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Learning Spatiotemporal Graph Representations
for Visual Perception Using EEG Signals

Jenifer Kalafatovich , Minji Lee , and Seong-Whan Lee , Fellow, IEEE

Abstract— Perceiving and recognizing objects enable
interaction with the external environment. Recently, decod-
ing brain signals based on brain-computer interface (BCI)
that recognize the user’s intentions by just looking at
objects has attracted attention as a next-generation intu-
itive interface. However, classifying signals from different
objects is very challenging, and in practice, decoding per-
formance for visual perception is not yet high enough to be
used in real environments. In this study, we aimed to clas-
sify single-trial electroencephalography signals evoked by
visual stimuli into their corresponding semantic category.
We proposed a two-stream convolutional neural network
to increase classification performance. The model consists
of a spatial stream and a temporal stream that use graph
convolutional neural network and channel-wise convolu-
tional neural network respectively. Two public datasets
were used to evaluate the proposed model; (i) SU DB
(a set of 72 photographs of objects belonging to 6 semantic
categories) and MPI DB (8 exemplars belonging to two cat-
egories). Our results outperform state-of-the-art methods,
with accuracies of 54.28 ± 7.89% for SU DB (6-class) and
84.40 ± 8.03% for MPI DB (2-class). These results could
facilitate the application of intuitive BCI systems based on
visual perception.

Index Terms— Visual perception, electroencephalog-
raphy (EEG), convolutional neural network (CNN),
brain–computer interface (BCI).
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I. INTRODUCTION

PERCEPTION and recognition of objects are essential for
the interaction with the external environment and with

other people [1]. They facilitate the planning and execution
of motor action, which requires information regarding the
location and material properties of objects [2]. It has been
proved that the identification objects can be accessed rapidly
when presented visually compared to other modalities such
as text [3]. In this line, many studies concluded that the
occipital cortex is the one responsible for visual information
processing [4]. Information related to object identification and
the corresponding semantic category is reflected by changes
in brain activity, which can be extracted in less than 200 ms
depending on the semantic category of the presented stimu-
lus [5]. Moreover, decoding conceptual information has gained
interest since it can be applied to a brain-computer interface
(BCI) system that aims to transform lexical concepts into
written or spoken output [6].

Humans can recognize objects in a matter of millisec-
onds [7]. Brain signals have been widely studied in order
to understand the neural mechanisms involved in this abil-
ity [8]. As a result, changes in brain activity have been
associated with the presentation of a stimulus of a certain
semantic category [9]. Haxby et al. [10] recorded functional
magnetic resonance imaging (fMRI) signals when subjects
were presented with stimuli of different semantic categories
(human faces, cats, house chairs, scissors, shoes, bottles,
and nonsense images). The similarity between patterns was
analyzed using correlations of brain responses. It was reported
that different brain regions of the ventral temporal cortex
are preferentially activated, and a distinct pattern of brain
responses is elicited depending on the semantic category of
the presented images [10], [11]. However, the differences in
brain signals corresponding to visual stimuli from different
semantic categories are not clear.

Many studies of visual perception in humans have been
actively performed using electroencephalography (EEG) sig-
nals due to their suitability for the development of BCI [12],
[13]. Some of them focused on event-related potentials (ERP)
when comparing evoked signals in response to images of
different semantic categories, especially for faces versus
objects [14]. A previous study found a significant negative
activity (approximately 120–200 ms) after stimulus onset,
depending on the stimulus category [15]. Philiastides et al. [16]
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presented subjects with images corresponding to faces and
cars. The authors identified two maximally discriminating
facial components. An early component was found at 170 ms
after stimulus onset and a late component was found at least
130 ms after the first one. Simanova et al. [6] analyzed
discriminant information for two object categories (animal
and tool class). A positive and a negative ERP component
were elicited at 110 ms and 160 ms after stimulus onset
respectively; these were largest over the inferotemporal and
occipital electrodes. Additionally, the deflection over the
frontal electrodes was less negative for the animal than for
tool trials.

Brain activity has been modeled using graph theory [17].
Moreover, the interest in graph neural networks in magne-
toencephalography (MEG), fMRI, and EEG studies had been
increasing, yet it still represents a challenge [18]. Previous
works had applied graph convolutional neural networks to
EEG signals [19]. Some of these explored electrode dis-
tance [20], [21], while others used functional connectivity
values [22] such as phase-locking value (PLV) for the con-
struction of graphs. They proposed that functional connectivity
represents the interactions between brain regions that occur
in the brain [23], whereas neighbor electrodes connections
represent the interactions inside a specific brain region. The
above mention studies focused on feature extraction while
modeling connections between electrodes but failed to extract
channel-wise features.

In this study, we attempted to decode the semantic cate-
gory of the presented stimuli using single-trial EEG signals.
First, we analyzed time-domain features of the brain signals
and the functional connectivity between trials of different
semantic categories. We found significant differences in both
time-domain and functional connectivity for different classes,
as a result, we concluded that these features could be used
for classification. Second, we proposed a two-stream con-
volutional neural network (TSCNN) for classifying visual
perception. Graph convolutional neural network (GCNN) is
used to extract spatial relation between electrodes and a
convolutional network (CNN) is used to extract channel-
wise features; the output of both networks is concatenated
and classification is performed. EEG signals are used to
construct a graph that is later input to the GCNN. Unlike
other studies, we combine local and distant connections of
the brain by constructing the adjacency matrix using electrode
distance and functional connectivity. There are multiple ways
to estimate functional connectivity, a recent study proves that
weighted phase lag index (wPLI) attenuated the influence
of noise contamination [24] and volume conduction [25],
therefore, we decided to use wPLI for estimating the connec-
tivity between a pair electrodes. The CNN extracts channel-
wise features, specifically time-domain features that could be
ignored by the GCNN since it gives more importance to the
spatial relation between electrodes. Our findings lead to better
classification accuracy than those in previous methods and
demonstrate that it is possible to classify single-trial EEG
signals generated during the representation of visual stimuli
into different semantic categories with significantly higher
accuracies.

The contributions of this study can be summarized as
follows.

• We analyzed time-domain features of the brain signals
and the functional connectivity between trials of dif-
ferent semantic categories. Our findings support their
use for classifying EEG signals into different semantic
categories.

• We proposed a framework that combines time-domain
features with spatial relations between electrodes by
simulating connections of the brain. Different from other
methods, we simulate local and distant connections simul-
taneously by using electrodes distance and functional
connectivity to learn graph representations.

• We demonstrated the effectiveness of our method by
improving classification accuracies when compared to
networks that use time-domain features or spatial rela-
tions between electrodes separately. Moreover, our model
outperformed the existing state-of-the-art methods for
decoding human visual perception and classifying EEG
signals.

II. RELATED WORKS

Multiple studies have attempted to classify observed objects
from brain signals using fMRI [26], [27], MEG [28], [29],
and EEG [1], [30], [31], [32], [33]. fMRI has high spa-
tial resolution when acquiring brain signals [34], therefore
decoding performance tends to be higher than when using
EEG. However, due to its low time resolution, its use in BCI
systems is limited. In contrast, EEG has been applied to a
variety of BCI systems due to its high time resolution and
portability [35].

Initially, traditional machine learning techniques were used
to classify brain signals elicited during object perception.
Above all, classifying brain signals simply by looking at
objects represent a challenge and it is more complex than
using clear visual stimuli, such as steady-state visually evoked
potential using differences in frequencies. Wang et al. [9] used
EEG signals to investigate brain activity patterns related to
the encoding of semantic category information. Subjects were
presented with images of four semantic categories. ERP was
used as a feature extraction method and classification was
performed using fisher linear discriminant analysis (LDA).
An accuracy of 67.87% was reported for 4-class classifica-
tion. Kaneshiro et al. [1] aimed to classify visual stimuli
in semantic categories (6-class) and individual exemplars
(72-class). Principal component analysis was applied to raw
EEG signals to reduce dimensionality and LDA was used
for classification. The reported classification accuracies for
semantic categories and individual exemplars were 40.68%
and 14.46%, respectively.

Deep learning algorithms have been successfully applied
in many areas such as the classification of images, text, and
even biosignals [36]. However, the application of deep learning
algorithms to brain signals has not been able to achieve
the best performance yet [37]. Traditional machine learning
algorithms use a feature extractor (dimensional reduction) and
a classifier, therefore it is important to consider multiple design
options. In contrast, most deep learning algorithms adopt an
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Fig. 1. Proposed framework for the two-stream convolutional network (TSCNN). EEG signals (channels × time points) are input to the network.
TSCNN uses three modules; a channel-wise feature extraction (one-stream convolutional neural network - OSCNN), a graph convolutional neural
network (GCNN), and a features fusion sub-network. The time-domain signal is used to extract channel-wise time features and to construct a
graph that later is input to the GCNN. The sub-network classifies semantic categories by concatenating outputs from the OSCNN and GCNN and
inputting them to a fully connected layer. (FC layer: Fully-connected layer, D = 5 or 20 and #channels = 124 or 60 - when SU DB or MPI DB is used
respectively, t: time points, x′: output of the first graph convolution layer, x′′ : output of the second graph convolution layer, z: output of the pooling layer,
k : t/D, SC: semantic category).

end-to-end approach where the pre-processed signal is used
as input, and the model performs the feature extraction and
classification.

Zheng et al. [30] used EEG signals during the presentation
of different images; 40 images were presented 50 times each.
The authors applied the Swish activation function to a long
short-term memory network (LSTM) over the pre-processed
EEG signals; as a result, an accuracy of 97.13% was obtained.
Another work used an attention-based bidirectional LSTM
network and applied it to the above-mentioned dataset [31].
They incorporate two attention strategies into the traditional
LSTM module. The attention gate replaces the forget gate on
traditional LSTM and reduces the training parameter. While
the attention weighting method is applied to the output of
the LSTM module. An accuracy of 99.50% was reported
for 40-class. However, in the aforementioned works, stimuli
were presented in blocks and in an unrandomized order;
in other words, trials of the same stimuli were presented
consecutively. Although this justifies the high classification
accuracies obtained, these methods cannot be applied to a
real-world EEG system. To this end, Ahmed et al. [32] studied
the effects of randomizing the presentation of the stimulus on
an object perception task. They presented 40 images (same
stimuli as in [30] and [31]) to one subject, and classified
the evoked EEG signals. An accuracy of 5.4% was obtained
using a recurrent neural network over the pre-processed EEG
signals. This represents a huge difference with [30] and [31],
and showed the importance of randomizing the stimuli during
data recording. A more recent work uses multi-headed self-
attention and temporal convolution to classify visual stimu-
lus [38]; the transformer capture inter-region interactions while
the convolution filters learn temporal patterns. They reported
an accuracy of 52.33 ± 8.28% for 6-class.

As mentioned before, GCNN has been used in EEG studies.
Zhang et al. [21] proposed a GCNN based on functional
connectivity; specifically, PLV connectivity values applied to

emotion recognition. They obtained 84.35% as classification
accuracy for three classes. Similarly, Jin et al. [39] used PLV
values and graph representations to classify motor imagery
tasks. Another work used the Pearson correlation coefficient
for the graph construction [40]. They classified motor imagery
tasks (4-class) and obtained 93.05% and 96.24% for two
different datasets. Song et al. [20] used a graph neural net-
work and explored electrode distance for emotion recognition.
They obtained 90.4% and 79.95% as classification accuracy
for subject-dependent and subject-independent classification.
Since GCNN has proved its efficacy in EEG studies, we uti-
lized GCNN along with CNN to classify visual perception
into their semantic categories. Moreover, we model local and
distant connections that take place in the brain by using wPLI
and electrode distance to construct the graphs.

III. PROPOSED METHOD

We proposed the TSCNN to classify the presented visual
stimuli into different semantic categories. Fig. 1 depicts the
proposed framework; in particular, we used CNN to extract
channel-wise time features and GCNN to model the rela-
tion between electrodes. The model receives as input the
pre-processed EEG data (channels×time points - SU DB:
124 × 32; MPI DB: 60 × 250). The temporal stream extracts
features from the input directly, meanwhile, the spatial stream
constructs graphs using the pre-processed signals and the adja-
cency matrix (electrodes’ distance and functional connectivity
values).

A. Temporal Stream: Channel-Wise Feature
Representation

The temporal stream (one-stream CNN - OSCNN) consists
of four convolutional layers with an exponential linear unit
(ELU) as the activation function and a fully connected layer
with a softmax activation for the classification. Additionally,
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TABLE I
TEMPORAL STREAM (OSCNN) DESCRIPTION

dropout (p = 0.25) and batch normalization were used to
avoid overfitting of the model [37], [41]. Detailed network
description can be observed in Table I; as dimensions of
both datasets differ from each other (sampling rate, number
of electrodes, and number of classes), parameters such as
kernel size and stride are set different for each dataset (In
Table I, the first line indicates kernel size and stride for SU
DB and the second line indicates kernel size and stride for MPI
DB). The network’s parameters were selected from a pool of
values using grid search. Different kernel sizes were tested
(For SU DB: (1, 2), (1, 4), (1, 5), (1, 10); for MPI DB: (1, 5),
(1, 10), (1, 20), (1, 40)); and the kernel size that produced the
best results was selected. For the pooling method, max-pooling
and mean pooling were evaluated; however, we decided to use
max-pooling as the pooling method since better results were
obtained.

B. Spatial Stream: Relation Between Electrodes

We used the time domain EEG signals to construct graphs,
a graph is defined as G = (V , E, A) where V represents
a set of nodes, E denotes a set of edges of the graph,
and A ∈ R

ne×ne is the adjacency matrix that represents the
relation between any pair of nodes (ne: number of elec-
trodes). In this study, we consider each electrodes as a node,
V = {ei }, i ∈ [1, ne], and time points as nodes features,
ei = {e1

i , e2
i , e3

i , . . . ., et−1
i , et

i }.
The adjacency matrix is constructed using electrodes dis-

tance and functional connectivity following Equation 1, where
∨ represents the OR operator; AL and A f c are defined in
Equations 2 and 4, and their shape is ne × ne.

A = AL ∨ A f c (1)

Distance between electrodes is calculated using Euclidean

distance Li, j =
√

(exi − ex j )2 + (eyi − eyj )2 + (ezi − ezj )2,
where (exi , eyi , ezi ) represents the locations of channel ei

(since electrodes were distributed on a cap an following the
manufacturer layout, channel locations were known); next AL

is calculated following Equation 2, where τ1 represents a

threshold value, which is used to identify neighbor electrodes
(τ1 = 0.2).

ALi, j =
{

1, i f Li, j ≤ τ1 & i �= j,

0, otherwi se
(2)

For the functional connectivity, we used wP L I coefficient
which is calculated by applying the Fourier transform with a
Hanning window for each epoch and each subject separately
[23] (see Equation 3). wP L I measure the extent to which phase
angle differences between two time series x(t) and y(t) are
distributed towards positive or negative parts of the imaginary
axis in the complex plane [42].

wP L I = |
∑n

t=1 |imag(Sxy,t)|sgn(imag((Sxy,t))∑n
t=1 |imag(Sxy,t)| | (3)

where imag is the imaginary component of the cross-spectrum
Sxy,t of two signals x(t) and y(t) at trial t, and sgn is
the sigmun function [42]. Finally A f c matrix is calculated
using wP L I values following Equation 4; where τ2 represents
a threshold value, which is used to consider only strong
connections between electrodes (τ2 = 0.8).

A f ci, j =
{

1, i f wP L I (i, j ) ≥ τ2 & i �= j,

0, otherwi se
(4)

The spatial stream (GCNN) is composed of two graph
convolutional layers (hidden features = 32 or 500) and graph
average pooling with a kernel of (1, 5) and (1, 20) for SU
DB and MPI DB respectively; as an alternative to the average
pooling layer; max-pooling layer was evaluated, however,
better results were obtained using average pooling layer.
Similar to channel-wise feature extraction different kernel
sizes were tested and grid search was used to select optimal
values. The convolution operation on the GCNN is performed
following Equation 5.

x ′
i = G(W1xi + W2

∑
Ai, j · x j ) (5)

where W1 and W2 are the weights that regulate the influence
of all electrodes and are learned by the network. G() indicates
the activation function, after performing grid search (between
ELU, ReLU, and sigmoid function); ELU was selected. xi

represents the node to the be analyze while x j represents the
other nodes (electrodes); i and j ∈ [0, ne]. The shape of xi

and x j is 1×t (t : number of time points). The training process
is presented in Algorithm 1.

C. Feature Fusion for Classification

The output of the temporal and spatial stream are con-
catenated and input to the sub-network, which classifies the
semantic category of the shown stimuli. High-level features in
the time domain and the relation between electrodes obtained
through the GCNN are used. When training the model, both
streams were trained simultaneously. The model is trained
using Adam optimizer [43] and minimizing the cross-entropy
loss function, the learning rate is set to 0.005.
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Algorithm 1 Training Process.
Input: EEG data set (X, Y)

• X = {xd}D
k=1, x ∈ R

E×T : set of single trial EEG signal,
where D is the number of trials with E number of
electrode channels and T time length

• Y = {ysc}D
k=1: class label, where ysc is the label of

semantic class
Output: Trained TSCNN model
1: Divide EEG data into k folds
2: for z = 1 to k do
3: Set fold kz as test set (Xtest ) and remaining folds as

training set (Xtrain)
4: for d = 1 to nt (nt : Number of trials in training set) do
5: Calculate electrode distance matrix Ld

i, j , where i and j
∈ {1, E}

6: if Ld
i, j ≤ τ1 & i �= j then

7: Ad
Li, j

= 1

8: elseAd
Li, j

= 0
9: end if

10: Calculate functional connectivity for each trial
wP L I d

i, j

11: if wP L I d
i, j ≥ τ2 & i �= j then

12: Ad
f ci, j

= 1

13: elseAd
f ci, j

= 0
14: end if
15: Calculate adjacency matrix for each trial Ad = Ad

L ∨
Ad

f c and construct graph Gd(xd , Ad )
16: end for
17: for iterations = 1 to ni (ni : Number of iterations) do
18: X ′

1 = GC N N(Gtrain , A) /∗ Graph convolutional
neural network ∗/

19: X ′
2 = OC N N(Xtrain ) /∗ Convolutional neural net-

work ∗/
20: Y ′ = FC(X ′

1 ‖ X ′
2) /∗ Fully connected layer ∗/

21: Calculate loss term
22: Minimize loss values
23: end for
24: end for
25: Grid search of optimal parameters

IV. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Metrics

We used two datasets that recorded EEG signals dur-
ing visual perception tasks; Stanford University dataset (SU
DB) [1] and Max-Planck Institute dataset (MPI DB) [6]. The
comparison between the two datasets is shown in Table II.

1) SU DB: The first dataset was published by Kaneshiro
et al. [1]. EEG signals from ten healthy subjects (3 females,
21–57 years, 1 left-handed subject) with normal color vision
and normal or corrected-to-normal vision were measured.
The experimental paradigm comprised the presentation of
photographs from one of the following six semantic categories:
human body (HB), human face (HF), animal body (AB),
animal face (AF), fruits or vegetables (FV), and inanimated
objects (IO). In total, 72 images set against a mid-gray

TABLE II
DATASETS DESCRIPTION

background were presented, with 12 different images per
semantic category (Supplementary Fig. 1). An image was
presented for 500 ms followed by a blank gray screen for
750 ms. Each image was shown 72 times as follows: the
experiment was divided into two sessions and each session
consisted of three blocks, each of which included 864 trials
(each image was presented 12 times randomly) with short
breaks after every 36 trials. EEG signals were filtered between
1 and 25 Hz using a high-pass fourth-order Butterworth
filter and a low-pass eight-order Chebyshev Type I filter,
respectively; finally, signals were temporally downsampled to
62.5 Hz.

2) MPI DB: The second dataset was published by Simanova
et al. [6]. EEG signals from 24 subjects (14 females,
18-28 years, all right-handed, with no neurological disorders),
from which four subjects were selected as a pilot group, were
recorded. The presented stimulus belongs to three semantic
categories, relevant categories (animals (A) and tool (T)), and
task category (clothing or vegetable), each relevant category
contained four exemplars (animals classes: cow (C), bear (B),
lion (L), ape (A); tools classes: ax (Ax), scissors (Sc), comb
(Co), pen (Pe)) (Supplementary Fig. 2). All exemplars were
shown in three modalities: auditory, visual, and orthographical
(in this study, we used signals from visual modality and
relevant categories). Each of the stimuli belonging to a
relevant category was presented 80 times. The stimulus was
presented at 300 ms and followed by a black screen during
1,000–1,200 ms. Stimuli were randomized and presented in
12 blocks with a short break between blocks. Finally, signals
were filtered below 1 Hz and above 30 Hz with a sampling
rate of 500 Hz.

3) Performance Metrics: Classification was performed for
each subject independently (subject-dependent approach). All
models were trained and evaluated using a 10-fold cross-
validation method within the subject. Data from one subject
was randomly partitioned into ten subsets called folds. Nine
folds were used as training data and the remaining fold was
used as the test set. This process was performed until all
the folds were used as the test set [44]. We used accuracy,
precision, sensitivity, specificity, and F1-scores as performance
metrics.

B. Changes in EEG Signals According to Visual Stimuli

1) Event-Related Potentials: Previous studies have shown
differences in the elicited brain activity between semantic
categories depending on the brain region analyzed [14], [15].
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Fig. 2. Differences in event-related potentials between semantic categories of SU DB (6-class). Chi-square values across all channels are shown
in (a). Scalp plots for the time intervals that showed significant differences are illustrated, specifically at (b) 190 ms and (c) 300 ms. If p-value is
greater than 0.05, we set chi-square values to zero to clarify the interval with significant differences (p < 0.05 with Bonferroni correction).

Fig. 3. Differences in event-related potentials for MPI DB (2-class). |Z-
values| are shown across all channels. If p-value is greater than 0.05,
we set z-scores to zero to clarify the interval with significant differences
(p < 0.05 with Bonferroni correction).

Therefore, EEG signals were divided into different semantic
categories and averaged across trials within the stimulus class.
Statistical analyses were performed to determine significant
differences. The normality of data at all the time points
was checked using the Shapiro-Wilk test, the null hypothesis
was rejected, therefore non-parametric tests were used for
all the comparisons. Comparison between semantic categories
at each time point was performed to determine significant
differences. For SU DB, Kruskal-Wallis test (non-parametric
one-way analysis of variance) was conducted on the average
amplitude of the EEG signals from each participant. For the
comparison of trials corresponding to the semantic category of
animal and tool in MPI DB, Wilcoxon rank-sum test was used.
The significance level was set at p = 0.05 with Bonferroni
correction.

Fig. 2 illustrates the statistical results of the comparison
between the six semantic categories for all channels corre-
sponding to SU DB. Kruskal-Wallis test revealed significant

Fig. 4. Average functional connectivity (wPLI) values across trials of
the same semantic category for two representative subjects of MPI DB.
(a) Sub18 (b) Sub15. (If wPLI ≥ 0.8, we draw a line between the evaluated
electrodes.)

differences in different brain regions; relevant differences were
found at approximately 190 ms and 300 ms. Particularly,
a significant difference was observed over frontal and occipito-
temporal regions.

For MPI DB, the comparison between the two semantic
categories (animal and tool) revealed significant differences
at 80–100 ms in temporal and occipital regions; 110–150 ms
in occipital; 180–200 ms in temporal regions; 260–320 ms
in occipito-temporal regions; and 430–470 ms in temporal
regions (Fig. 3).

2) Functional Connectivity: Functional connectivity was cal-
culated following [23] for each epoch and each subject sepa-
rately. wPLI values were later used to construct graphs along
with the distance between electrodes. Fig. 4 depicts wPLI
values for two representative subjects of MPI DB. There were
differences between functional connectivity for animal class
and tool class for both subjects. The wPLI values were also
calculated for SU DB (see Fig. 5); results showed differences
in the connections between all semantic categories; however,
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Fig. 5. Average functional connectivity (wPLI) values across trials of the same semantic category for two representative subjects of SU DB.
(a) Sub06 (b) Sub08. (If wPLI ≥ 0.8, we draw a line between the evaluated electrodes.)

TABLE III
CLASSIFICATION ACCURACY USING TSCNN FOR SU DB

TABLE IV
CLASSIFICATION ACCURACY USING TSCNN FOR MPI DB

there was a strong correlation between frontal and occipital
electrodes for all cases. Obtained values were averaged across
trials of a specific class, and a threshold value (wP L I ≥ 0.8)
was applied for better visualization.

C. Classification Performance

We performed single-trial EEG classification; the model
was implemented using Pytorch framework and trained on
NVIDIA GeForce RTX. All models were trained in a max-
imum of 50 epochs; training and validation accuracies for the

highest and lowest subject performance depending on the num-
ber of iterations is illustrated in Supplementary Fig. 3. Training
accuracies increase with the number of iterations, whereas
validation accuracy reaches the maximum value before the
50 epochs in all cases, therefore the used of early-stopping
is necessary to avoid overfitting. For the statistical analysis
of the classification accuracies, we confirmed the normality
of each comparative group using the Shapiro-Wilk test, after
normality was proved parametric tests were used for the
comparison.
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Fig. 6. Average confusion matrix for semantic categories classification
of SU DB using TSCNN (HB: human body class, HF: human face class,
AB: animal body class, AF: animal face class, FV: fruit or vegetable class,
and IO: inanimated objects).

Fig. 7. Average confusion matrix for semantic categories classification
of MPI DB using TSCNN (A: animal and T: tool).

1) Classification Using TSCNN: The model was trained and
evaluated for each subject independently and results from the
ten-folds were averaged. Table III shows average accuracies,
F1-scores, precision, sensitivity, and specificity for all subjects
in SU DB. The highest and lowest accuracies were obtained
for Sub06 and Sub08, respectively. Sub06 obtained accuracies
of 64.80 ± 1.99%, and Sub08 obtained accuracies of 44.00 ±
2.58%. The same trend is observed for the other metrics.
Table IV shows average results across all ten-folds using
TSCNN for all subjects in MPI DB. The highest and lowest
accuracies were obtained by Sub18 and Sub15. Sub18 obtained
accuracies of 96.23 ± 2.89%, while Sub15 obtained accuracies
of 71.02 ± 4.58%.

2) Comparison Between Different Classes: Confusion matri-
ces were averaged across all folds and subjects. Fig. 6 illus-
trates the averaged confusion matrix for 6-class (SU DB) when
using TSCNN. The model mostly confuses FV class with IO
class, whereas HF class is the most distinguishable class and
FV the less distinguishable class. HB class was mostly con-
fused with AF class, whereas HF class was mostly confused
with AF class. Additionally, AB class was mostly confused
with FV class. Fig. 7 illustrates the averaged confusion matrix
for MPI DB when using TSCNN. Similar accuracies are
obtained per class. To evaluate the feature extraction ability
of the model, t-sne plots were generated. We extracted the
features of the fully-connected layer for an individual fold and
used them to graph the plots. As illustrated in Fig. 8, samples
of the same class show similarities for both datasets.

Fig. 8. t-SNE plots for a single fold of a representative subject in each
dataset. (a) SU DB (Sub 06) and (b) MPI (Sub 15).

Finally, we performed a binary classification for SU DB;
for this, we selected similar classes to MPI DB (AB vs IO).
In addition, we classify HF vs IO, since previous works have
explored the classification between these two classes. Results
are shown in Supplementary Table I and Table II respectively.
We observe IO class shows the lowest classification accuracies
for both cases. There was a significant differences when
classifying AB vs IO (AB: 82.79 ± 7.20%,; IO: 71.72 ±
5.71%, p < 0.001); however for HF vs IO case the differences
is not significant (HF: 89.11 ± 4.42%,; IO: 86.87 ± 5.05%,
p = 0.14).

D. Ablation Studies

We performed ablation studies to emphasize the superiority
of the proposed method. As mention before, we set τ1 and
τ2 to 0.2 and 0.8 respectively; and construct the adjacency
matrix. To support our decision, we performed classification
using GCNN for different values of τ1 and τ2; additionally,
we evaluate the influence of each of these variables by using
either electrodes distance or functional connectivity (τ1 or
τ2 respectively) on the construction of the adjacency matrix.
Results are shown in Supplementary Table III along with
the statistical results when compared to the selected values.
We observe that significant high performance was obtained
when using both τ1 and τ2. Even though the performance
was slightly higher when using only τ1 than when using only
τ2 for training the model, there was no significant difference
between them.

GCNN design parameters could influence the performance
of the model, therefore, we analyze some design options such
as the number of layers and the pooling type, and compared
the results with the ones on the proposed model. The highest
results were obtained when using average pooling and 2 layers
(see Supplementary Table IV).

Both branches used on the two-stream CNN are analyzed
separately (OSCNN and GCNN). Cross-entropy was used to
minimize the loss function and Adam optimizer was used
to train both models. Even though different parameters such
as kernel size and the number of layers were used, higher
accuracies were obtained when using the same parameters
as the proposed method. Accuracies corresponding to each
class when using the proposed networks (GCNN, OSCNN,
and TSCNN) were compared using paired t-test. Fig. 9 depicts
the averaged classification accuracies from GCNN, OSCNN,
and TSCNN for SU DB and MPI DB across subjects, and
the results of the statistical comparison. TSCNN obtained
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TABLE V
COMPARISON OF CLASSIFICATION PERFORMANCE BETWEEN PROPOSED AND SOTA

Fig. 9. Average classification accuracies over ten-folds and all subjects
using OSCNN, GCNN, and TSCNN for SU DB (6-class semantic
category) and MPI DB (2-class semantic category). Significant dif-
ferences between accuracies from the different networks are shown
(* p < 0.05 with Bonferroni correction, error bars: standard deviation
across subjects).

Fig. 10. Average classification accuracies per class over ten-folds and
all subjects using OSCNN, GCNN, and TSCNN for SU DB. Significant
differences between accuracies from the different networks are shown
(* p < 0.05, error bars: standard deviation across subjects).

significantly higher accuracies for both datasets (6-class:
54.28 ± 7.89%, and 2-class: 84.40 ± 8.03%).

Fig. 10 shows the statistical comparison between accuracies
for each class of SU DB. TSCNN showed significantly higher
accuracies than the other two methods for all classes. Com-
parison between accuracies of each class was also performed
for MPI DB. TSCNN obtained higher or similar accuracies
for all classes. Statistical results revealed; significantly higher
accuracies than the other methods for animal class; however,
there were no significant differences between the accuracies
for tool class (see Fig. 11).

Fig. 11. Average classification accuracies per class over ten-folds and
all subjects using OSCNN, GCNN, and TSCNN for MPI DB. Significant
differences between accuracies from the different networks are shown
(* p < 0.05 with Bonferroni correction, error bars: standard deviation
across subjects).

E. Comparison With State-of-the-art Methods

We compared the classification accuracy, precision, sensi-
tivity, and specificity of the proposed method with the state-
of-the-art methods (see Table V). We implemented a baseline
method proposed by Kaneshiro [1] that uses ERP as feature
extraction and LDA as the classifier. ShallowConvNet [37]
and EEGNet [45] have been used before in multiple EEG par-
adigms and have shown outstanding performance. Therefore,
they have become a state-of-the-art method when classifying
EEG signals. ShallowConvNet consists of two CNN layers,
a mean pooling layer, and a fully connected layer with softmax
activation for classification. EEGNet consists of three CNN
layers, with max-pooling layers and a fully connected layer
with softmax activation for classification. ShallowConvNet
and EEGNet networks were fit using Adam optimizer and
minimizing cross-entropy loss function. For both CNN-based
networks, we used the same number of layers proposed in
the original papers as well as the pooling layers, however,
the kernel size was set to different values. We reported the
highest obtained results. Additionally, we evaluated an LSTM
network with the Swish activation function and Bagging theory
proposed by Zheng et al. [30]. We set different hidden sizes
(128 or 256) and the number of layers (1 or 2). Similar to
the original implementation, we obtained better results when
setting the hidden size to 128 and using one layer. This work
also attempted to classify EEG signals evoked during the
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presentation of visual stimuli, as a result, we consider suitable
its implementation and comparison with the proposed method.
Results of the state-of-the-art methods were compared with the
proposed method using paired t-test analysis, this was done
to determine significant differences and evaluate the relevance
of the proposed network. The significance level was set at
p = 0.05 with Bonferroni correction.

To ensure a fair comparison between the proposed method
and other methods, we implemented the state-of-the-art meth-
ods by following the description in each of the published
papers and performing a parameter search; additionally, we set
the seed to the same value for all experiments, this ensures that
the trials used on training and testing set were the same for
all experiments. Table V shows the comparison and statistical
results of the proposed methods and other methods. For both
datasets, the lowest classification accuracies were obtained
using the LSTM as a classification method [30] (SU DB:
38.06 ± 1.88%; MPI DB: 60.61 ± 5.58%). The individual
classification performances for SU DB and MPI DB are shown
in Supplementary Table V and Table VI, respectively. TSCNN
outperformed the other methods; moreover, statistical analysis
revealed significant differences between TSCNN and all other
methods. Comparison between the averaged computation time
per subject was conducted (see Supplementary Table VII).
The proposed method required the highest computational time,
followed by the GCNN. CNN-based methods had the lowest
computational time for both datasets. We generated t-sne plots
to compare the feature extraction ability of the proposed
method with the state-of-the-art methods, w(see supplementary
Fig. 4 and Fig. 5). The proposed method showed better feature
separability compared with the rest.

V. DISCUSSION

This study attempted to classify the presented images
into their semantic category (6-class and 2-class) using EEG
signals. We found differences in the event-related potential
analysis as well as in the functional connectivity analysis.
These prove their potential to be used for semantic category
classification of observed stimuli. As a result, our proposed
methods used both and integrated them using a two-stream
CNN. Our results significantly outperformed the state-of-the-
art methods.

A. Differences in Event-Related Potentials

EEG analysis results revealed significant differences
between semantic categories. For SU DB, we found a signif-
icant difference in the frontal, central, and occipito-temporal
regions at 190 ms and in the frontal area at 300 ms between
semantic categories. For MPI DB, we found significant differ-
ences in the central, temporal, and occipital regions at different
time points. Previous studies have explored brain responses to
semantic categories and found significant differences depend-
ing on the semantic category of the stimulus shown to the
subjects. In this regard, Haxby et al. [10] concluded that there
is a specific region of the brain dedicated to processing faces.
Therefore, we can conclude that different semantic categories
could activate brain-dedicated regions.

B. Differences in Functional Connectivity

We calculated wPLI as functional connectivity to explore
the difference during each semantic stimulus. Previous studies
had shown that objects and semantic categories recognition
are processed in the occipital and temporal region of the
brain [10]. Moreover, these agree with the two-stream hypoth-
esis; which is a neural model for the processing of human
vision. It defines the ventral-temporal and dorsal-parietal
streams (what and where pathways) that process information
regarding object features [46]. Additionally, a study showed
that the activation of occipital and temporal regions and
connectivity between occipito-temporal and frontal areas are
present in lexical tasks. These connectivities are known to
play a major role in lexical-semantic language processes [47].
Our results are in congruence with those findings since
connectivity was mainly present between frontal and occipital
regions. However, we also showed that functional connectivity
differs between the semantic categories for both datasets. This
supports its use for classifying EEG signals into semantic
categories.

C. Comparisons of Classification Performance

Our results demonstrated that it is possible to classify EEG
signals elicited during the presentation of stimuli with higher
accuracy compared to other methods. We integrated channel-
wise features and functional connectivity using TSCNN; and
obtained significantly higher results than other methods. The
analyzed datasets had different pre-processing methods, which
can represent a limitation when performing classification.
Therefore, we decided to analyze each dataset separately and
select optimal hyper-parameters using grid search.

When using only GCNN accuracies were higher than
the chance level, which shows that GCNN extracts relevant
features when classifying semantic categories. Additionally,
we analyzed the influence of the electrodes’ distance and
functional connectivity, by constructing the graph using each
one separately or both. We obtained higher classification
performance when using both values, therefore we can infer
that GCNN can simulate brain connections (local and distant)
through electrode distance and functional connectivity and
at the same time increase classification performance. Even
though results were higher when using just electrode distance
than when using just functional connectivity, there was no
significant difference, showing that both contributed similarly
to the final performance.

GCNN results were outperformed by the proposed method.
This supports our initial hypothesis; that even though GCNN
can simulate brain connections (local and distant); channel-
wise features could be ignored. We notice that although
ShallowConvNet [37] and EEGNet [45] use convolutional
neural networks for classification same as OSCNN; OSCNN
obtained higher results; which we attribute to the selection
of parameters such as the number of layers, kernel size,
and pooling layers. LSTM-based network obtained the lowest
accuracies, showing that convolution operations are more
adequate for classifying object perception.
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For SU DB, the confusion matrix showed that HF class
is the most distinctive category. As mentioned previously,
multiple studies have reported distinctive brain patterns for
face perception [10], [14], which can explain the high accuracy
obtained for this semantic category. At the same time, FV class
was the least distinctive category, which is in accordance
with previous studies [1]. The comparison of classification
accuracies of each class between the TSCNN with GCNN
and OSCNN for all subjects revealed that accuracies increased
for most of the classes, and remained similar for FV class.
Moreover, FV and IO classes had the lowest accuracies and
the model was confused between these two classes. In this
regard, FV and IO classes can be grouped as objects with
no motion and the remaining classes as animated objects,
which can explain the above statement. For MPI DB, the
confusion matrix when using TSCNN showed that the animal
class is more distinguishable than the tool class. Similarly,
when comparing the accuracies of each class using TSCNN
with GCNN and OSCNN, significant differences were found
only in the animal class. The animal class benefits more than
the tool class from our proposed architecture, previous studies
have shown the different brain patterns present when decoding
animal and object [48]. Since we simulated local and distant
brain connections, we could assume that our network decoded
the brain patterns corresponding to the animal class better than
the other networks, meanwhile, tools class is decoded with
similar performance for all methods.

D. Limitation

One limitation of this study is the use of the CNN models,
which are considered black-box [49] since it is not clear
which are the main features extracted for the classification.
We assume that the CNN extracts time channel-wise temporal
features since we applied a kernel on the temporal dimension
to the signal (1, K). Although the use of CNN increased the
classification performance, we agree that more research needs
to be performed to confirm this hypothesis. wPLI is used for
calculating the functional connectivity between channels, how-
ever, this requires a high density of EEG channels. Therefore,
this represents a limitation in relationship with other state-of-
the-art methods, which can be applied to low-density EEG
data. Moreover, channels’ information is needed to calculate
the distance between electrodes; some of the public datasets do
not include this information as a result the proposed method
can not be applied.

Finally, due to the pre-processed methods used in [1]
and [6] there is a limitation on the analysis we could perform.
In future works, we decided to recruit subjects and perform
EEG experiments.

VI. CONCLUSION

We investigated the differences in brain signals in the
temporal domain and functional connectivity values between
semantic categories. This revealed that differences occurred
at different locations and time points and that the relation
between channels varies depending on the semantic category
analyzed. Therefore, we assume that training a GCNN could

simulate brain connectivity and extract relevant features, how-
ever, channel-wise features could be ignored. As a result,
we proposed the TSCNN that uses GCNN and a CNN to
take advantage of functional connectivity and extract channel-
wise features. TSCNN exhibited significantly higher accuracy
than other state-of-the-art methods and ablations studies. This
supports our assumption and proves that our method is
relevant.

We decided to further explore different classification meth-
ods for improving accuracy. Even though there is not enough
evidence of differences in EEG rhythms for different semantic
categories, we decided to further analyze this possibility
and whether fatigue due to a long time of the experiments
can influence the results. As mentioned before, discriminate
information related to object recognition could be found at
100 ms, making this a rapid process, when compared to other
BCI paradigms such as motor imagery [28], this opens the
possibility of applying this paradigm to fast and reliable BCI
systems reducing at the same time fatigue due to long exposure
of different stimulus [12]. BCI controls usually do not have a
connection with the semantics of the task, this could affect
drastically the performance [50], object recognition avoids
this problem, as a result, better results could be obtained.
Additionally, the proposed method could be applied to other
intuitive BCI paradigms such as visual imagery and speech
imagery since provided stimuli could also be divided by
their semantic categories. This could improve the interaction
with humans who, due to various reasons, are unable to
communicate using conventional methods.
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