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Abstract— Motor imagery-based brain-computer inter-
faces (MI-BCIs) features are generally extracted from a wide
fixed frequency band and time window of EEG signal. The
performance suffers from individual differences in corre-
sponding time to MI tasks. In order to solve the problem,
in this study, we propose a novel method named Riemannian
sparse optimization and Dempster-Shafer fusion of multi-
time-frequency patterns (RSODSF) to enhance the decoding
efficiency. First, we effectively combine the Riemannian
geometry of the spatial covariance matrix with sparse opti-
mization to extract more robust and distinct features. Sec-
ond, the Dempster-Shafer theory is introduced and used
to fuse each time window after sparse optimization of
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Riemannian features. Besides, the probabilistic values of
the support vector machine (SVM) are obtained and trans-
formed to effectively fuse multiple classifiers to leverage
potential soft information of multiple trained SVM. The
open-access BCI Competition IV dataset IIa and Competi-
tion III dataset IIIa are employed to evaluate the performance
of the proposed RSODSF. It achieves higher average accu-
racy (89.7% and 96.8%) than state-of-the-art methods. The
improvement over the common spatial patterns (SFBCSP)
are respectively 9.9% and 12.4% (p < 0.01, paired t-test).
These results show that our proposed RSODSF method is
a promising candidate for the performance improvement of
MI-BCI.

Index Terms— Brain-computer interface, motor imagery,
Riemannian geometry, sparse optimization, Dempster-
Shafer theory.

I. INTRODUCTION

BRAIN-COMPUTER Interface (BCI) bridges people with
physical disabilities to the outside sensual world by

converting brain signals such as electrophysiological (EEG)
to control instructions [1], [2], [3]. Motor imagery (MI) is
the mental imagination of body movement without actual
muscle movement and its corresponding rhythmic activities
of the brain could be observed and applied as the input
signals of BCI systems [4]. The regular rhythmic power
changes in the sensorimotor area within mu (8-12 Hz) and
beta (13–30 Hz) frequency bands are called event-related
desynchronization/ synchronization (ERD/ERS), which can
be detected to discriminate different kinds of MI tasks [5].
MI-based BCIs are flexible in their applications for consid-
eration of MI not demanding external stimuli [6]. However,
the problems of existing MI-BCIs decoding suffer from the
instability and complexity of EEG signals [7]. It is pivotal and
remains challenging to improve EEG decoding ability, extract
discriminative information from low signal-to-noise EEG, and
realize reliable classification of different MI tasks [8], [9], [10].

Various methodologies have been proposed to extract dis-
criminant patterns from high-dimensional EEG signals [11],
[12], [13]. The spatial patterns associated with ERD gener-
ated from different MI tasks could be identified [14]. The
most frequently used method is the common spatial patterns
(CSP) proposed in [15]. Whereas, the effectiveness of CSP is
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very sensitive to the selection of frequency bands and easily
affected by irrelevant noise [16]. Thus, a fixed time window for
feature extraction may lead to low classification accuracy [17].
There are numerous extensions of traditional CSP to optimize
subject-specific operational time windows or frequency bands,
such as sub-band CSP (SBCSP) [18], filter bank CSP (FBCSP)
[19] and sliding window discriminative CSP (SWDCSP) [20].
Advanced algorithms by dividing time window and frequency
bands effectively improve the classification accuracy, however,
these methods still bring much information redundancy and
multiply the decoding time cost [21]. To solve the problem of
ineffectiveness, several feature selection algorithms emerge to
automatically select the corresponding extracted features, such
as sparse CSP (SCSP) [22] and sparse FBCSP (SFBCSP) [23]
which select features through sparse learning.

With regard to further effectively utilizing discriminative
information from multiple time windows and frequency bands,
several heuristic methods have been proposed to automatically
select one or a set of time windows and frequency bands [24],
[25], [26]. Though these methods contrive to improve the final
decoding performance, the feature selection procedure should
not be an open/shut case [27]. In [24], the frequency bands
are selected through the affinity propagation of multi-filter
bank CSP features, which contain the cluster centers. In [25],
time windows are selected based on correlation analysis and
performance evaluation. In [26], the frequency band and time
interval are coded with the particles and the optimal settings
of them can be simultaneously detected by the evolution of
particles for individual subjects. However, valuable messages
in abandoned bands would be lost. Because the optimal
time-frequency bands change rapidly and even vary between
trials [28]. However, simply concatenating extracted features
of all time-frequency bands would cause much redundancy
in information and increase the difficulty of classification then
multiplying the calculation time of algorithms [29]. Moreover,
the Riemannian method has been wildly applied in MI-BCIs
for its robustness [30]. A. Barachant et al. successfully uti-
lized the symmetric positive-definite (SPD) spatial covariance
matrix [31], to introduce the robustness of Riemannian dis-
tance and Riemannian mean into the BCI system and build
more stable decoding models. They also combined the Rie-
mannian method with state-of-the-art algorithms by mapping
the data onto the Riemannian tangent space (RTS), where
the matrices could be vectorized to fit traditional Euclidean
models [32].

Aiming at solving the preceding problems, we propose a
Riemannian sparse optimization and Dempster-Shafer fusion
approach (RSODSF) for MI-BCIs classification to effectively
utilize the underlying information of multiple time-frequency
patterns. Raw EEG signals are segmented and filtered into
multiple time windows and overlapping sub-bands respec-
tively. Then discriminative features of each sub-band from
Riemannian tangent space are extracted and then optimized
through sparse learning to enhance the stationarity and robust-
ness of the algorithm. Moreover, Dempster-Shafer theory
(DST) is introduced to implement the classification fusion of
multi-time windows. After we train a support vector machine
(SVM) classifier with the linear kernel for the classification,

we conduct a series of experiments to evaluate our proposed
algorithms with different public datasets of BCI Competi-
tion. The major contributions of this work are:1) This work
combines the Riemannian geometry of the spatial covariance
matrix with sparse optimization to extract more robust and
distinct features. 2) The Dempster-Shafer theory is intro-
duced and used to effectively fuse the probabilistic outputs
of each time window and reduce uncertainty of the final
prediction.

The remainder of this paper is organized as follows.
Section II elaborates on the materials and proposed method.
Section III and IV describe the public datasets we use for
experiments and the experimental setup, show the result and
discussion, respectively, and conclude in Section V.

II. METHODOLOGY AND MATERIALS

A. Riemannian Feature Extraction

In MI-BCIs, Riemannian geometry is applied to the covari-
ance matrix of EEG signal, which is one of the most fre-
quently used statistical properties [33] and has the property
of being symmetric positive-definite (SPD) and located in the
Riemannian manifold [34].

Let the X = [x(t), . . . , x(t + L − 1)]∈RNC ×L be the
bandpass filtered EEG signal, Nc, L respectively demonstrates
the number of channels and sample points. The Nc x Nc spatial
covariance matrix C and Riemannian tangent space features
can be calculated using the following steps.

1) Bandpass filter the raw EEG data at a specific time-
frequency band.

2) Calculate the Nc x Nc spatial covariance matrix C of
each trial using Eq. (1):

C = 1

L − 1
X (t)X T (t) (1)

3) Use the iterative algorithm to calculate the Riemannian
mean between N covariance matrices, which has a minimum
sum of the squared distances to all covariance matrices [35].
N demonstrates the number of EEG trials.

δR(C1, C2) = �log(C−1
1 C2)�F =

�
N�

i=1

log2 λi

� 1
2

(2)

C̄ = arg min
C

N�
i=1

δ2
R(C, Ci ) (3)

where C1, C2 are two different covariance matrices respec-
tively, λi denotes the i-th eigenvalue of C−1

1 C2, || ||F

denotes the Frobenius norm [36], and log() is the log-matrix
operator.

4) Use the logarithmic mapping to project the data points
from Riemannian manifold to its corresponding tangent space,
as shown in Fig. 1. and expressed in Eq. (4). The projected
data points could be mapped back to the manifold by the
exponential mapping, i.e., the exponential function of the
matrix [35].
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2 Ci C̄
− 1

2 )C̄
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Fig. 1. Riemannian manifold M and corresponding local tangent space
TP at reference covariance point C̄. (SPD matrix Ci ⇔ symmetric
matrix Si).

5) The projected data, i.e., the symmetric matrices can
be vectorized into Euclidian objects and further used for
classification, expressed in Eq. (5).

f = vect (C)

= [C1,1;
√

2 C1,2; . . . ; CNC ,NC ] ∈ R(NC +1)NC /2 (5)

where f denotes N×((Nc+1)×Nc/2) vectorized features from
N covariance matrices C . Considering the symmetry property
of the projected matrices, the non-diagonal elements of C need
to multiply

√
2 to maintain the standard when vectorizing the

projected matrices of each trial [37].

B. Probabilistic Support Vector Machine

Support Vector Machine (SVM) is one of the most popular
machine learning algorithms and has been broadly used in
binary classification situations [38], which separates differ-
ential data samples by constructing a set of optimal high-
dimensional hyperplanes. These hyperplanes are capable of
maximizing the margins between two features samples, and
are least affected by local disturbance of samples [39]. Unlike
advanced deep learning methods [40], SVM does not require
large scales of data and is suitable for small and medium-sized
nonlinear data samples [41]. Moreover, it has a potent gener-
alization ability for unknown data and flexibility for decision
making [38]. For consideration of expedience, we select the
SVM with a linear kernel as our fundamental classification
tool, as expressed in Eq. (6).

min
ω,b,ξ

1

2
�ω�2 + C ·

n�
i=1

ξi

s.t . yi (ω
T φ(xi ) + b) ≥ 1 − ξi , ξi ≥ 0, i=(1,…,n) (6)

where the weight vector ω and an offset b of the hyperplane
could be obtained through the minimum optimization, φ(xi )
is the function that maps xi into a higher-dimensional space,
C is the penalty parameter of the error term, and ξ denotes
the slack variable [38].

To ensemble the SVM outputs trained through multiple
time windows, we further introduce an SVM–Platt model to
transform the outputs into posterior probabilities [42]. The
transformation steps are as follows:

1) Calculate the distances d between the sample points and
decision boundary.

d(xi ) = x T
i ω + b (7)

2) Note that if the distance is a positive value, the sample
belongs to a positive class [43]. The transformed posterior
probability ρ j is actually the probability that a sample belongs
to a specific class and could be computed by fitting a
two-parameter sigmoid function of the distance value d j which
matches the posterior that is empirically observed [44].

ρ j = 1

1 + exp(Ad j + B)
(8)

where exp (•) is the exponential function, A and B are the
parameters representing the slope and the intercept [42].

3) Transform the labels into the probability target t j , in order
to fit the afore sigmoid function. In our study, labels 1, and
2 are respectively demonstrating left-hand and right-hand MI
tasks. As expressed in Eq. (9), the right-hand MI task, i.e.,
label = 2, is the positive target for example.

t j =
�

0 label=1

1 label=2
(9)

4) Find the optimal parameters A and B through a cross-
entropy function, as expressed in Eq. (10). The two-parameter
minimization is fitting by using a maximum likelihood esti-
mation from the training set, which finds the two optimal
parameters by minimizing the negative log likelihood of the
training data [42].

A, B = arg min
A,B

−
�

t j log(ρ j ) + (1 − t j ) log(1 − ρ j ) (10)

Since we obtain the transformed probabilistic outputs of
several trained SVM models, we contrive to find a way to
maximumly use underlying information within and between
classifiers and effectively fuse multiple posterior probabilities.

C. Dempster-Shafer Theory

Dempster-Shafer Theory (DST) is an evidence theory pre-
sented by Dempster [45] and further developed by Shafer [46],
which is an extension of the Bayesian inference method by
introducing the uncertainty of our knowledge into the proba-
bilistic space. DST could combine all the available evidence
come from different sources about a specific event [45] and
applied in BCI context [47]. In our context, it is a binary
classification event utilizing sources of multiple time windows.

In short, given a finite and exhaustive set of possi-
ble conclusions to a question � = 	1,	2, . . . ,	n . 2�

includes all possible subsets of � and could be presented as
∅,	1,	2, . . . ,	n,	1,	2, {	1,	3, . . .. DST would assign a
probability for each subset, called mass function and satisfies
the following conditions:

m(∅) = 0
�

E A∈2�

m(E A) = 10 ≤ m(E A) ≤ 1,E A ∈ 2� (11)

where ∅ is an empty set, the focal element E A is a hypothesis
to the event and may include one or more conclusions. DST
also defines belief and plausibility functions to model the
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uncertainty, expressed in Eq. (12).

Bel (E A) =
�

E B⊆E A

m (E B)

Pls(E A) =
�

E B∩E A �=∅
m (E B) (12)

The smaller the distance between the plausibility and the
belief, the lower the uncertainty. In order to further mitigate the
uncertainty, we can fuse two sets of evidence of focal element
E A through joint mass function, expressed in Eq. (13). EB

and EC respectively demonstrate the hypotheses to the event
from two sets of evidence.

m1,2(E A)

=
⎧⎨
⎩

	
E B∩EC=E A m1(E B) × m2(EC)

1 − 	
E B∩EC=∅ m1(E B) × m2(EC)

, E A �= ∅
0, E A = ∅

(13)

D. Riemannian Sparse Optimization and
Dempster-Shafer Fusion of Multi-Time-Frequency
Patterns (RSODSF)

Since the responding time and optimal operational fre-
quency bands vary between subjects. We contrive to fully take
benefit of scarce EEG resources and to operate the decoding
better. Given N trials of EEG signals X ∈ RN×N c×L , and X
is segmented into a set of T overlapping time windows and K
overlapping sub-frequency bands. After the preceding feature
extraction procedure, the multiple time-frequency Riemannian
patterns are obtained. Each time window of which could be
donated as Fj = [ f1, f2, . . . , fi ]T ∈ RK×(NC +1)NC /2, where
fi∈R(NC +1)NC /2 stands for the extracted Riemannian patterns
from i-th frequency band.

Motivated by SFBCSP [23], a multiband optimization
method is proposed and developed to select discriminative
features through sparse regression [48], we tend to incorporate
the sparse learning with our previous extracted Riemannian
tangent space features. l1-norm is widely used due to its better
optimization solution characteristics than l0-norm and sparser
weight parameters than l2-norm [49]. The sparse regression
model used in our study would be defined as:

w = arg min
w

1

2
||y − Fw||22 + λ||w||1 (14)

where y ∈RN is the label vector of EEG trials, F ∈
RN×(NC +1)NC /2 is the extracted Riemannian features and
w ∈R(NC +1)NC /2 is the weight vector, l1-norm is introduced
to penalize the inessential feature weights close to zero. λ
denotes the regularization parameter to control the sparsity
of w, which would be determined through experiments.

Now that the Riemannian features of multiple frequency
bands from each time window are extracted. We tend to further
effectively fuse the information of T time windows in the
classification stage.

In our context, two elements are corresponding to each MI
task class label and would generate the frame of discernment
� = 	1,	2. First, we contrive to get the mass function
from every single time window. We respectively set each MI

TABLE I
THE D-S FUSION PROCEDURE OF ONE PSVM MODEL TRAINED

BY EACH TIME WINDOW IN OUR BCI CONTEXT (LH/RH:
LEFT/RIGHT-HAND MI; M1/M2: MASS FUNCTIONS)

label i.e., labels=1 or 2, as the probability target to obtain the
posterior probabilities P1, P2 of each classifier. For the sake of
expedience, we simply use the identity function to transform
the probability values to mass functions.�

mi = P	i = Pi ,	i ∈ {	1,	2}
m j = P	 j , P	 j = P	̄i

(15)

where mi and m j are respectively the mass functions of 	i and
	 j , 	 j is the complement of 	i , and Pi is the probabilistic
outputs of SVM when label i is the target probability.

Noting that when choosing one label as the target probabil-
ity, the probability output of another label would be unknown
and usually set as zero, the complement of the target would be
the uncertainty. However, when the value of zero is involved,
the fusion result will always be zero regardless of the basic
mass function allocation value of the other evidence.

In order to address the above-mentioned problems, we first
contrive to fuse the mass functions of a time window by
respectively setting each one of the labels as our target prob-
ability. Then we could obtain three non-zero mass functions
of one model through Eq. (14), which respectively stand for
three focal elements in the frame of discernment mi1, mi2 and
miu . In our BCI context, we tend to classify two MI tasks.
We preset the frame of discernment as {LH, RH, {LH, RH}}
for example and the third element is the uncertainty needed to
be mitigated. As shown in TABLE I, the D-S fusion procedure
of one PSVM model is achieved, which actually degenerates
into Bayesian probability. P1 and P2 are the probabilistic
outputs of the PSVM when the positive targets are respectively
left-hand and right-hand MI tasks, respectively. The values
behind the elements are the basic mass functions allocated in
the last section. The mass functions m1, m2 are transformed
from the P1, P2 through Eq. (15).

After we obtain mass functions mi1, mi2 and miu of the i-th
time window. We manage to further combine T segmented
time windows using Eq. (13). As shown in TABLE II, the
D-S fusion procedure of mass functions from PSVM models
trained by two different time windows is achieved. P is
the probabilistic output of the PSVM. Once the final three
joint mass functions are calculated, we are now capable of
implementing the decision-making by comparing two mass
functions corresponding to the label. The outputs of the frame-
work would be assigned with the larger mass function and be
more credible with smaller uncertainty. The combination of
the mass functions of all time windows is achieved through
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Fig. 2. The whole block diagram of the proposed RSODSF methods. (TW: Time Window; MI: Motor Imagery; D-S Fusion: Dempster-Shafer Fusion).

TABLE II
THE D-S FUSION PROCEDURE OF MASS FUNCTIONS FROM PSVM
MODELS TRAINED BY TWO DIFFERENT TIME WINDOWS IN OUR BCI
CONTEXT (LH/RH: LEFT/RIGHT-HAND MI; TW: TIME WINDOWS)

two together. To be specific, after one time window combines
with another, the results of combination are further utilized to
combine with a third one. The whole structure of the proposed
method is shown in Fig. 2.

III. EXPERIMENTS AND RESULTS

A. Data Descriptions

1) Dataset 1: We choose Dataset IIa from BCI Competi-
tion IV [50] as the first dataset to evaluate the effectiveness
of the proposed methods. It contains 22-channel EEG data
recorded from 9 subjects performing 4 kinds of MI tasks, i.e.,
Left-Hand, Right-Hand, Feet, and Tongue mental tasks. Each
participant completed two sessions, one for training and the
other for evaluation [50]. We combine two sessions and choose
Left and Right-Hand tasks to evaluate the binary classification
performance, which contains 144 trials of each MI task. The
training set and test set would be further divided for an 8-fold
cross validation. The dataset is provided by the Institute for
Knowledge Discovery (Laboratory of Brain-Computer Inter-
faces), Graz University of Technology. This work involves

human subjects or animals in its research. We confirm all
human/animal subject research procedures and protocols are
exempt from review board approval. More details can be found
on the following website: http://www.bbci.de/competition/iv/

2) Dataset 2: We choose Dataset IIIa from BCI Competi-
tion III [51] as the second dataset to evaluate the effectiveness.
It contains 3 healthy subjects performing 4 kinds of MI tasks
and recorded 60-channel EEG signals with a sampling rate
of 250 Hz. We downsample them to 100Hz. In our experi-
ments, a total of 180, 120, and 120 trials for subject k3, k6,
and l1 were respectively included for two chosen different MI
tasks. The training set and test set would be further divided for
a 6-fold cross validation. This work involves human subjects or
animals in its research. We confirm all human/animal subject
research procedures and protocols are exempt from review
board approval. Detailed information about this dataset can
be found on: http://www.bbci.de/competition/iii/

B. Experimental Setup

In this study, EEG data of 0-4 s after the visual MI cue
appeared has been extracted for signal processing. We firstly
used 5th order Butterworth bandpass filters to capture EEG
signals from 8-32Hz wide frequency bands. The length of the
time window should not be too short to include the execution
time of MI and also not be too long which would add irrelevant
information. However, the response time fluctuates between
different subjects. Moreover, time windows and filter banks
of different lengths are adopted. The divided time windows
are respectively, [0.5, 4], [0.5, 3.5], [1, 4], [0.5, 3], [1, 3.5]
and [1.5, 4] after the visual MI cue appeared for DS1, and
[0, 3.5], [0, 3], [0.5, 3.5], [0, 2.5], [0.5, 3] and [1, 3.5]
for DS2 denoted as TW1-TW6. The 15 overlapping sliding
filer banks are segmented with lengths of 8, 16, and 24 Hz.
Moreover, in order to avoid the over-fitting of the trained
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Fig. 3. Visualization of feature distribution extracted from subjects A01-A09. (left and right data clusters in each sub plot are respectively extracted
by SFBCSP and the proposed method).

classification SVM models, the final classification accuracy is
calculated within an 8-fold/6-fold cross-validation framework
for DS1/DS2. We manually search a set of hyperparameters
[10^−4, 10^−3, …, 10^1] and choose λ as 10^-2 through
experiments to weigh the classification accuracies and com-
putational cost. To validate the effectiveness of the proposed
RSODSF, we implement extensive comparisons with several
state-of-the-art methods.

(1) SFBCSP-SVM [23]: A fixed time window EEG of
0.5–4 s after the cue, filter banks are set the same as the
proposed method and extracted by SFBCSP.

(2) SW-LCR [52]: It uses the longest consecutive repetition
of the sequence of prediction of all the sliding windows.

(3) RoCSP-SRIT2NFIS [53]: A robust CSP with a self-
regulated interval type-2 neuro-fuzzy inference system is used.

(4) AR-CSP+SRSG-FasArt [54]: An artifact rejected CSP
and self-regulated adaptive resonance theory-based neuro-
fuzzy classifier as “self-regulated supervised Gaussian fuzzy
adaptive system Art (SRSG-FasArt)” is introduced.

(5) RSO-SVM: Sparse Optimization of Riemannian Tangent
Space features of multi-frequency bands.

The entire evaluation is under the environment of MATLAB
R2018a on a laptop with 2.60GHz CPU (i7-9750H, 8GB
RAM). The classification tool is the SVM with linear kernel
and default classifier parameters. The Covariance Toolbox is
used which mainly focuses on Riemannian features extraction
of SPD matrices and contains a series of MATLAB functions
dedicated to covariance matrices estimation [55].

C. Comparison of Feature Distribution

To better interpret the experimental results, we utilize
t-distributed stochastic neighbor embedding (t-SNE) [56] to
visualize the extracted features. Fig. 3 presents the feature
distribution extracted from subjects A01-A09 using SFBCSP

and our proposed method. Compared with SFBCSP, the fea-
tures extracted using our method have stronger discriminability
and seem easier to be separated for the majority of subjects.
As shown in Fig. 3, subjects A03, A04 and A06 have the
most obvious improvement, especially A04 and A06 have an
improvement of 14.3% and 11.9%, respectively. The feature
distribution of A02 and A05 seems to have no improvement,
yet the accuracies still improve a lot.

D. Classification Performance of Multiple
Time-Frequency-Patterns Versus Canonical
Time-Frequency Band

In MI-BCIs, canonical time-frequency bands are most com-
monly used to process the raw EEG signals, which is 0.5-4s
after the visual cue and filtered within 8-32Hz. As shown in
Fig. 4, the accuracies vary between time-frequency bands and
the optimal operational time-frequency bands are not always
the canonical ones, i.e., TW1-FB15 in Fig. 4.The multiple sub-
bands would provide much more affluent band information that
allows us to achieve more credible classification.

More specifically, as shown in Fig. 5 (a), each classifier
corresponding to each time window has a relative accuracy.
We can conclude from Fig. 5 (a) that the ensembled accuracies
are always higher than results obtained from a single fixed time
window, which also proves the effectiveness of our methods.

E. Classification Performance With Dempster-Shafer
Fusion Versus Majority Voting Strategy

Numerous data fusion methods have been applied to com-
bine outputs of multiple trained classifiers. The majority voting
strategy (MVS) [57] is the most commonly adopted fusion
method which is followed by the “Max Wins” rule and
determines the decisions with the maximum votes. Whereas,
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Fig. 4. Comparison of EEG Decoding accuracies of subject A01-A04 between divided multi-time-frequency Bands.

Fig. 5. (a) Classification accuracies of each time window and fused by proposed DSF from subjects A01-A04 (the blue and orange bars respectively
denote the accuracies of each time window and fused by DSF). (b) Classification accuracies of MVS & DSF of CSP and RSO features from subject
A07 and A09.

the unintelligible soft information between different classifiers
would be lost. The proposed D-S fusion effectively resolves
the ambiguity in determining the final class caused by the
majority voting of binary classifier results. As shown in
Fig. 5 (b), the accuracy of subject A07 obviously decreases
with applying MVS, as the number of classifiers increases
while its accuracy increases with applying the proposed
RSODSF. This might originate from the ambiguity caused by
MVS. As the number of fused classifiers grows, DFS always
outperforms MVS.

F. Classification Accuracies Comparison

The experimental results of binary classification are
summarized in TABLE III. The mean accuracy improvement
of the proposed RSODSF method, compared with the above
SFBCSP/SW-LCR/RoCSP-SRIT2NFIS/AR-CSP+SRSG-Fas-
Art/RSO-SVM are respectively 9.9%/12.4%, 9.7%/11.6%,
6.4%/4.2%, 4.2%/2.4% and 8.8%/11.3% for DS1/DS2,
which demonstrates that the proposed RSODSF achieves the
highest mean accuracy among them and outperforms other
state-of-the-art methods in processing 9 of 12 subjects. All
the p-values obtained by paired t-test between the RSODSF
and any of others are less than 0.01 (p<0.01).

Fig. 6. Confusion matrices of the proposed rsodsf and the compared
State-of-the-art methods.

As shown in TABLE III, the improvement of RSODSF
is significantly obvious when applied in A02 and A05. The
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TABLE III
THE CLASSIFICATION ACCURACIES (%), AVERAGE COMPUTATIONAL TIME(S) AND SIGNIFICANCE COMPARISONS (WHERE THE BEST RESULTS

ARE MARKED IN BOLDFACE AND AVERAGE COMPUTATIONAL TIME IS DENOTED AS TIME)

classification results of these two subjects are the worst
ones among 9 subjects when processed by other methods.
However, the improvement is not that much notable in those
subjects who originally performed well with basic algorithms.
Moreover, the accuracies of subjects A03 and A08 even
slightly decline, which is probably on account of the well-
performed EEG data of them and benefits from the simplicity
of conventional algorithms. Since the decline in accuracies
is not significant, the average performance of the proposed
RSODSF still outperforms other state-of-the-art methods. The
average confusion matrices of the proposed RSODSF and
compared state-of-the-art methods (see from Fig.6) further
evaluate the effectiveness of the proposed method. We also
compare the computational time of the proposed method with
other state-of-the-art methods. The average model training
time and testing time is calculated and shown in TABLE III.
The proposed RSODSF also outperforms in the matter of
computational time. Compared with SFBCSP, the RSO method
has improved the mean accuracies in both DS1 and DS2,
especially for subject K6 in DS2 with an improvement of
10.3%. The use of Riemannian geometry has enhanced the
robustness of the classification model. The consequent use
of the SPD matrix as a feature may have led to the curse
of dimensionality and increase the training time. However,
the sparse optimization has been utilized to select the most
discriminative features which reduces the influence of the large
dimensionality of SPD matrix.

IV. DISCUSSION

Previous studies have demonstrated that Riemannian geom-
etry could be effectively applied in BCI fields. Our proposed
RSODSF method integrates advanced process algorithms and
achieves the best performance among the abovementioned

state-of-the-art method. However, the feature distribution of
two different classes from subjects A02 and A05 in Fig. 3 still
seems mixing and confusing, but the classification accuracies
are significantly increased with an improvement of 22.7% and
17.7% respectively. Moreover, we can see that the feature
distribution of these two subjects is spatially divided into two
clusters, which probably results from the intrinsic geometry
structure of the EEG data. Moreover, the accuracy improve-
ment in the feature layer (1.3% and 1.1%) is much less than in
the classification layer (8.8% and 11.3%), the key step leading
to the improvement in accuracy is at the classification layer.
This has further explained the obvious accuracy improvement
when the feature distribution has no enhancement.

Besides, see A01 and A03 in Fig. 5 (a), we can observe
the accuracies with TW2 of A01 and TW4 of A03 are higher
than TW1, i.e., the most frequently used fixed time window
in MI classification. These results further denote that TW1
is not always the optimal operational time interval. Due to
the individual difference, the response time to the visual cue
of subjects varies between subjects, and even between trials.
Other achieved accuracies of time windows are obviously
lower than TW1, however, the fusion of combined time win-
dows always achieves the best accuracies which validates the
necessity of utilizing multiple time windows as our research
direction.

It is also worth noting that when evidence conflicts severely
or completely, the D-S fusion of mass functions would cause
ambiguity which would affect the classification accuracy.
Nevertheless, this problem would be naturally resolved in the
BCI context because of the design of paradigms. The subjects
would only perform the cued MI tasks, and the possibility of
occurring undesirable results would become negligible.

Although the RSODFS method has been evaluated and
proved to outperform state-of-the-art methods, there still exists
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leaving blank space in which could be further ameliorated.
First, the Riemannian sparse optimization is realized by map-
ping the covariances points to the tangent space and vector-
izing them, which may destruct the underlying structure of
original data to some extent. This could be addressed through
Riemannian dictionary learning [58], which treats atoms as
covariance matrices to keep the intrinsic distribution of EEG
data. In addition, the improvement of decoding performance
benefits from the robustness of the introduction of Riemannian
geometry. However, the succeeding surging of feature dimen-
sionality also increases the computational costs and results
in the inability of the sparsity hypermeter to be large, which
should be considered in future studies. Moreover, when fusing
the probabilistic outputs of the abovementioned one-versus-
one SVM classifiers in a multi-class classification scenario,
two-versus-two strategies could be together considered to
improve the credibility of the final prediction.

V. CONCLUSION

In this study, we propose an integrated framework combin-
ing the robust Riemannian tangent space features extracted
from multiple time-frequency bands with sparse optimization.
Then the Dempster Shafer theory based fusion method is
utilized to effectively fuse the transformed probabilistic values,
which are obtained from trained linear kernel SVM of each
divided time window to maximally exploit underlying soft
information within and between multiple classifiers. Experi-
mental results on the public dataset show that the proposed
RSODSF achieves significantly higher classification accuracy
compared with other state-of-the-art methods. In addition, our
method is capable of extracting more discriminative features
and solves the issue of ambiguity in determining the final
class. In conclusion, the RSODSF is a promising candidate
for improving the performance of MI-BCIs.
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