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Extracting Multi-Scale and Salient Features
by MSE Based U-Structure and

CBAM for Sleep Staging
Zhi Liu , Sixin Luo , Yunhua Lu, Yihao Zhang , Linfeng Jiang, and Hanguang Xiao

Abstract— According to the World Health Organization,
more and more people in the world are suffering from
somnipathy. Automatic sleep staging is critical for assess-
ing sleep quality and assisting in the diagnosis of psy-
chiatric and neurological disorders caused by somnipathy.
Many researchers employ deep learning methods for sleep
stage classification and have achieved high performance.
However, there are still no effective methods to modeling
intrinsic characteristics of salient wave in different sleep
stages from physiological signals. And transition rules
hidden in signals from one to another sleep stage cannot
be identified and captured. In addition, class imbalance
problem in dataset is not conducive to building a robust
classification model. To solve these problems, we construct
a deep neural network combining MSE(Multi-Scale Extrac-
tion) based U-structure and CBAM (Convolutional Block
Attention Module) to extract the multi-scale salient waves
from single-channel EEG signals. The U-structured convo-
lutional network with MSE is utilized to extract multi-scale
features from raw EEG signals. After that, the CBAM is used
to focus more on salient variation and then learn transition
rules between successive sleep stages. Further, a class
adaptive weight cross entropy loss function is proposed to
solve the class imbalance problem. Experiments in three
public datasets show that our model greatly outperform
the state-of-the-art results compared with existing methods.
The overall accuracy and macro F1-score (Sleep-EDF-39:
90.3%-86.2, Sleep-EDF-153: 89.7%-85.2, SHHS: 86.8%-83.5)
on three public datasets suggest that the proposed model is
very promising to completely take place of human experts
for sleep staging.

Index Terms— Sleep stage classification, multi-scale
extraction, convolutional block attention module, deep
learning.

I. INTRODUCTION

GOOD sleep can supplement the energy of the human
body, increase body’s resistance to disease, and enhance

the quality of life. However, poor sleep will cause serious
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and long-term disease. In recent years, sleep problems have
received much public attention. According to the research [1],
35.7% of people in the world are suffering from sleep disor-
ders. More worrying, however, is that this number is increas-
ing with the acceleration of life pace and social pressures.
In addition, the function of 711 genes in the human body
will be changed with less than 6 hours of sleep per night for
a week, including metabolism, inflammation, immunity and
stress resistance and so on. It can be seen that lack of sleep will
not only lead to the physical diseases, such as cardiovascular
disease, metabolic diseases, cancer, but also mental diseases
such as depression and other psychiatric diseases.

In the study of sleep physiology, the classification of sleep
stages is extremely important. Sleep researchers often use
polysomnography (PSG) to study human brain activity dur-
ing different stages of sleep. PSG includes electroencephalo-
gram (EEG), electrocardiogram (ECG), electrooculography
(EOG), myocardium Electrograms (EMG) and other biomed-
ical records. Sleep experts use visual observation to label
characteristic waves to classify sleep stages. At present, there
are mainly two standards for sleep stages. One is proposed
by Rechtschaffen and Kales (R&K) [2] in 1968, they divided
Non-Rapid Eye Movement (NREM) into four steps (S1, S2,
S3, S4) based on the changes in EEG and EOG. The other one
is established by the American Academy of Sleep Medicine
(AASM) [3] in 2004. In AASM standard, the S3 and S4
of NREM are combined based on the R&K sleep staging
standard. Moreover, the effects of arousal, respiratory, cardiac
and motor events on sleep quality were also supplemented.
Although these rules can help sleep experts classify sleep
stages, manual labeling is time-consuming and susceptible
to subjective perception. Therefore, automatic sleep stage
classification will be more efficient than that of manual one,
and it also can exert important clinical value.

In earlier research, conventional machine learning methods
such as Decision Trees [4], Random Forests [5], [6], [7]
and Support Vector Machines [8], [9] are often used to
classify sleep stages. And they extract features mainly from
time domain signals [5], [8], frequency domain signals [6],
[7] or nonlinear parameters [4], [9]. The performance of
these models, however, is heavily reliant on the extracted
features, and building feature extractors typically necessitates
researchers with relevant domain knowledge. And unfortu-
nately the feature extractors only can apply to some specific
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data. On the other hand, the non-linearity of EEG data,
the differences in acquisition equipment, and the diversity
of individuals, make model construction time-consuming and
unsuitable for widespread use. With the breakthrough progress
of deep learning in various fields, its learning ability without
manual feature extraction has attracted much attention of
researchers. For example, Yang et al. [10] used Convolutional
Neural Networks (CNNs) to extract features from raw EEG,
and then used Hidden Markov Model (HMM) to correct
unreasonable classification of sleep stages. Results showed
that the classification accuracy reaches 83.98%. In [11], the
authors convert each raw signal into a time-frequency image
using signal processing techniques, and then used a multi-task
CNN to perform classification on the current stage epoch
and prediction tasks on neighbouring epochs. In general, the
above models achieved relatively good results in classifying
sleep stages. However, most of them are unable to learn sleep
transition rules effectively and cannot focus on salient waves
in the raw EEG signal.

In order to learn sleep transition rules, some researchers
began to use Recurrent Neural Network (RNN). Supratak
et al. [12] proposed DeepSleepNet, which utilizes two CNNs
for time-invariant feature extraction, and then bi-LSTM is
utilized to learn the transition rules based on the extracted
features. The classification accuracy of their models achieved
76.94%. In order to reduce the amount of model parame-
ters, the author subsequently employed the hybrid model of
CNN and RNN in TinySleepNet [13], and then the classifi-
cation accuracy reached 85.4%. SleepEEGNet [14] adopted
the CNN feature extraction framework in DeepSleepNet, and
then two Bidirectional Recurrent Neural Networks(BiRNN)
and attention mechanism were used as encoder-decoder and
for classification, respectively, and finally the classification
accuracy reached 84.3%. In SeqSleepNet [15], the authors
firstly used Short-Time Fourier Transform (STFT) to process
raw EEG signals into time-frequency images, and the sleep
stages were then classified using a parallel convolutional
network and a bidirectional RNN encoding the sleep sequence
information. The results showed that the accuracy reached
86%. ResnetLSTM [16] used ResNet to extract features,
and then LSTM was used for classification with the accu-
racy reaching 82.5%. Hogeon Seo et al. proposed the IIT-
Net [17] model, which extracted representative features of
sub-segments through Fourier transform and then classified the
time-series data by analyzing their time correlations. IITNet
firstly decomposed each half-minute EEG segment into an
overlapping sub-segment and then encoded each sub-epoch to
its corresponding representative feature. After that, modified
ResNet-50 was used to extract features and then biLSTM was
applied to classify sleep stages. However, due to the recurrent
characteristic of RNN, the models based on RNN usually have
great complexity, resulting in much training time and difficulty
to adjust and optimize. Therefore, much efforts have been
made to find new classifiers to replace RNN.

In order to overcome the shortcomings of RNN,
researchers have developed some new methods. For example,
AttnSleep [18] used convolutional neural networks to extract
different features in EEG signals and then recalibrated them

via an Adaptive Feature Recalibration module. Then, causal
convolution and multi-head attention mechanism were used
to extract transition rules from the captured features. In addi-
tion, the authors addressed the data imbalance problem by
improving the loss function,but it only took effect for the N1
level. This model also could not fully capture the characteristic
waves of physiological signals, and the classification accuracy
was 84.4%. Zhu et al. [19] used CNN to extract local signal
features and learn sleep transition rules using an attention
mechanism, and then classified sleep stages. U-Time [20]
took use of a fully convolutional encoder-decoder network
to classify sleep stages from an input raw EEG signal of
arbitrary length. The authors further optimized the model
in U-sleep [21] and improved the performance. However,
sleep transition rules are still not fully utilized. SalientSleep-
Net [22] adopted a dual-stream structure trained on EEG
signals and EOG signals, which attempted to improve the
accuracy of sleep stage classification by extracting features
of different salient waves from EEG signals and EOG signals.
Results showed that the classification accuracy reached 87.5%.
However, the use of multi-channel physiological data would
increase the model complexity and training time, and certain
specific requirements were also required for data set collection.
This model also dose not solve the data imbalance problem.

Although the above methods have been able to classify the
sleep stages well, the challenges and difficulties are still not
well resolved. According to AASM sleep standard, in physio-
logical signals, there are different waveforms in different sleep
stages. For instance, the waveform feature of N2 is spindle
wave and K-complex wave, while N3 stage is δ wave. There-
fore, it is important, also difficult to automatically capture the
waveform multi-scale characteristics of different sleep stages
to improve classification efficiency. Except observing the wave
features of sleep stages, experts also can classify the sleep
stage through analyzing its adjacent stages. In the process of
sleep, this change between different sleep stages is considered
as transition rules of sleep standards. However, the saliency
of sleep transition rules is not fully extracted and exploited
in many methods. Furthermore, the duration of different sleep
stages is different for different people, and N2 stage generally
occupies most of the sleep time, which resulting a serious
imbalance in sleep time of different stages. Oversampling is
often applied to balance the data, but it will lead to the increase
of the training time.

In this paper, we propose a deep neural network based on the
U-structure of MSE combined with CBAM, which can effec-
tively capture multi-scale features of different sleep stages,
learn sleep transition rules and solve the data set imbalance
problem. The following are the paper’s main contributions:

1) An end-to-end U-structured network is proposed to
classify sleep stages. In the proposed network, U-structure
with MSE is used to extract multi-scale features of salient
waves in different sleep stages and CBAM is utilized to capture
the saliency in transition rules between successive sleep stages
from raw EEG signals.

2) A class adaptive weight cross entropy loss function is
proposed to solve the problem of data imbalance without
adding extra computation.
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Fig. 1. The architecture Overview of the proposed model. It composed of U-structure with MSE, Attention Module, and the Segment-wise classifier.
The U-structure with MSE is utilized to extract salient and multi-scale features from raw EEG signals. The depth of U-structure is 5(l = 5). The
Attention Module is used to adaptively pay more attention to salient variation of wave pattern and then learn transition rules between successive
sleep stages. The EEG signal is input to the U-Structure as X to get the output X1m. Then X1m will be input to the Attention Module, and the feature
map obtained by Attention Module is input to the Classifier Module. Finally the result is output by Softmax.

3) The proposed model is extensively experimented on three
public datasets; the results demonstrate that our model has
a significant improvement in sleep stage classification and
outperforms the state-of-the-arts.

II. THE PROPOSED APPROACH

In this section, the components of our proposed sleep stage
classification model based on single channel EEG data will
be introduced, namely U-Structure, MSE, Attention Module,
Segment classifier, and class adaptive weight cross entropy
loss function.

A. Model Overview

As shown in Fig. 1, the proposed model includes three
components, the Encode-Decode U-structure with MSE, atten-
tion module and classifier. Multi-scale features of salient
waves are learned by U-structure and MSE which consists
of dilated convolution with different-scale receptive fields and
the bottleneck layer to reduce model parameters and lower
computational costs. Then CBAM for channel attention and
spatial attention is used to pay more attention to saliency

of transition rules to improve classification accuracy. Finally,
a segment-wise classifier is used to map the feature map to a
sequence of predicted labels.

According to AASM and R&K, the EEG signal was taken
as a segment of 30 seconds. Each sleep epoch is defined
as x ∈ Rn , where n is the number of sampling points for
30 seconds. The proposed model inputs is X ,where X =
{x1, x1 . . . xL} is a sequence of consecutive epochs, xi (i ∈
{1, 2, . . . , L}) is the target epoch and L is the number of input
epochs. The proposed model maps a sequence of sleep seg-
ments X to a corresponding sequence of sleep stages Y , where
Y = {y1, y1 . . . yL} and yi is the classification result of xi .
According to the AASM standard, each yi ∈ {0, 1, 2, 3, 4}
matches each of the five sleep stages W, N1, N2, N3, and
REM, respectively. Compared with other methods, our model
is more flexible because any length of sleep segments can be
input, which is similar to the process of labeling sleep stages
by humans.

B. U-Structure

Sleep specialists often classify sleep stages based on salient
waves in the EEG signal. In order to capture EEG salient
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Fig. 2. The structure of Multi-Scale Extraction module (MSE).
Dconvr is the dilation convolution; Concat: Concatenate operation;
Bottleneck: Bottleneck is the Bottleneck layer; BN: BN is the Batch
normalization.

waves and extract multi-scale features in the EEG signal,
an encoder-decoder based U-shaped structure is designed,
in which MSE module is combined.

1) Encoder: The encoder consists of five convolutional
blocks, each of which has three convolutional layers, and batch
normalization is performed after each convolutional layer to
avoid gradients vanishing and speed up convergence. Inputting
the given1D feature map X into a convolution block:

Xl = Convl (X ′
l−1), l ∈ {1, 2, 3, 4, 5} (1)

where Xl is the feature map output by the convolution block,
l is the depth of the encoder(l = 5 in our model), when l =
0, X ′

0 = X .
Four of the layers are downsampling, and the pooling sizes

are 10, 8, 6, and 4:

X ′
l = Down(Xl ), l ∈ {1, 2, 3, 4} (2)

where X ′
l is the output of the downsampling, and Down is

the downsampling operation.
2) Multi-Scale Feature Extraction: Inspired by the idea of

Feature Pyramid Networks [23], shortcut in ResNet [24]
and SalientSleepNet [22], MSE modules are introduced to
directly connect corresponding layers of encoder and decoder
in U-structure. Shortchut is effective for training deep con-
volutional models. And MSE can better boost U-structure to
extract multi-scale features of salient waves with its dilated
convolution. The bottleneck layer makes the shortcuts intro-
duce few extra parameters and computation complexity. The
MSE is shown in Fig. 2.

To obtain a multi-scale feature map, the multi-scale feature
extraction module is designed to consist of four dilated con-
volutions with dilation rates ranging from 1 to 4. The feature
maps learned from the different scales are concatenated and
defined as:

Xr
d = Dconvr (X ′

l), r ∈ {1, 2, 3, 4, 5} (3)

Xls = Concat (X1
d, X2

d , X3
d , X4

d ) (4)

where X ′
l is the input feature map, Dconvr is the dilated

convolution of the dilation rate r . The output of Dconvr is Xr
d .

Finally, the output feature map is Xls , when l = 5, X ′
5 = X .

Then, bottleneck layer is added to MSE. It enables the
channels of the input feature map to be reduced. Thus a large

number of parameters in the model can be reduced, reducing
computational costs. The bottleneck layer is defined as:

Xlb = Bottleneck(Xls) (5)

where Xlb is the multi-scale feature map obtained after the
bottleneck layer operation. Bottleneck is the operation of
bottleneck layers.

3) Decoder: The decoder consists of four convolutional
blocks and upsampling. An upsampling operation is performed
before inputting in each convolution block, and three convo-
lution operations are applied on each convolution block, then
followed by batch normalization after each convolution. Then
the multi-scale feature map output by MSE and the up-sampled
output are concatenated as the input of the current layer:

Xlm = Cnov(Xlc), l ∈ {1, 2, 3, 4} (6)

X ′′
l = U p(Xlm), l ∈ {2, 3, 4, 5} (7)

Xlv = concat (X ′′
l+1, Xlb), l ∈ {1, 2, 3, 4} (8)

where X ′′
l is the upsampling output and U p is the upsampling

operation, when l = 5, X5m = X5b. Xlc is the feature map
after connection, Xlm is the output of the convolution block in
the decoder, and the final output feature map of the U-structure
is X1m .

C. Attention Module

In order to learn sleep transition rules, the model needs to
pay attention to the overall trend of multiple sleep stages of
the input, which is often easily ignored. For example, when
the sleep stages cannot be classified, sleep specialists usually
classify the current sleep stage according to the previous and
subsequent sleep stages. In deep learning, the attention module
solves this problem by enabling the model to focus more on
what it needs to focus on. In the proposed model, we use
the attention module to learn transition rules between sleep
stages by adaptively paying more attention to salient variations
in wave pattern hidden in EEG. Previous researchers [14],
[18] [19], [22] often only utilized the channel attention and
ignored the spatial features of the feature map. Therefore,
a lightweight CBAM [25] combining channel and spatial
attention module is used in the proposed model to improve
its performance.

1) Channel Attention Module: The channel attention module
can pay attention to the valuable information of the input
and calculate the internal relationship between each chan-
nel. Performing max-pooling and average pooling operations
on the input feature map can simultaneously compress the
C × H × W feature map to a size of C × 1 × 1, which is
conducive to integrating information of each spatial channel
and obtain finer features in the feature map. Then after a
Shared MLP, the number of channels is compressed to C/r
(reduction=16), and then expanded back to C . To generate
the final channel attention feature, the shared MLP out-
put features are summarized and then sigmoid activated, as
follows:
Fc = σ(M L P(Avg Pool(X1m)) + M P L(Max Pool(X1m )))

(9)
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TABLE I
NUMBER AND PROPORTION OF SLEEP STAGES FOR THE THREE DATASETS USED IN THE EXPERIMENT

where σ is the activation function and Fc is the final channel
attention feature.

2) Spatial Attention Module: The spatial attention module is
designed to focus on the location information of the target.
The input of the spatial attention module is an element-wise
summation of the output feature map of the channel attention
module with the input feature map of the channel attention
module. Then, two H ×W ×1 feature maps are obtained using
maximum pooling and global average pooling. After that,
a channel-based concat operation is performed on both feature
maps, and then the convolution operation is implemented
to reduce the number of channel dimensions to one. After
sigmoid activation, spatial attention feature map is generated,
and finally this spatial attention feature map is multiplied by
the feature map of input from the spatial attention module to
obtain the final generated features, as follows:

Fs = σ(Conv(Avg Pool(Fc); Max Pool(Fc)) (10)

where σ is the sigmoid function and Fs is the final spatial
attention feature.

D. Segment Classifier

Unlike models in other areas of computer vision, models
for segment-wise classification of physiological signals have
a continuous sequence of EEG signals as input. There is a
need to capture local structural information between adjacent
points.

In this study, a segmentation classifier in SalientSleep-
Net [22] is used to map pixel-level feature maps to
segment-level prediction tag sequences. Firstly, an average
pooling operation is performed on the 1D feature map, and
Fs ∈ RL×n is reshape into Fpool ∈ RL , where L is the
number of sleep stages, and n is the sampling point in a sleep
stage. Then Fpool is subjected to the dimension reduction via
a convolutional layer, and then scaled from 0 to 1 using the
softmax function. Finally, it will be mapped to the predicted
label sequence Y .

E. Class Adaptive Weight Cross Entropy Loss Function

As can be seen from Table I, the number of each category
in the sleep staging dataset varies greatly from each other.
An adaptive weight cross-entropy loss function is designed,
which is an improvement on the cross-entropy loss function,
to solve the data imbalance problem. The weights of the
cross-entropy loss function can be adjusted adaptively based
on the number of categories in the dataset. The following is the

definition of the adaptive weight cross-entropy loss function:

Loss = − 1

N

K∑

k=1

N∑

i=1

ηk yi k log(
−
y

k

i ) (11)

ηk =

k∏
p=1

(Np/Nk )

k∑
q=1

k∏
p=1

(Np/Nq )

(12)

where yk
i is the probability of the ground truth of the i -th

sample,
−
y

k

i is the predicted probability of the i -th sample,
N is the total number of samples, K is the number of
categories, ηk is the weight of the k-th category, and Nk is
the data amount of the k-th category.

Through the above formula, the following relationship can
be obtained between each class:

η1 × N1 = η2 × N2 = · · · = ηk × Nk (13)

η1 + η2 + η3 + η4 + η5 = 1 (14)

From formulas (13) and (14), it can be concluded that the
weight of each category depends on its corresponding number
of samples. In this way, it will not introduce complexity of the
model, while achieves better training and testing performance
for each category.

III. EXPERIMENT AND RESULTS

In this section, three public available datasets used in the
experiments are introduced. For each dataset, only one EEG
channel is used for experiments. Extensive experiments are
conducted on all these three datasets to demonstrate the
validity of the model.

A. EEG Datasets and Preprocessing

Sleep-EDF [26] is obtained from a 1987–1991 study on the
effect of sleep in healthy whites aged 25-101 years without
any sleep-related drugs. In this study, PSG recordings from
20 healthy subjects (aged 25-34 years) of corresponding to
the age effect is used. SleepEDF-153 is an extended version
consisting of PSG recordings from 78 healthy subjects aged
25-101 years. In both datasets, each subject has two diurnal
PSG recordings. Each PSG recording contains two scalp
EEG signals from the Fpz-Cz and Pz-Cz channels, one EOG
channel (horizontal), one chin EMG channel and one oronasal
respiration signal. All EEG and EOG are sampled at 100 Hz.
For each document, sleep experts have manually scored these
records according to R&K standard. It is noteworthy that the
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Fig. 3. Visualization of the experimental confusion matrix.

TABLE II
RESULTS OF THE SLEEP-EDF-39 AND SLEEP-EDF-153 DATASETS COMPARED WITH PREVIOUS METHODS

EEG signals in this dataset are all based on the Fpz-cz channel
and thus do not need any further preprocessing.

SHHS [27], [28] is a multicentre cohort study in which
subjects with various diseases were selected to study the
effects of sleep breathing disorders on cardiovascular disease
and other diseases. In previous research [18], [29], the author
selected 329 subjects who had regular sleep in order to reduce
the effects of the disease. We have followed these studies
and we also used EEG data from these subjects for our
experiments. In our experiments, we chose the C4-A1 channel
with a sampling rate of 125 Hz.

To compare with other methods, we treated the three
datasets in the same way as the previous study, merging the
N3 and N4 phases into one N3 phase and removing the motion
and unknown phases. Each PSG file contains a large number
of wake-up periods, while we only focus on the sleep periods,
and thus only the 30 minutes records before and after sleep
are kept.

B. Experiment Settings

Our model is implemented based on TensorFlow 2.3 and
trained it on an NVIDIA GeForce RTX3080Ti. Adam opti-
mizer trained our model with a learning rate of η = 10−3.
The batch size is 8 and the training epoch is 100. The
length of the input sleep epoch sequence is 20 (L = 20).
In addition, the downsampling rate of the bottleneck layer is
4. The subjects in each dataset are divided into 20 groups
and 20-fold cross-validation is used to evaluate our model.
The average value of the predicted sleep stages of all 20 test
samples is calculated. Fianlly, various performance metrics are
obtained.

C. Experiment Results

As shown in Tables II and III, the proposed model with
state-of-the-art methods on three public datasets are compared.
Table II shows the comparable results of the proposed model
with other methods on Sleep-EDF-39 and Sleep-EDF-153.
Table III illustrates the results of the proposed model with
other methods on SHHS. In comparison to other methods,
our models have achieved huge improvements on accuracy
and F1 scores. Because the N1 class is frequently misclas-
sified as the W, REM, and N2 classes, stage N1 has the
lowest performance, and the F1 scores of N1 in the other
methods are all below 50%. In the proposed model, the
F1 score of N1 is greater than 70% in Sleep-EDF-39 and
Sleep-EDF-153, and greater than 60% in SHHS. It shows that
the designed class adaptive loss function is useful for dealing
with data imbalance problem. After using the 20-fold method,
the confusion matrices of the experimental results for each
dataset are visualized in Fig. 3. Each square represents the
number of that stage, with the darker the color indicating the
higher the number. On these three datasets, it can be seen
that the proposed model outperforms existing SOTA methods
significantly.

Although models such as DeepSleepNet, SeqSleepNet,
ResnetLSTM, and TinySleepNet can utilize CNN and RNN to
capture the salient waves patterns and transition rules between
sleep stages, they contain extensive parameters, resulting
in difficulty to adjust and optimize. Furthermore, ResnetL-
STM, SleepEEGNet, IITNet and MultitaskCNN require
time-frequency images as input, however using signal process-
ing techniques on physiological signals can result in some
information loss. In terms of detecting salient waves patterns
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TABLE III
RESULTS OF THE SHHS DATASETS COMPARED WITH PREVIOUS METHODS

of physiological signals and resolving the data imbalance prob-
lem, our model is superior to the SalientSleepNet, which uses
EEG and EOG as dual-channel U2 structure flow. Our model
uses U-Structure based on encoder-decoder and dilated convo-
lution in the MSE module to capture multi-scale features in the
EEG signal. More importantly, the dual attention modules can
pay spatial and channel attention simutaneously to salient vari-
ation of wave pattern and then learn transition rules between
successive sleep stages. In addition, the weights of loss func-
tion will be dynamically balanced according the number of
samples in each class (sleep stage) by introducing the proposed
class adaptative weight cross-entropy loss function. So that the
data in each sleep stage can be fully valued and the model
can be trained well. The large improvement in F1-score for
each class also demonstrates that our proposed class adaptative
weight cross-entropy loss function can enhance the training of
the model for each class very well. In summary, the overall
performance of our model is clearly superior to that of other
methods.

D. Visualisation of the Results of the Classification

In this study, the t-SNE (t-distributed Stochastic Neighbor
Embedding) method [30] is employed to visualize the results
of the model classification to demonstrate the validity of
the proposed model. In Fig. 4, it is evident that the points
representing each type of sleep stage are clearly differentiated,
demonstrating the strong ability of our model to extract
significant waveform features. Also, it can be seen that the
number of misclassification of sleep stage is small, and most
of the them are related to the N2 class, as it is the majority
class.

E. Ablation Experiments

Several different models are designed to evaluate the effec-
tiveness of each module in the model, as follows:

U-structure: U-structure module only.
U-structure + MSE: Based on the U-structure module,

a multi-scale feature extraction module is added.
U-structure+MSE+CBAM: The CBAM module added to

U-structure and MSE.
Proposed Method: This model combine the U-structure, the

multi-scale feature extraction module, the CBAM module and
class adaptive weight cross entropy loss function for training.

Table IV shows the results of the ablation experiments.
When MSE is added to the U-structure, the accuracy is greatly

Fig. 4. Results of probabilistic post-processing for each class extracted
from proposed model, with different colors and labels denoting different
stages of sleep (W, N1, N2, N3, R).

TABLE IV
THE RESULTS OF ABLATION EXPERIMENT

improved, indicating that MSE can effectively learns the multi-
scales features. After adding the CBAM module, the accuracy
is further enhanced because the CBAM can adaptively pay
more attention to salient variation of wave pattern. Finally,
the use of class adaptive weight cross entropy loss function
solves the problem of data imbalance well, making the model
achieve a further higher performance.

In order to demonstrate the effectiveness of the class
adaptive weight cross entropy loss function, experiments are
executed on the Sleep-EDF-39 dataset. The performance using
various weighted cross entropy loss functions are compared
with our proposed loss function. They are conventional weight-
ing, the uniform weight and the Class-Aware Loss Func-
tion proposed in AttnSleep [18]. As shown in Table V, the
F1-score when using class adaptive weight cross entropy loss
function exceeded that of all other weighted cross-entropy
loss functions in each class. Experimental results demonstrate
that proposed adaptative loss function can effectively solve
the problem of data imbalance, which is mainly because the
class adaptive weight cross entropy loss function is capable
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TABLE V
RESULTS OF DIFFERENT WEIGHTING METHODS

of making the model well trained for each class. Moreover,
the accuracy of the proposed loss function reaches 90.3,
suggesting its superiority than other weighted cross entropy
loss function in resolving data imbalance problem.

IV. CONCLUSION

In this paper, an end-to-end deep neural network is proposed
to classify sleep stages only from raw EEG signal. The
MSE based U-structure is used to extract multi-scale features
for salient waves in sleep stages. To learn transition rules
between successive stages, CBAM module is utilized to pay
more attention to channel and spatial feature simultaneously.
In order to reduce the influence of data imbalance on model
training, a class adaptative loss function is designed to balance
the contribution to loss according to the ratio of different sleep
stages. The results show that our model achieves state-of-
the-art performance. Specifically, the classification accuracy
on Sleep-edf-39, Sleep-edf-153 and SHHS data set reaches
90.3%, 89.7%, and 86.8% respectivly. Ablation Experiments
on Sleep-edf-39 data set show that MSE, CBAM and adapta-
tive loss function can all contribute to improve the performance
of sleep stage classification. The proposed model is expected
to free sleep specialists from heavy sleep staging, which is
important in the diagnosis, of psychiatric and neurological
disorders, such as depression, anxiety disorder, insomnia, etc..
However, in this study, the proposed model failed to consider
noise reduction of physiological signals to obtain higher
performance, which will be a focus of our future research.
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