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Abstract— Estimation of hand kinematics from surface
electromyographic (sEMG) signals provides a non-invasive
human-machine interface. This approach is usually subject-
specific, so that the training on one individual does not
generalise to different subjects. In this paper, we propose
a method based on Bidirectional Encoder Representation
from Transformers (BERT) structure to predict the move-
ment of hands from the root mean square (RMS) feature of
the sEMG signal following µ-law normalization. The method
was tested for within-subject and cross-subject conditions.
We trained the model with two hard sample mining methods,
Gradient Harmonizing Mechanism (GHM) and Online Hard
Sample Mining (OHEM). The proposed method was com-
pared with classic approaches, including long short-term
memory (LSTM) and Temporal Convolutional Network (TCN)
as well as a recent method called Long Exposure Convo-
lutional Memory Network (LE-ConvMN). Correlation coeffi-
cient (CC), normalized root mean square error (NRMSE) and
time costs were used as performance metrics. Our method
(sBERT-OHEM) achieved state-of-the-art performance in
cross-subject evaluation as well as high performance in
subject-specific tests on the Ninapro dataset. The above
tests are based on the same randomly selected 10 subjects.
Generally, in the cross-subject situation, with the increasing
of the subjects’ number, it unavoidably leads to the decline
of the performance. While the performance of our method on
38 subjects was significantly higher than the other methods
on 10 subjects in cross-subject conditions, which further
verified the advantage of our methods.

Index Terms— sEMG, hands kinematics, BERT, hard sam-
ple mining, cross-subjects.
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I. INTRODUCTION

W ITH the development of robots, intelligent devices, and
the Internet, and the growing need of improving the

quality of life of the aging population, interactions between
intelligent devices and humans are becoming an important part
of our society. As a result, there is a demand for technologies
that allow this interaction in a natural, accurate and robust way.
For example, human-robot interaction is needed in active pros-
theses, robot-assisted surgery, drone reconnaissance, and so on.
Further, efficient, precise, and user-friendly human-computer
interaction (HCI), as well as human-machine collaboration
(HMC), has also attracted much attention. To achieve high
accuracy and efficiency, the technique of extracting precise
features from biological signals and translating them into
control commands is playing an important role in HCI and
HMC fields. The surface electromyographic (sEMG) signal
can be easily recorded with wearable devices and has been
used as for decoding human movement intentions for decades
[1], [2].

The hand allows humans to perform their most complex
movements by a complex structure that provides >20 degrees
of freedom [3]. Decoding hand movements by wearable sys-
tems would provide a high-information transfer interface.

Recently, deep learning methods have been widely used
to select features of sEMG automatically, with excellent per-
formance in classification [4], [5], [6]. Currently, efforts are
mainly devoted to continuous movement regression rather than
classification.

Current approaches for continuous motion estimation can be
roughly divided into two categories, model-based and model-
free [7]. Model-based methods are based on physical models
including kinematics models [8], musculoskeletal models [9],
[10], and dynamic models in general. These models, however,
may be very complex and therefore the identification of
their parameters may be challenging. Therefore, researchers
are currently more inclined to use model-free methods. For
instance, a simultaneous and continuous kinematics estimation
method was proposed in [11] and used a single ANN for four
DoFs across shoulder and elbow joints. In [12], a method was
proposed to estimate hand pose from sEMG with recurrent
neural networks (RNN) structure. However, to the best of
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our knowledge, no method can be applied to cross-subject
situations.

EMG signals vary from person to person and are even
different for the same person at different recording times.
Transfer learning methods [13] can be used to adapt a
subject-specific model to work on a different subject. For
example, Fan et al. [14] proposed a hand gesture recognition
method based on transfer learning to learn from models on
intact hands to fit amputees. However, transfer learning can
add an additional structure that occupies the memory [15] and
the output model can only transfer from one subject to another,
while it is still difficult to generate a model to be applied on
two or more subjects concurrently.

As another challenge, normalization is widely used in
deep learning methods. Min-max normalization is the most
widely used normalization method in the field of esti-
mation from sEMG. However, sEMG signals of different
subjects lie in different ranges with different distributions,
in which min-max normalization can disturb their own features
when multiple subjects are analysed together. In addition,
a large amount of useful information of sEMG in the time
domain lie near zero [16] and cannot be identified by linear
method.

Finally, the existing regression approaches always ignore
studying hard samples containing useful information,
which can be continuously concentrated in several time
periods [17].

Here, we propose a method based on the Bidirectional
Encoder Representation from Transformers (BERT) structure
with μ-law normalization, a nonlinear normalization, which
can better magnify the low magnitude and keep the scale of
larger values. Gradient Harmonizing Mechanism (GHM) and
Online Hard Samples Mining (OHEM) are applied to make
the models better learn from hard samples, and a smooth
layer is applied to reduce the fluctuations caused by BERT.
Our methods were validated on the Ninapro dataset and
compared with two classical methods, LSTM [18] and TCN
[19], as well as a recent novel method called Long Exposure
Convolutional Memory Network (LE-ConvMN) [17], which
should reach state-of-the-art performance in continuous hand
kinematic estimation. In summary, the main contributions of
this paper are:

• The BERT-based method was proposed for continuous
hand movement regression for the first time.

• A strategy of hard sample mining was applied for better
and stable estimation from sEMG.

• Our method can be applied in cross-subject situations,
which is not solved by previous works to the best of our
knowledge, and the experimental results show that our
method reaches state-of-the-art performance.

II. RELATED WORK

In this section, two classical models including LSTM and
TCN as well as a recent method named LE-ConvMN for con-
tinuous motion estimation will be introduced. Only model-free
methods are considered as they are more commonly utilized
in practice.

A. Long Short-Term Memory (LSTM)

LSTM [18] is developed from the RNN structure, which
has a high capability to solve temporal series problems. RNN
allows retaining contextual information gathered at previous
iterations to benefit future iterations. However, as the complex-
ity of data and sequence length increases, the short recurrent
circles perform weak on long-time series processing. LSTM
was designed to solve this problem by a combination of
remembering and forgetting. LSTM can naturally remember
due to the basic RNN structure and it achieves the forgetting
ability by applying the forget gate structure. LSTM is widely
used in continuous motion estimation as a classical model-free
method because of its long-time memory feature.

B. Temporal Convolutional Network (TCN)

TCN [19] is a neural network that is widely used to extract
features of temporal information without RNN structure. The
classical convolution network is not suitable for temporal
series handling problems due to the limitation of the kernel
size.

TCN is established on two basic principles:(1) The network
produces an output of the same length as the input. (2) There
can be no leakage from the future into the past. For princi-
ple (1), the TCN designs a 1D fully-convolutional network
(FCN) [20] architecture, whose length of each hidden layer is
the same as that of the input layer. For principle (2), the TCN
utilizes causal convolution, which only uses the information
before the time point the network is predicting.

TCN applies the dilated convolutions [21] to enlarge the
receptive field to deal with the long-history temporal series,
thus we can avoid stacking too many CNN layers. TCN is
another widely used model in continuous motion estimation
as a classical model-free method.

C. LE-ConvMN

Long Exposure Convolutional Memory Network (LE-
ConvMN) is proposed by Guo et al. [17] to better utilize
spatiotemporal information in sEMG data, which is a novel
method for continuous hands motion estimation.

Long exposure is a sEMG data processing method. Tradi-
tionally, the RMS feature is extracted by a sliding window
stepping in window size. The long exposure method extracts
features by decreasing the step size, which can be a unique
method to increase the quantity of data. The stepping size in
this paper is fixed at 1.

ConvLSTM model [22] is then applied to the long exposure
data. ConvLSTM is an RNN structure model derived from
LSTM. To tackle high-dimensional data, the model develops
the fully connected matrix operation of the gates into a
convolution operation. LE-ConvMN is claimed to reach state-
of-the-art result in this field in [17].

III. SMOOTHED BERT WITH HARD SAMPLE MINING

A. BERT

Although all of the models mentioned above are feasible in
our field, there are still some flaws. As for the previous deep
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Fig. 1. Model structure of BERT-based method for continuous hand kinematic estimation from sEMG signals. The raw sEMG signals are extracted
to the long-exposure RMS features, which can be seen as a method to augment the data. Consequently, the features are divided into slices with
100ms (200 sampling points) length. Model estimates from every slice of RMS feature after embedding. Finally, all estimated results are smoothed
by the smooth layer.

learning methods, LSTM, due to its RNN structure, which
makes the training rely on the previous data, so we must
keep the order of the data, which leads to time-consuming.
TCN does not rely on RNN structure, but on CNN structure,
which can lead to instability and fluctuation in the estimation.
Although LE-ConvMN can make better use of spatiotemporal
information, it is more time-consuming and requires too much
memory from the GPU. The cost of training such a model
is huge and the hardware requirements are relatively high.
Additionally, these methods are all derived from unidirectional
structure, which can omit the context information of sEMG.

Bidirectional Encoder Representation from Transformers
(BERT) neural network [23] is a novel method in recent years
based on transformer [24] structure. BERT has attracted much
attention since it was once proposed. Different from RNN
and TCN structures, BERT extracts and learns features from
series bidirectionally and makes BERT extract features from
small-scale temporal and spatial series information, which
makes it outperform other models.

BERT is also feasible on multiple subjects due to its strong
capability of extracting features from small-scale sequence
data brought by attention mechanism and residual skip con-
nections. BERT can recept the future signals and previous
signals at the same time, so it can extract features from the
whole sequence but not the previous signals only, which makes
BERT excelled classical TCN and RNN models on multiple
subjects. The performance of BERT on sEMG is shown in the
experiments section.

In addition, BERT is an excellent pre-trained method.
A well-trained BERT model is claimed to achieve state-of-the-
art performance in downstream tasks after fine-tuning in [23],
which can contribute to transfer learning in the field.

Transformer is a novel language model to solve the lan-
guage sequence. The strong ability to extract features of the
transformer depends on its attention mechanism. BERT can

be viewed as a complicated stack of transformer encoders.
Several modifications are designed to BERT to make it more
suitable for the estimation problem of hand kinematic series
from sEMG. The whole procedure is shown in Figure 1 and
described as follows.

1) Model Structure: A transformer encoder consists of two
parts, a Multihead Self-Attention Mechanism (MSA) and a
multilayer perceptron (MLP) module. To better describe the
structure, we denote the 1-D input as X = [x0, x1, · · · , xt ],
the output series of the i-th encoder layer as Zi (i = 1, · · · , L),
L is the numbers of encoder layers. Before feeding input
into these encoder layers, we perform embedding on it and
designate it as Z0:

Z0 = [x p
0 , x p

1 , · · · , x p
t , · · · ] + Etime (1)

where x p
i represents the results of input X after a projection

embedding, Etime is the time embedding vector, which makes
the model has the ability to capture the temporal information
of sEMG. A trainable one-dimensional vector is utilized as
the time embedding, and we use a linear layer (LL) as linear
projection. Thus,

X p = [x p
0 , x p

1 , · · · , x p
t , · · · ] = L L(s×ci ,s×dh)(X) (2)

where dh is the embedding size, and naturally, Etime ∈ Rs×h .
Layer normalization as well as residual skip connections

are applied in encoder module, to address the degradation
problem, thus, an encoder layer can be described as follows:

Z ′
l = M S A(Layer Norm(Zl−1)) + Zl−1

Zl = M L P(Layer Norm(Z ′
l)) + Z ′

l (3)

where l ∈ {1, 2, · · · , L}, finally, we apply a LL to extract
results from Z L :

Z = L L(s×h,1×co)(Z L) (4)
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Then we introduce the MSA module and the MLP module
as follows.

SA can be seen as a process that finds the relation between
different sampling points in input Zi , which is achieved by
three matrices named respectively Queries matrix denoted
as Q; key matrix denoted as K ; values matrix denoted as V .
They are calculated by linear transformation:

[Qi , Ki , Vi ] = Zi−1W Q K V
i (5)

where the subscript i means the parameters are computed in
encoder layer i , W Q K V

i is a learnable weight matrix in each
layer. Q, K will be scaled and then compute the weight of V
and finally take the weighted sum of all values of V to get
the result:

S A(Zi−1) = softmax(
Qi K T

i√
dh

)V (6)

where S A(Zi−1) ∈ Rs×dh . This method makes the model
focus on the important parts of a sEMG input series.

We apply h attention heads to compute Q, K , V in MSA,
which means that MSA allows the model to attend to parts of
the input sEMG series differently with the different attention
heads. MSA concatenates all the outputs of SA computed by
different attention heads and then projects it to the result. The
MSA can be depicted as follows:

M S A(Zi−1)

= [S A1(Zi−1), S A2(Zi−1), · · · , S Ah(Zi−1)]W M S A
i (7)

where each SA has its unique Q, K , V , W M S A
i is a learnable

weight matrix in each encoder layer.
Moreover, the MLP module can be expressed as follows:

Z ′
1 = L L(s×dh,s×d f h )(Z ′)

Z ′
2 = GELU(Z ′

2)

Z ′
o = L L(s×d f h ,s×dh) (8)

where d f h is the hidden size of MLP module, and GELU is
the Gaussian Error Linear Unit activation function.

2) Smoothing Layer: BERT is proposed for dealing with
language sequence problems, which produces discrete ten-
sors as output. However, joint angles in movements should
be successive values. As a result, BERT can cause severe
fluctuations in predicted values, although it performs well in
the two measure criteria. Therefore, we apply a smoothing
method after BERT prediction to get more smooth results to
solve this problem.

The results are smoothed by applying a sliding window.
For each sliding step, we calculate the average value of all the
sampling points in the window:

AvgSmooth(Y )=[
w∑

i=1

yi/w,

w+1∑
i=2

yi/w, · · · ,

w+k−1∑
i=k

yi/w, · · · ]

(9)

where w stands for the size of sliding window, and Y =
[y0, y1, · · · , yk, · · · ] is the input series.

B. μ-Law Normalization

The μ-law normalization [16], [25] are applied to the
RMS feature of sEMG before feeding into models, which is
proved that improved performance could be achieved using
normalization of the sEMG signals with the μ-law approach
[6], [16], [26]. The μ-law normalization is given as:

F(xt ) = sign(xt )
ln(1 + μ|xt |)

ln(1 + μ)
(10)

where xt means the input at the t-th sampling point, the
hyperparameter μ decides the range after normalization.

sEMG signals have the characteristic that many useful
information lies near zero, μ-law normalization can magnify
the outputs of sensors with small magnitude in a logarithmic
fashion, which nonlinear normalization could perform better
than linear normalization. The improvement of regression by
μ-law normalization is shown in the experiments section.

C. Hard Sample Mining

Hard sample mining is an important problem in data min-
ing. Hard samples are those whose loss is moderately large
between estimated values and true values, which can contribute
more to model training than easy samples. Comparatively,
there is little deviation between the estimated value and the
true value of easy samples. In addition, there will inevitably
be some bad data, called outliers. The errors that occur when
collecting data can also affect the results. Equipment error
inevitably leads to outliers in sEMG collecting, and hard
samples always occur in datasets. GHM makes models benefit
more from these hard samples, but as little as possible from
simple samples and outliers, strengthening the robustness and
stability of the model.

There are several popular methods for handling hard sam-
ples. The simplest way is to increase the size of dataset, but
continuous motion data of people is difficult to collect in our
field, even though the NinaPro database has a limited amount
of data. There are also some low-priced methods, such as
clipping, flipping and rotating. Due to the distinctive personal
characteristics, these methods cannot effectively augment the
sEMG signal. Online Hard example mining (OHEM) [27] is
another related method. Hard examples are selected by sorting
the input features by loss and taking the several examples for
which the current network performs worst in [27] with OHEM.
The network is only updated by the selected hard samples.

1) OHEM-MSE Loss: Hard examples are selected by sorting
the output sampling points by MSE loss and taking the several
examples for which the current network performs worst with
OHEM in this paper. We only update our models with the
selected hard samples.

2) GHM-MSE Loss: Taking outliers into account, loss com-
puting tactics that focus on hard sample mining are applied.
Gradient Harmonizing Mechanism (GHM) is a loss calculating
mechanism [28], which can assign larger weight to hard
samples to make models benefit as much as possible from
them. GHM defines gradient norm to measure the deviation
between true values and estimated values. We denote the
gradient norm as g. g ranges from 0 to 1, when g approximates
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to 0, the estimated value is almost the same as the true value,
while g approximates to 1 means that the two values have a
huge deviation.

GHM defines gradient density (GD) to describe the distri-
bution of data by gradient norm g. The relationship can be
expressed as follows:

G D(g) = 1

l�(g)

N∑
k=1

δ�(gk, g) (11)

where GD of g means that the number of sampling points
lying in the region centered at g with a length �. We denote
the gradient norm of the k-th sampling points in a subframe
as gk . l�(g) means the length of actual region, which can be
defined as follows:

l�(g) = min(g + �, 1) − max(g − �, 0) (12)

δ�(gk, g) is a judging function used for counting, which counts
all the sampling points whose gradient norm within the range
l�(g). The formula is as follows:

δ�(gk, g) =
{

1 if gk − �

2
≤ g ≤ gk + �

2
0 otherwise

(13)

Then the gradient density harmonizing parameter is defined
as:

βi = N

G D(gi )
(14)

where N is the total number of sampling points in a subframe,
βi is the gradient density harmonizing parameter of the i-th
sampling point in the subframe.

We use MSE loss as the base loss in this study, which is
defined as follows:

L M S E =
∑N

i=1(θi − θ̂i )
2

N
(15)

gi is defined as follows in GHM-MSE loss to make loss
distribute sparse respectively because of the lack of data in
this field:

gi = σ(
2(θi − θ̂i )

N
) (16)

where σ is the sigmoid activation function. Then we define
LG H M−M S E as:

LG H M−M S E =
∑N

i=1 βi (θi − θ̂i )
2

N
(17)

IV. EXPERIMENTS

A. Dataset

Ninapro [29] is a widely used dataset that represents the
largest data collection effort with hands intact or amputated
in the sEMG field. In the Ninapro dataset, the raw signal of
sEMG is sampled with the Delsys Trigno Wireless System,
which contains 12 electrodes. Hand kinematics are measured
by 22 joint angles and sampled with CyberGlove II data
gloves. The sampling rate of sEMG is 2 kHz. The hand
kinematics are sampled at a rate of 20 Hz and then resampled
to 2 kHz.

Fig. 2. CyberGlove channels are shown on the left of the figure, where
the red dots represent the ten joints to be estimated. Six hand movements
were selected and shown on the right of the figure.

1) Subjects Selection: Ninapro includes over 300 data acqui-
sitions divided into 10 datasets that provide electromyo-
graphy, kinematics and so on. Experiments proceed with
selected 10 representative subjects from Ninapro DB2, which
includes six repetitions of 49 different movements performed
by 40 intact subjects. Our selection makes sure that gender
and laterality distribution are relatively uniform to ensure that
the method is universal efficacious on different subjects, and
their height ranges from 150-187cm, and weight ranges from
52-87kg. Six movements for grasping different objects are
chosen for each subject, which have relatively better data
quality. Moreover, we concentrate our estimation on 10 finger
joints. Our selection is shown in Figure 2.

2) Data Preprocess: We compute Root Mean Square (RMS)
with a sliding window of 100 ms at the step of 0.5 ms as
the feature. RMS can decrease the noise caused by collecting
data. The feature are normalized by μ-law normalization with
μ = 220 after a briefly hyperparameter search experiments for
a better performance.

After processing the sEMG, X ∈ Rs×ci , X =
[x0, x1, · · · , xs ] denotes the result, where s is the number of
sampling points of an input subframe and ci stands for the
number of sEMG channels. Here, s = 200, ci = 12. Similarly,
Z ∈ R1×co denotes the final output, where co is the number
of hand kinematic channels. Ten joints of fingers are selected
as 10 typical kinematic channels, so co = 10.

In all subject-specific and cross-subject cases, 7/10 of each
subject was used for training and 3/10 for testing. Specif-
ically, each subject was trained and tested individually in
subject-specific cases. While in cross-subject cases, we trained
the model based on the training data from 10 individuals
simultaneously but evaluated the test data from each subject
individually for an average performance.

B. Evaluation of Parameters

To evaluate our method and compare it with other methods,
two criteria are introduced as follows.

1) Pearson Correlation Coefficient: Pearson correlation coef-
ficient (CC) is a commonly used standard to measure how
two variables relate to each other linearly. The value of CC
ranges from −1 to 1. The larger the CC value, the more similar



92 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE I
AVERAGE PERFORMANCE OF DIFFERENT MODELS ON 10 JOINTS

AND 6 MOVEMENTS OF 10 DIFFERENT SUBJECTS

WITH MIN-MAX NORMALIZATION

the predicted movement is to the estimated movement, which
means that we get a better estimation.

2) Normalized Root Mean Square Error: Root Mean Square
Error (RMSE) is a typical measure of the deviation between
predicted values and the values actually observed. For the same
joint angle, the smaller the RMSE, the better our estimation
is. However, we cannot compare the RMSE of different joint
angles. Min-max normalization on RMSE is used to solve this
problem. Hence, the Normalized RMSE (NRMSE) is defined
as:

N RM SE = RM SE

θmax − θmin
(18)

where θmax , θmin represent the maximum and minimum true
value of angles of a certain joint.

3) Unbiased Standard Deviation: Unbiased Standard Devia-
tion (denoted as σ ) is a frequently used criterion to measure
the dispersion degree of a group of data. The σ of 10 joints
of each subject is produced to measure the stability of each
model. The value is smaller, the dispersion degree is lower, and
the stability of estimation is better. This criterion is adopted in
our work based on the results of 10 predicted joints for each
subject.

4) Average Curvature: The mean curvature (denoted as κ) of
all points of each joint is adopted to measure the smoothness of
an estimated curve. The smaller the curvature is, the smoother
the curve is.

C. Experimental Results

The efficiency and accuracy of our method were validated
and compared with previous models on continuous hand
movement estimation tasks. All the models were applied on
Pytorch framework [30].

All the models were trained on the same GPU (NVIDIA
GeForce RTX 3090), and every model was trained for
400 epochs except LE-ConvMN trained for 1000 epochs for

TABLE II
AVERAGE PERFORMANCE ON DIFFERENT MODELS ON 10 JOINTS

AND 6 MOVEMENTS OF 10 DIFFERENT SUBJECTS ON 10 JOINTS

AND 6 MOVEMENTS OF 10 DIFFERENT SUBJECTSWITH

µ-LAW NORMALIZATION

more epochs to convergence. Long exposure method [17] was
utilized for every model to exclude the influence of data
processing. Experiments were carried out in two types of
situations: subject-specific and cross-subject situations. The
models were trained and verified on data from a single subject
in subject-specific situations. In contrast, models were simul-
taneously trained on data from multiple subjects and verified
on every single subject. The NRMSE and CC of each model
were calculated on each subject to show the performance of
the model in detail. Likewise, we counted the average training
time per epoch and estimated the convergence time in each
training operation. Inference time is the time cost of estimation
in practice, the process was simulated on the same CPU (Intel
i7-10875H) to compare the performance of different models.
For these criteria, the Friedman test and Wilcoxon signed-rank
test were applied to evaluate the significance of our method,
and the results were corrected by Bonferroni correction.

After trying several groups of parameters, we selected a
relatively better group of parameters to proceed with our
experiments. All models were trained at a learning rate of
0.0001 and cut in half after 200 epochs or after every
300 epochs for LE-ConvMN only.

To validate the superiority of BERT, we conducted training
on both RNN and TCN models for 10 subjects and 10 chan-
nels. And the results are as Table I shows. Prefix ‘s-’ of the
model name means that a smooth layer was applied, and
the suffix ‘-GHM’ or ‘-OHEM’ after the model name means
that this model trained with GHM or OHEM in current and
following experiments. Prefix ’LE-’ is used to distinguish our
models from bare classical models.
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Fig. 3. Estimation results of BERT-based method and other methods in cross-subject situations. Our method was trained with µ-law normalization
while others were trained with classical Min-Max normalization. Red curves are the ground truth and blue curves are the estimation. Only two joints
are shown in the figure to better show the detail of the estimation, which can represent the quality of the estimation of all 10 joints.

Among the 10 subjects, subject S3 had the best perfor-
mance. We show the results of two representative joint angles
of S3 in Figure 3, as representations of our method, BERT,
BERT-OHEM, and sBERT-OHEM with μ-law normalization
are shown in Figure 3.

The average CC and NRMSE of our method (The best
performance 0.87 ± 0.05; 0.07 ± 0.01) of single subject
was significantly better than LE-TCN (0.80 ± 0.06, p =
0.005; 0.09 ± 0.02, p = 0.005), mildly better than LE-LSTM
(0.84 ± 0.11, p = 0.262; 0.08 ± 0.03, p = 0.241), but
slightly worse than LE-ConvMN (0.89 ± 0.12, p = 0.074;
0.07 ± 0.03, p = 0.059). The average training time cost of
our method is significantly lower than that of others due to its
special structure, which makes it impossible to train in parallel.
BERT needs less average time to reach convergence (about
0.5h) than LE-LSTM (about 2.5h), LE-TCN (about 1.5h),
LE-ConvMN (about 1.8h). In addition, the strong capability of
extracting features of BERT-based method from sEMG series
was verified.

To compare the μ-law Normalization and Min-Max Nor-
malization, they were applied to the every model for each
subject we chose, respectively. μ was set as 220 in our study.
The result is in Table I and Table II, which shows that μ-law
Normalization performs better than Min-Max Normalization
in our study, leading to significant improvement.

Based on the BERT training with μ-law Normalization,
we applied both GHM or OHEM and smooth layer on mod-
els, thus designing some variants, whose results are shown

in Table II. Besides, LE-ConvMN, LE-LSTM and LE-TCN
with μ-law normalization were validated in the cross-subjects
experiments to exclude the influence caused by normalization.

As the result shows, both GHM, OHEM, and smooth layer
led to a slight improvement in both single and multiple
subjects. Although there were few improvements in criteria,
OHEM and smooth layer improved the stability of estimation
and reduced the fluctuation of the predicted motion curve,
which is shown in Figure 3. OHEM with a smooth layer
performed the best in the variants of BERT-based models.
GHM led to descending on stability. LE-ConvMN still has
state-of-the-art performance on a single subject, but our
method can reach better stability in estimation, which is
shown in the following paragraph. Figures of two criteria are
shown in Figure 4 to show the performance of estimation
on every single subject. Additionally, when increasing the
number of subjects in cross-subject situations, there was an
acceptable decline in the criteria. Although BERT-based meth-
ods sufferred more from fluctuation, the smooth layer could
effectively preclude it as shown in the Table I, Table II and
Figure 3. The performance of our method on even 38 subjects
was better than that of other methods on only 10 subjects,
which shows the strong capability of extracting features in
cross-subject situations.

As shown in Figure 4, unbiased standard deviation of esti-
mation on 10 joints was introduced to evaluate the stability of
estimation of these methods and was denoted as σ (σc, σn for
CC and NRMSE, respectively). Our method in subject-specific
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Fig. 4. Summary of performance criteria of 10 healthy subjects with
intact hands in cross-subject situations. The results show that our method
outperforms other model-free methods in all subjects. CC and NRMSE
of our method are significantly higher than other models. In addition, one
can see from the deviation bar that our method is more stable than others.

situations, sBERT-OHEM (σc = 0.0614; σn = 0.0242;) as the
represent, had the significant better performance than TCN
(σc = 0.0856, p = 0.047; σn = 0.0268, p = 0.766) in σc,
mildly better in σn ; mildly lower than LSTM (σc = 0.0718,
p = 0.384; σn = 0.0254, p = 0.859) in both two criteria
and mildly lower than LE-ConvMN (σc = 0.0802, p = 0.683;
σn = 0.0301, p = 0.574) in σc and σn . Our method in cross-
subjects situations, sBERT-OHEM (σc = 0.0753; σn = 0.0265)
as the represent, had the significant lower σ in both two criteria
than TCN (σc = 0.1570, p = 0.007; σn = 0.0929, p = 0.005),
LSTM (σc = 0.1785, p = 0.005; σn = 0.0826, p = 0.005)
and LE-ConvMN (σc = 0.1588, p = 0.007; σn = 0.0628, p =
0.009). And the average unbiased standard deviations of each
model in both situations are shown in Table III. The results
indicate that our method has better stability than other models.

Since different subjects have different features, EMG sig-
nals have subject-specific and non-stationary characteristics,
which has always been difficult for previous methods to
discover a universal method to fit cross-subject situations.
Thus, researchers always train and customize a unique set of
model parameters for a certain subject. However, since the
strong capability of extracting features from small-scale data
of BERT, it can perform better than other methods on multiple
subjects. In the following experiment, sEMG signals of all ten
selected subjects were concatenated together. We compared

TABLE III
UNBIASED STANDARD DEVIATION AMONG 10 JOINTS

OF DIFFERENT MODELS

TABLE IV
INFERENCE TIME (IT) OF DIFFERENT MODELS

ON THE INTEL I7-10875H CPU

our method with LE-LSTM, LE-TCN and LE-ConvMN meth-
ods on the combination of subjects to validate the performance
of different models on multiple subjects. The result is shown
in Table I and Table II.

The results in Table I and II indicated that our method
significantly outperformed the other models in cross-
subject situations. When Min-Max normalization was applied,
BERT-based models and LE-ConvMN performed equally.
However, while μ-law normalization brought significant
improvement to BERT-based models, it had nearly no effect
on the performance of LE-ConvMN. As a result, our method
significantly outperformed all other models and achieved state-
of-the-art performance in cross-subject situations. GHM and
OHEM performed near equally on multiple subjects with mild
improvement, while they led to an unstable effect on the
performance of different single subjects. The more sampling
points there are, the higher the possibility that GHM works
better. Compared to subject-specific models, cross-subject
models inevitably lead to a decline in performance, but it is
acceptable. However, the cross-subject model still does not
work well on more subjects except those for training.

Inference time is the time for the model to estimate the
motion from sEMG. We perform all methods on the test
dataset of subject S1 on the same CPU (Intel i7-10875H).
Average values were adopted to evaluate performance. The
results are shown in Table IV.

TCN is the most efficient method due to the results,
while BERT-based method only outperformed LSTM because
inference operations cannot be performed in parallel, which
made BERT lose its superiority in the time cost. LE-ConvMN
has fewer parameters than LSTM, which makes it faster than
LSTM and BERT-based method.

In conclusion, BERT with smooth layer and trained
with OHEM mechanism has the best performance among
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BERT-based variants. Our method not only outperforms the
TCN in quality but also stability in both subject-specific
situations and cross-subject situations. Although TCN infers
faster, it is absent in quality. Additionally, our method
outperforms LSTM in all the criteria, including quality,
efficiency and stability in both quality and efficiency in
both subject-specific situations and cross-subject situations.
Our method performs equally to LE-ConvMN in quality
in subject-specific situations, while having lower efficiency
in inference. However, BERT-based method can train in
parallel, which allows us to get a subject-specific model
faster and have higher estimation stability. Our method and
LE-ConvMN both have their own merits. However, when
it comes to cross-subject situations, our method outper-
forms LE-ConvMN in all respects except inference. Our
method have excellent performance in subject-specific situa-
tions and achieve state-of-the-art performance in cross-subject
situations.

V. DISCUSSION

BERT-based models were proposed to estimate finger joints
from the sEMG signal and compared with LSTM, TCN
and LE-ConvMN. CC and NRMSE were applied to measure
the quality of estimation and average time cost per epoch,
convergence time, and inference time were used to measure
the efficiency. The results indicated that BERT-based mod-
els outperformed classical models among the 10 selected
single subjects, but LE-ConvMN was still the state-of-the-
art model in subject-specific situations. However, the new
proposed method significantly outperformed all other models
on multiple subjects simultaneously, that is, our method has
stronger generalization ability.

In addition, BERT-based models are more efficient to train
and faster to converge, as their structure allows models to
train in parallel. But from the unique self-attention mechanism,
models can seldom benefit in the inference efficiency of
practical application. The strategy of hard sample mining
and smooth layer lead to mild improvement. There is no
further improvement on the Ninapro dataset, which may be
due to the small amount of data in Ninapro DB2 being
already well processed, including little noise and the feature
is homogeneous in a single individual. However, when we
applied GHM or OHEM to multiple subjects, due to the
increase in the number of features of subjects, the number
of hard samples increases, hard sample mining can lead to
improvement in performance and the time cost is affordable.
The smooth layer makes the estimation smoother and more
stable, which is closer to reality.

Although there are methods based on transfer learning that
allow models to adapt to different subjects, it is still difficult
to find a model that can fit multiple subjects simultaneously.
However, the proposed trained model cannot be applied to new
subjects directly, unless the new subjects are involved in the
training stage. That is, when we need the trained model to
work on new subjects, the training data of the new subjects
should be put together with that of the former subjects, and
sometimes, it is time consuming. The more efficient way to

extend our method to new subject is still transfer learning.
As BERT is a high-quality pre-trained model itself [24],
the BERT-based method can potentially contribute to transfer
learning methods, and it would be our future work. At present,
it is still a challenge to design a universal method to adapt to
general individuals, our method is an important advance in
this aspect.

There are several limits to our work. Only subjects with
intact hands are selected in this paper, which leads to the lack
of sufficient validation of the generality of our method. When
choosing subjects, channels and movements, we deliberately
avoided unreasonable or bad data caused by collecting errors
in Ninapro and thus missing validation of model robustness.
Inference time should be shortened to meet the need for
practical applications. As for BERT-based structures, they are
based on transformers and benefit from attention mechanisms,
which leads to a higher delay in inference. Recently there
has been lots of research about efficient transformers [31] to
improve the efficiency of transformer-based structures, which
can be the direction of subsequent improvement.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a BERT-based method to
estimate the continuous motions of the hands. To extract
spatial and temporal information from sEMG signals, a BERT-
based structure was designed to better meet the requirements
in cross-subject situations in clinical use. μ-law normalization
was also introduced to better utilize the hidden informa-
tion of the small magnitude of sEMG. GHM and OHEM
were applied in the training stage to better estimate hand
motion from sEMG stably. Subsequently, two classical and
a recent algorithms in continuous motion estimation from the
sEMG signal were compared with our BERT-based method.
The results showed that our method achieves considerable
accuracy and stability on single subjects. For the first time,
additionally, the proposed method can be applied to multi-
ple different subjects simultaneously and outperformed the
other models in this scenario and reached state-of-the-art
results.

In future work, more subjects, movements and channels
can be considered to evaluate the robustness and stability of
the model. Although BERT is more efficient in training, the
calculation of the full attention mechanism is time consuming
in inferring. Since continuous motion estimation requires high
efficiency, one can also improve the method with efficient
transformers. Although GHM and OHEM were verified as
mildly helpful in our work, as the unique mechanism of GHM
and OHEM, there is potential for hard sample mining to
work well when amounts of data increase in the future. It is
expected that transformer-based, attention-based models and
hard sample mining strategies contribute more and more to
human-computer interaction and collaboration.
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