34], while for the Kaggle dataset, the SOP
is set to 1 hour introduced by [32] and [35]. EEG signals about
4 hours before seizure onset and 4 hours after the seizure ends
are defined as SIH [10], where these signals are excluded to
reduce the interference due to the adjacency of the ictal state.
In cases where more than one seizure occurs in a short period,
we assume only a leading seizure exists if the duration is less
than 15 minutes after the last seizure [5]. Patients chb12 and
chb15 are excluded from model training due to few available
interictal signals and an average of one seizure per hour
clinically. As in most studies, we also exclude patients chb04,
chb06, and chb07 because of the heavy noise interference
in the collected data. Based on the above definitions and
considerations, a total of 87 epileptic events on 18 patients
in the CHB-MIT database and 38 seizures from 4 dogs in
the Kaggle database are assessed. We summarize these two
datasets in Table I.

Seizure prediction tasks suffer from category imbalance of
data. For most patients, interictal signals are much more than
preictal signals, which greatly impact the final performance.
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Fig. 3. The architecture of the proposed RepNet.

To balance the inconsistent classes in the training set,
we employ an overlapping sliding technique with a moving
step S to obtain extra preictal signals, as in [9] and [34].
Specifically, let the window size of the sliding window analysis
as W , the total length of the preictal signals is noted as P ,
and the length of the interictal signals is denoted I , then the
ratio R is computed as P/I . The number of extra preictal
segments after oversampling is calculated as (P−W )

S +1, where
S = W × R.

C. RepNet

Inspired by the RepLKNet [19], we use a stack of 3×3 and
5 × 5 depthwise convolutions to build the re-parameterized
block, where the kernel size of 3 × 3 is employed to enhance
the representational power of the 5 × 5 depthwise convolu-
tion. Fig. 3 illustrates an overview of the proposed RepNet
architecture. The proposed RepNet contains an asymmetric
Stem block, several Reparam blocks and downsample blocks,
a global average pooling (GAP) layer, and a classification
layer.

The proposed RepNet takes raw EEG slices as input directly.
We convert the 2D multichannel EEG segments into the 3D
tensor with a channel dimension of 1 (X ∈ R

1×M×E ), which
allows for the usage of the 2D convolution layer. M indicates
the number of signal points sampled within a time window
(equals to F × W , where W refers to the window size, and
F denotes the sampling frequency, e.g., R

1×(256×15)×22). E
represents the number of electrodes used for sampling. The
asymmetric stem block is designed to mitigate the extreme
asymmetry in the size of the input tensor (M � E) and

TABLE II
ARCHITECTURES OF THE REPNET ON chb_��

IN THE CHB-MIT DATASET

extract the initial features of EEG signals. The asymmetric
stem block consists of a standard convolution without padding
and a layer normalization (LN) layer. It is an efficient block
that effectively improves the representation of raw signals
at a low computational cost. Our model has three stages
to generate different hierarchical representations, each stage
consists of a Reparam block and downsampled block. In the
Reparam block, we construct a 3 × 3 depthwise convolution
parallel to the 5 × 5 one, then add up their outputs with
the identity shortcut after the batch normalization (BN) layer.
The downsample block contains a ReLU activation function,
a point convolution, a standard convolution with the kernel size
of 2 and the stride of 2, and a BN layer. The model ends with a
global average pooling (GAP), and a classification layer. More
details of the architecture settings can be viewed in Table II.

Structural reparameterization of convolutions is a technique
of equivalently transforming model structures by utilizing the
additivity of weights and biases in the convolution operation.
In this work, we adopt this methodology to merge the weights
and bias of the 3×3 kernel and BN in the Reparam block into
the parallel 5×5 kernel during testing, as illustrated in Fig. 4.
In this way, we enable the larger kernel capable of capturing
small-scale patterns.

D. MC Dropout

Assume the model weights are abstracted as W after
training, and then the posterior probability P(W|D) on the
train set D is required. The posterior distribution P(W|D)
describes a set of credible model parameters, which can be for-
mulated by Bayesian inference as: P(W|D) = P(D|W)P(W)

P(D) .
However, the posterior probability in Bayesian inference is
difficult to compute by integrating all model parameters in
practice. Bayesian approximation techniques provide an acces-
sible method, which is essentially an approximation to fit
the posterior distribution with the simple distribution. The
MC dropout (MCD) is a popular Bayesian approximation
technique which utilizes a simple Bernoulli (B) distribution
to approximate P(W|D).
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Fig. 4. Structural reparameterization of depthwise convolutions. The BN layer is first fused to the depthwise convolution, and then the small kernel
is merged into the large one. The yellow areas depict the pipeline for fusing the BN into the deep convolution.

For a neural network with n dropout layers, the i -th dropout
layer randomly deactivates some neurons of the model with
a dropout rate p. Then, the weights Wi of the i -th layer in
the model can be regarded as a Bernoulli distribution with
the parameter p (i.e., Wi ∼ Bernoulli(p)). The posterior
distribution of the model weights can be approximated
as:

P(W|D) ≈ ∏n
i=1 B(Wi ; p). (1)

Kullback-Leibler (KL) divergence measures the distance
between two distributions. It has been proved in [29] that
the T predictions using the MCD essentially minimize
KL(B(W; p) � P(W|D)), which is an optimization of the
weights in the Bernoulli distribution. The cross-entropy loss
is used in model uncertainty learning to optimize the neural
network classifier, which minimizes the difference between
our label distribution and the predicted distribution. The neu-
rons for T sampling are random, which inevitably leads to
fluctuations of predictions for the same sample. The mean of
probability can be obtained by averaging the fluctuations of
these T predictions, formally as:

P(y = c|x,D) ≈ 1

T

T∑
t=1

Softmax( f ŵt (x)), (2)

where ŵt denotes the t-th model weight predicted on input
sample x , and f ŵt (x) indicates the logits of the model under
the t-th model weight. In supervised learning, y is the target
output and c is the category predicted from the sample x .

The uncertainty indicates the degree of confidence that the
model predicts the EEG sample, which can be quantified by

functions such as entropy:

H (y|x,D) = −
C∑

c=1

P(y = c|x,D) log P(y = c|x,D)), (3)

where C denotes the number of categories. The model is
confident in its prediction when the value of entropy is low.
Conversely, the model is uncertain about the prediction of the
EEG sample.

E. Modefied MC Dropout
The MCD method performs T forward mappings on a single

sample, where each mapping follows the Bernoulli distribution
with minor differences. It allows for more reliable predictions
than the baseline model due to the calibrated prediction
probabilities. However, T (e.g., T = 5) stochastic forward
passes of a single sample lead to T times slower than the
standard network prediction in testing time. Besides, it cannot
explore the information relationship among successive sam-
ples. We propose a modified MC dropout (MMCD) strategy,
which utilizes continuous samples-based temporal information
to speed up the sampling process and obtain high-accuracy
reliable prediction performance. The EEG signals of each state
show tremendous information similarity in adjacent samples.
Concretely, several consecutive EEG samples from a single
patient within the same state contain minor information dif-
ferences over a short period of time, which can be used to
simulate the process of MC dropout sampling. In MMCD,
each of the D following EEG segments is predicted only
once, a total of D times (while the MCD needs D × T times
for D samples). Notably, consecutive D EEG samples should
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maintain continuity in the time dimension, ensuring proper
simulation of MC sampling during testing.

We assume that the test data set is composed of N con-
secutive EEG samples, i.e., X = {x1, x2, . . . , xN }, Y =
{y1, y2, . . . , yN }. Suppose that N is divisible by D, and the
marginalization of the MMCD is performed to obtain the
calibrated predictions:

Pi ≈ 1

D

i+D−1∑
d=i

Softmax( f (xd)), (4)

i = 1 + (n − 1)D, n =
{

1, 2, . . . , (
N

D
− 1)

}
, (5)

Pi = Pi+1 = . . . = Pi+(D−1), (6)

where Pi is used to simplify P(yi = c|xi ,D), which refers
to the probability predicted for the i -th test sample. f (xd)
denotes the logits obtained from the d-th sample through
the last layer of the network before the softmax, and D
represents the number of samples aggregated. The MMCD
strategy aggregates consecutive D samples in the test signals
into the final prediction, and the entropy can be denoted as:

Hi = −
C∑

c=1

Pi (c) log Pi (c), (7)

i = 1 + (n − 1)D, n =
{

1, 2, . . . , (
N

D
− 1)

}
, (8)

Hi = Hi+1 = . . . = Hi+(D−1), (9)

where Hi signifies the entropy of i -th test sample xi , and Pi (c)
represents the c-th dimension of the Pi vector.

F. Postprocessing
The continuous event-based alerting proposal introduced

by [9] is adopted for our seizure predictor. Specifically, it is
considered a positive event if at least 120 s of 150 s consecu-
tive signals are predicted as positive. A seizure with a positive
event predicted in the preictal period is accepted as one suc-
cessful prediction. Conversely, positive events predicted in the
interictal period are taken to be false predictions. In addition,
we adopt the 30-minute refractory period suggested in the
literature [5], [9] to avoid frequent forecasts in a short time.

III. RESULTS

In this section, we introduce the details of the experi-
mental setting and explore the optimal window length for
model performance. In addition, we conduct extensive ablation
experiments to evaluate the effectiveness and efficiency of the
proposed MMCD in improving the performance of DNNs on
two public widely-used datasets and several architectures.

A. Experimental Settings
The evaluation metrics we chose were sensitivity (Sn) [36],

false prediction rate (FPR) [9], [37], AUC, and p-value [38],
which are widely utilized in event-based evaluation of seizure
prediction. Sensitivity denotes the ratio of seizures correctly
predicted to all seizures. FPR refers to the number of false
predictions per hour, with a refractory period of 30 minutes.

TABLE III
TEST PERFORMANCE COMPARISON ON CHB-MIT DATASET USING

DIFFERENT WINDOW LENGTHS

AUC is used to evaluate the classification performance of a
model. A random classification model can reach an AUC value
of 0.5, while a model with an AUC value of 1 is considered
perfect. The p-value indicates the significance of the model
prediction from a statistical perspective, which is considered
significant over a random predictor when the p-value is lower
than 0.05.

Our experiments are based on PyTorch 1.11.0, which
is implemented using Python 3.7. The leave-one-out cross-
validation method is adopted to train and evaluate the model.
We optimize the loss using the AdamW [39] optimizer (lr =
0.004, β1 = 0.9, β2 = 0.999), set the batch size as 128, and the
epoch of training as 40. The classification layer is fine-tuned
using a learning rate of 0.0003. Besides, the patience of 10 in
the early stopping is used to reduce overfitting on training
signals. All models are trained on NVIDIA Titan XP GP102.

B. Effects of Different Window Lengths of EEG Signals
Continuous long-range EEG signals are divided into small

segments of seconds by sliding window analysis, and these
segments are used as training data for the deep neural network.
Current studies have various window lengths of EEG signals
ranging from 4 to 30 seconds. An appropriate window length
is expected to obtain better generalization performance. To this
end, we evaluate the effect of different window lengths using
the proposed RepNet. The post-processing of experiments is
implemented based on the same k-of-n strategy (i.e., at least
120 s out of 150 s) and the results are shown in Table III.
Within 15 s, it contains more discriminative feature infor-
mation as the window length increases, which improves the
performance significantly. The AUC increases slightly when
the EEG window length exceeds 15 s, indicating that window
lengths over 15 s contain sufficient discriminatory information,
and the classification performance learned by the RepNet
eventually reaches a bottleneck. Besides, Table III shows the
strong correlation between the training time and the window
length. Within 10 s, the sliding window analysis using a longer
window length results in a shorter model training time due to
fewer generated samples. However, a longer window length
implies a larger resolution as well, which leads to an increase
in training time due to higher flops. We aim to strike a balance
between classification performance and training speed and
ultimately choose an EEG window of 15 s.
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TABLE IV
PERFORMANCE COMPARISON OF ALL MODELS ON THE CHB-MIT DATASET

TABLE V
PERFORMANCE COMPARISON OF ALL MODELS ON THE KAGGLE DATASET

TABLE VI
COMPARISON OF COMPUTATIONAL COMPLEXITY, NUMBER OF PARAMETERS, AND INFERENCE TIME OF

ALL MODELS ON CHB-MIT AND KAGGLE DATASETS

C. Peformance Comparison
To demonstrate the effectiveness of the proposed RepNet-

MMCD, a representative CNN [17] and AdderNet [40]
are employed as baselines for evaluation and comparison.
CNN [17] first used the end-to-end paradigm of stacking
max-pooling layers and standard convolutional to consis-
tently downsample the features and extract higher semantic
feature information, which obtains promising performance.
AdderNet [40] introduced a lightweight addition convolutional
network, which replaces the multiplication operation in tradi-
tional convolution with the addition operation to significantly
reduce the computational cost. For fair comparisons, all mod-
els use the same configuration, e.g., window length, and batch
size.

Table IV and Table V demonstrate the performance of
these baseline models on the CHB-MIT and Kaggle

datasets, respectively. In terms of overall performance,
the RepNet-MMCD shows a superior classification result,
which supports the effectiveness of the proposed model. On
18 patients of the CHB-MIT database, the RepNet-MMCD
achieves a performance of 93.1%, 0.033/h, and 0.950 on
sensitivity, FPR, and AUC, respectively. In the Kaggle dataset,
the proposed model reaches 81.6%, 0.056/h, and 0.903 on
sensitivity, FPR, and AUC, respectively. Additionally, the
computational cost (flops), the number of model parameters,
and the inference time of these models are also measured,
as shown in Table VI. As can be observed from Table VI,
the proposed model exceeds AdderNet by more than 70% in
computational power, and the model inference is nearly 40%
faster than AdderNet with only about 40 KB more model
size. We also investigate the impact of the computational
budget due to structural reparameterization. As shown in
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TABLE VII
COMPARISON OF COMPUTATION AND PARAMETERS BURDEN OF REPNET WITH STRUCTURAL REPARAMETERIZATION

Table VII, we observe a significant reduction in computation
and parameters overhead, which is quite useful for model
deployment.

D. Ablation Studies

In this subsection, we experimentally investigate the effec-
tiveness of the proposed model uncertainty learning through
extensive empirical experiments on the CHB-MIT and Kaggle
datasets.

The implementation of the MCD approach typically requires
embedding at least one dropout layer into the model, which
introduces two major factors that affect the performance of
the MCD technique, i.e., the dropout position, and the dropout
rate. Appropriate usage of dropout benefits our baseline mod-
els. Kong et al. [41] suggests that a dropout layer embedded
before the last-conv of the end of the network would be
better. Inspired by this, we only embed a dropout layer before
the last-conv in the downsample module, as illustrated by
the red arrow in Fig. 3. Note that the dropout layer in the
MCD method is required to be turned on in both training
and testing. The MCD method performs T stochastic forward
passes for a single EEG sample in the testing phase. These
T models are fused in an average fashion, which typically
captures more reliable individual predictions. However, the
inference time of models increases linearly with the number
of predictions, which limits the number of stochastic forward
passes. It is sufficient to perform 5 stochastic forward passes
through extensive experiments. In addition, different dropout
rate tends to affect the performance varyingly, and the dropout
mask in a classification network should not exceed 50%.
Table VIII demonstrates the effects of different dropout rates
on model performance. As observed from Table VIII, the
proposed model can obtain the highest performance when
the dropout rate is 0.1. On the CHB-MIT dataset, the MCD
improves the sensitivity and AUC of the baseline by 1.28%
and 1.5%, respectively, and reduces the FPR by 20.0%.
On the Kaggle dataset, the MCD increases the sensitivity
and AUC by 3.0% and 1.9%, respectively, and decreases the
FPR by 12.1%.

Although the MCD technique is effective, it typically
requires multiple stochastic forward passes, which inevitably
leads to a linear increase in the inference latency. Besides,
models with the MCD can only test each EEG sample inde-
pendently, ignoring the large informational similarity between
consecutive EEG samples. We propose the MMCD strategy,
which utilizes the fact that EEG samples from a single patient
in the same state tend to be consistent over short timescales.
Note that the MMCD does not require dropout to get minor
variations across samples. The number of sample aggregations

TABLE VIII
PERFORMANCE COMPARISON OF REPNET-MCD WITH DIFFERENT

DROPOUT RATES ON CHB-MIT DATASET

TABLE IX
PERFORMANCE COMPARISON WITH DIFFERENT NUMBERS OF SAMPLE

AGGREGATIONS ON CHB-MIT AND KAGGLE DATASETS

is a crucial hyperparameter that affects the performance of the
MMCD strategy. We conduct empirical experiments on the
CHB-MIT and Kaggle datasets to evaluate the effect of dif-
ferent numbers of sample aggregations, as shown in Table IX.
From Table IX, as the number of aggregates increases, the
FPR and AUC consistently improve but exist a significant
decrease in sensitivity. Thus, the aggregation of 2 samples
(30 seconds) is the appropriate choice. For the CHB-MIT
dataset, the MMCD technique raises the sensitivity and AUC
by 3.8% and 1.9%, respectively, and reduces the FPR by 45%.
For the Kaggle dataset, the MMCD improves the sensitivity
and AUC by 3.8% and 1.9%, respectively, and reduces the FPR
by 45%. More details about the performance and inference
time for RepNet, RepNet-MCD, and RepNet-MMCD on the
two public datasets are demonstrated in Table X and Table XI.
As can be observed, the results demonstrate the effectiveness
of MMCD, and the MMCD strategy consistently outperforms
the MCD method. Moreover, comparisons of the average
inference time reveal that the MMCD strategy is at least 5x
(i.e., T = 5) faster than MCD in terms of inference speed.
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TABLE X
PERFORMANCE AND INFERENCE TIME COMPARISON OF THE REPNET, REPNET-MCD, REPNET-MMCD ON THE CHB-MIT DATABASE

TABLE XI
PERFORMANCE AND INFERENCE TIME COMPARISON OF THE REPNET, REPNET-MCD, REPNET-MMCD ON THE KAGGLE DATABASE

TABLE XII
EFFECTS OF DIFFERENT CHANNEL SELECTIONS ON PERFORMANCE, COMPUTATION AND PARAMETERS BURDEN

E. Effects of Channel Selection and Training Data
Channel selection has been an interesting issue, and differ-

ent channel selections can affect the generalization capability
of the model. Fewer and more important channels can save
a large amount of model computational overhead with slight
performance degradation, which is beneficial for the promotion
of portable head-mounted EEG devices. We followed the setup
of the studies [34] and [42] and conducted empirical experi-
ments for several scenarios with different channel selections
on the CHB-MIT dataset. Table XII shows the comparison
of performance, parameters, and computational burden for
the 22 channels (ours), 18 channels [34], 10 channels [42],
and 6 channels [42] settings. For the 10- and 6-channel
scenarios, their channel selections are focused on the tem-
poral areas of the brain. See [34] and [42] for more details
on specific channel selections. Generally, the model delivers
superior performance with the increasing number of EEG
channels, but with higher parameter and computational costs.
We also observe that several patients perform better with fewer

channels. This may be attributed to some electrodes being
heavily contaminated during signal acquisition, and removing
these electrodes would lead to better model predictions.

In the leave-one-out cross-validation strategy, the ratio of
training data to validation data usually varies across methods,
which may lead to different model generalizability. We also
conduct experiments on several common scenarios, and the
average performances are shown in Table XIII. As can be
observed, the ratio of training data to validation data of 80%
to 20% is a good choice.

F. Apply the MMCD Strategy to Other Baseline Models
In this subsection, we integrated the MMCD into other

DNNs-based models such as CNN [9] and AdderNet [40].
Fig. 5 shows the performance of CNN, CNN-MMCD,
AdderNet and AdderNet-MMCD methods. In the CHB-MIT
database, the MMCD strategy improves the sensitivity of base-
line CNN and AdderNet by 1.28% and 2.63%, respectively,
and improves the AUC by 2.66% and 1.64%. The FPR of
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Fig. 5. Performance evaluated on the CHB-MIT and Kaggle datasets after applying the MMCD strategy to the baseline CNN and AdderNet.
(a) The two left graphs show the sensitivity before and after applying the MMCD strategy to the baseline CNN and AdderNet, respectively, while the
right graph reports the average sensitivity of the two datasets. (b) The effect of MMCD strategy on the FPR of these baseline models. (c) Comparison
of AUC before and after applying MMCD strategy to these baseline models.

TABLE XIII
COMPARISON OF DIFFERENT RATES BETWEEN THE TRAINING

DATA AND VALIDATION DATA

these baseline models is reduced by 51.5% and 33.3%. On the
Kaggle database, the sensitivity, and the AUC of the baseline
CNN are lifted by 3.45% and 4.21%, respectively, and the
FPR decreased by 37.9%. We also observe that the MMCD
strategy improves the AUC of AdderNet by 3.17% and the
FPR effectively reduces by 35.5%, but the sensitivity decreases

slightly by 3.33%. The effectiveness of the proposed MMCD
is further validated by these empirical experiments.

IV. DISCUSSION

In this section, some state-of-the-art seizure prediction
methods in recent years are summarized in Table XIV.
Notably, it is challenging to compare directly between dif-
ferent methods due to the diversity of selected patient data,
postprocessing strategies, and preprocessing. For instance,
Jemel et al. [37] employed 5-fold cross-validation instead of
leave-one-out cross-validation to evaluate performance, and
the SOP in the literature is not available. Zhao et al. [32]
evaluated the performance of the CHB-MIT dataset with only
10 subjects selected, which could not sufficiently validate the
generalizability of their model.

In addition, Li et al. [43] used the serial paradigm of
CNN with the transformer to get outstanding results, but
the multi-headed attention mechanism (MHSA) of quadratic
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TABLE XIV
PERFORMANCE OF EXISTING METHODS

complexity in the transformer resulted in a large parameter
and computational budget. We propose a novel lightweight
seizure prediction framework. It uses depthwise separable con-
volutions to reduce parameters and computational overhead,
and structural reparameterization is employed to further reduce
computational costs during deployment. For the first time,
we propose a method (MCD) to reduce model uncertainty from
the perspective of uncertainty, which can be easily integrated
into a single deterministic network but often requires T
times of forwarding pass. We propose the MMCD strategy to
simulate the process of MCD sampling based on the consis-
tency of adjacent EEG samples, which can further improve
the reliability of the EEG-based models while overcoming
the drawbacks of the MCD in terms of prediction speed.
Empirical experiments on multiple baselines demonstrate the
effectiveness of our model uncertainty techniques.

V. CONCLUSION

This paper seeks to explore a more credible prediction
to improve the performance of seizure prediction tasks.
We propose a novel end-to-end and EEG-based patient-specific
seizure prediction framework (ReptNet-MMCD) from the per-
spective of model uncertainty. For RepNet, it is a lightweight
network stacked using depthwise convolutions, and we use
structural reparameterization to further reduce the computation
and parameters overhead during model deployment. For the
MCD method, we demonstrate that the proper usage of the

dropout layer offers modest performance improvements to
the architecture. We also propose the MMCD strategy to
simulate the MCD sampling based on the similarity between
consecutive samples in a short time. Empirical experiments
demonstrate that the proposed MMCD strategy outperforms
the MCD in terms of performance and achieves 5x faster than
MCD (e.g., T = 5) in terms of inference speed. In addition,
the MMCD strategy is further extended to the baseline CNN
and AdderNet, which significantly improves the performance
of these architectures. We hope the MMCD strategy could
help the DNNs-based architectures for more reliable seizure
prediction.
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