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Continuous Grasping Force Estimation With
Surface EMG Based on Huxley-Type

Musculoskeletal Model
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Abstract— Continuous grasping force estimation based
on electromyography (EMG) signals, is very useful in prac-
tical applications including prosthetic control and human
force observation. However, implementing the practical
grasping force estimation usually considers a trade-off
between the computationalprecisionand resources.Specif-
ically, the estimation based on the Huxley-type muscle
model reaches detailed approximation of physiological
process at a cost of larger computational resources for
solving nonlinear partial differential equations while the
counterpart with a traditional Hill-type muscle model. In this
article, we achieve the grasping force estimation based on a
reducedHuxley-type musculoskeletalmodel with high accu-
racy yet low time delay. Leveraging on a balanced truncation
method, we further reduce the dimensionality of the spectral
method solution in the Huxley-type musculoskeletal model
for the model simplification. In addition, we introduce the
Kalman filter method to process the EMG signals obtained
by an armband, yielding better real-time performances and
accuracy compared to the signal treatment using the tra-
ditional EMG filter method. Moreover, we also implement
an effective identification of the model parameters using a
particle swarm method. Finally, we trained the model on the
first day and made grasping force estimation experiments
involved with three participants over the course of a month.
We envision that this effective and practical method would
further improve the practical applications in the field of
grasping force estimation.

Index Terms— Force estimation, Huxley model, surface
EMG, spectral method, parameter identify, EMG filter.

I. INTRODUCTION

AS AN easily measured bioelectric signal, the upper limb
myoelectric signal has a wide range of applications in the

field of medical treatment and rehabilitation [1]. This signal
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can control the contraction of skeletal muscles, which is
observed in the form of electromyographic signals, to achieve
a firm grip on an object [2]. The research on the grasping force
estimation can be used to explore the principles of upper limb
muscle movement, used as a control signal to achieve a variety
of grasping actions of a manipulator [3], [4], and combined
with feedback technology to achieve closed-loop control of
grasping [5], [6]. In some studies, electromyography (EMG)
signals are decoded as control signals based on classification
algorithms or mathematical fitting methods, which can decode
multiple grasping modes but cannot efficiently and accurately
decode the grasping force [7], [8], [9], [10].

To decode EMG signal efficiently and accurately, many
researchers have proposed a wide variety of force estimate
methods based on the relationship between EMG signals
and skeletal muscle mechanics. Engeberg [11] proposed a
proportional control method which is robust as well as facile in
the practical application such as the commercial prostheses but
suffers from the average squared relative error of the grip and
average failure rate up to 28% and 40%, respectively. Different
from the inaccurate linear prediction model, nonlinear regres-
sion methods can be used estimate the parameters and predict
the grasping force, which improved the percentage variance
accounted for (VAF) up to 86% during gradual dynamic
contraction task [12]. Furthermore, using machine learning
methods can better fit the relationship between EMG signals
and skeletal muscle force. Ma et al. [13] applied the convo-
lutional neural network (CNN) to establish the relationship
between the surface electromyography (sEMG) signals and
forces. This method could obtain no more than five force levels
proportion to the maximum voluntary contraction (MVC)
after training with the correlation coefficient (CC) value of
93.14% under the five-finger pinch grasping action. As the
difference between two adjacent force levels is large, the
force estimation is imprecise for applications. Fang et al. [14]
proposed an attribute-driven granular model (AGrM) under
a machine-learning scheme to obtain more force level in
different pinch-types without continuous force estimation.
To realize continuous force estimation and further improve the
accuracy, support vector regression (SVR) and multi-modal
feature combination is implemented by Mao et al. [15] to
estimates continuous grip force and further improve the cc
value of continuous grip force estimation up to 95.32±1.35%.
However, these methods lack an explanation of the muscle’s
biological mechanism and require a large amount of high-
quality training data which result in a long training time and
the potential overfitting.

To overcome these problems, Hill-type muscle models
are used and some characteristics of biological muscle can
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be well represented by Hill-type models [7], [16], [18].
On the other hand, the Huxley-type muscle model with more
detailed approximation of physiological process is rarely cho-
sen because of more computational resources to solve the non-
linear partial differential equation, when time consumption is
more concerned [19], [20]. Thus, obtaining a low dimensional
Huxley-type muscle model as well as balancing the model
complexity and accuracy are necessary for the efficient and
stable implementation of this model.

Huxley model can include some important characteristics
of skeletal muscle under the dynamic contraction [21], [22].
One of the main assumptions is that actin–myosin binding
reactions obey first-order kinetics, which are expressed by a
partial differential equation. The nonlinear partial differential
equation with time and space dependence belongs to an
infinite-dimensional system and it is thus difficult to analyze
and solve the equation in real applications. In early work,
Zahalak [23] proposed an analytical solution for the distribu-
tion of attached cross bridges using the method of characteris-
tics. However, due to the low computational efficiency of this
method, this solution is considered unacceptable for solving
practical problems. Later, various complicated approximate
models were proposed for this theory [24], [25] but only have
numerical solutions. Thus, Huxley-type model prefers to be
applied in computational simulations [24], [25], [26] instead
of real-time force estimations despite its accurate reflection of
delicate muscle movements.

This study aimed to solve the differential equation of
the Huxley-type skeletal muscle contraction model and use
the low-dimensional musculoskeletal model driven by sEMG
signals to obtain more accurate and practical grasping force
estimates. First, in Sections II and III, the time and space
components of the Huxley-type model are separated using
a spectral method, and the balanced truncation method is
used to further reduce the model dimensionality, forming a
very low-dimensional skeletal muscle dynamic model. Next,
Section IV describes the multi-channel EMG signal grabbing
force extraction method based on the Kalman filter, which
achieved more accurate and low-latency grabbing force signal
extraction. The particle swarm optimization method is then
used to identify the model parameters. Finally, to verify the
effectiveness of this method, a total of 150 experiments were
carried out on different 10 days during one month with an
interval of 2-14 days by three participants, and the results are
presented in Section V. The advantages and limitations of this
method are discussed in Section VI.

II. HUXLEY-TYPE MUSCULOSKELETAL MODEL

In the Huxley-type model shown in Fig. 1, the sarcomere
is the basic contractile unit of the muscle fiber, which is
composed of two main filaments—actin and myosin. After
receiving the action potential, the calcium ion concentration
of the sarcomere will increase, prompting the actin and
myosin binding to form cross-bridges. Meanwhile, adenosine
triphosphate (ATP) will hydrolyze to adenosine diphosphate
(ADP) and phosphoric acid (Pi), causing the cross-bridges
to swing. It is a cycle of repetitive events that causes
actin and myosin myofilaments to slide over each other,
contracting the sarcomere and generating tension in the
muscle.

According to Huxley’s skeletal muscle contraction
model [26], [27], the actin–myosin binding reaction obeys

Fig. 1. Huxley-type actin–myosin binding reaction model in the
sarcomere.

the following kinetics equation:
∂p(x, t)

∂ t
− v(t)

∂p(x, t)

∂x
= r(t) f (x, t) [1 − p(x, t)]

− g(x, t)p(x, t), (1)

where v(t) represents the rate of myofilament slippage, x =
xr/h represents the normalized value of xr with the scaling
factor h, xr is the distance between the cross-bridge binding
site and the equilibrium position, p(x, t) is the distribution
function of the number of cross-bridge binding sites, and the
independent variables are the time t and the position x . f (x, t)
represents the reverse (separation) rate function, g(x, t) repre-
sents the forward (combination) rate function, and r(t) repre-
sents the activation function of the muscle.

Once p(x, t) is determined, the moments of the distribution
can be used to calculate various macroscopic variables of
interest. It is assumed that the force–displacement relationship
of the cross-bridge is described by a linear spring constant k
and the muscle is fully activated. The force is calculated as
follows [26]:

F(t) = Qmηsh2

2l

∫ L

−L
x p(x, t)dx, (2)

where Q is the cross-sectional areas of the muscle, m is the
number of cross-bridges per unit volume, η is a linear spring
constant of cross-bridges, s is the length of the sarcomere,
l represents the distance between successive actin binding
sites, and L represents the maximum value of x .

In this model, we have the following three assumptions:
Authors should consider the following points:
1) When muscle fatigue and other physiological changes

are not considered in a short period, the rate functions
f (x, t) and g (x, t) are generally defined as functions
of x but not of t. In other words, it is assumed that at
any two moments in a short period, when the number
of cross-bridges, the myoelectricity activation strength,
and the sliding displacement of the myofilaments are
the same, the changes in the distribution function of
the cross-bridges are also the same. The following rate
function was used in the simulation process [28]:

f (x) = 3λe(−x2/2), g(x) = λ(0.15 + e(−1.5x)), (3)

2) The EMG signal controls the binding ability of the
transverse bridge by regulating the concentration of cal-
cium ions in the muscle mass, and this process involves
a relatively complex chemical change [23]. However,
compared to the sampling rate of the EMG signal, this
process occurs extremely fast. Therefore, the normalized
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EMG signal and the degree of muscle activation can be
described by the function [29]:

r(t) =
(

eγ α(t) − 1
)/(

eγ − 1
)
, (4)

where α(t) is the filtered EMG signal, whose acquisition
process is described in Section IV, γ is a constant
parameter of the non-linear shape factor that is allowed
to vary between −3 and 0. When γ equals −3, the
function is highly exponential, and when γ equals 0,
the function is linear.

3) According to the biological principles of skeletal mus-
cles, it is known that outside the range of movement
of the transverse bridge in the x-direction, the binding
rate of the transverse bridge is almost zero. At the same
time, it is assumed that when the muscle is in a relaxed
state, the combination of the cross-bridges forms an
approximately normal distribution. Thus, the following
boundary conditions were selected:

p(−L, t) = p(L, t) = 0;

p(x, 0) = p0√
2πσ

e

(
− (x−μ)2

2σ2

)
. (5)

This biological model is based on a nonlinear partial dif-
ferential equation, which belongs to an infinite-dimensional
system with space and time dependence. As a result, analytical
solutions are difficult to obtain. Thus, it is difficult to analyze
the dynamic characteristics of the muscle force. In addition,
some parameters in the model are unknown, and some bio-
logical processes have no accurate model explanation. The
EMG estimation method based on Huxley’s skeletal muscle
model does not have a convenient and practical general model,
which limits its application.

Therefore, the next step is to derive accurate and effective
solutions of the partial differential equations governing the
theory of muscle contraction and cross-bridges to obtain a
practical prosthetic hand muscle model with easy-to-identify
parameters. This means that the dimensions of the cross-bridge
model need to be reduced first.

III. MUSCLE MODEL DIMENSIONALITY REDUCTION

BASED ON SPECTRAL METHOD

AND BALANCED TRUNCATION

The distributed moment method was first used to find the
solution for the muscle model, and three ordinary differential
equations were obtained for the first three moments. This
approach evolved to encompass many different muscle types
and behaviors [23], [30]. Meanwhile, a spatial approximation
and a multistep Adams–Moulton method was used to solve the
partial differential equation and showed a higher accuracy and
efficiency [31]. However, compared to the former simplified
low-dimensional result, the spatial approximation result is too
complicated to be modified or made more sophisticated to
model other systems.

To obtain a practical biological muscle model, the following
three steps (also shown in Fig. 2) were used. First, a spectral
method and the Galerkin method were applied to reduce the
model dimensionality. Second, the balanced truncation method
was used to further reduce the dimensionality, and a very low-
dimensional skeletal muscle dynamics model was obtained.
Finally, the time and space variables were integrated, and a
low-dimensional muscle mechanics model was obtained based
on the relationship between the muscle force and speed.

Fig. 2. Overview of dimensionality reduction steps.

A. Spectral Method for Dimension Reduction

Based on the boundary conditions given by (5), the basis
function of the spectral method is chosen as follows:

ϕn(x) = sin
(
nπ(x + L)

/
2L

)
. (6)

According to the separation of variables method, r(t) f (x, t)
and p(x, t) in Equation (1) can be expressed as follows:

r(t) f (x, t) = u(x, t) =
N∑

n=1

un(t)ϕn(x), (7)

p(x, t) =
N∑

n=1

an(t)ϕn(x). (8)

where un(t) and an(t) are the separated time variables.
Substituting (7) and (8) into (1) yields

N∑
n=1

ȧn(t)ϕn(x)

= v(t)
N∑

n=1

an(t)ϕ̇n(x)− g(x)
N∑

n=1

an(t)ϕn(x)

+
N∑

n=1

un(t)ϕn(x)− r(t) f (x)
N∑

n=1

an(t)ϕn(x). (9)

Equation (9) can be written in the form of an infinite-
dimensional system of differential equations:

0 = ȧn(t)ϕn(x)− v(t)an(t)ϕ̇n(x)+ g(x)an(t)ϕn(x)

− un(t)ϕn(x)+ r(t) f (x)an(t)ϕn(x). (10)

where n = 0, 1, 2, · · · ,+∞
The nonlinear Galerkin method is used to project onto each

orthogonal basis in space [32]:

0 = ȧn(t)
∫ L

−L

M∑
m=1

ϕm(x)ϕn(x)dx − v(t)an(t)

×
∫ L

−L

M∑
m=1

ϕ̇m(x)ϕn(x)dx

+ an(t)
∫ L

−L

M∑
m=1

g(x)ϕm(x)ϕn(x)dx − un(t)

×
∫ L

−L

M∑
m=1

ϕm(x)ϕn(x)dx

+ r(t)an(t)
∫ L

−L

M∑
m=1

f (x)ϕm(x)ϕn(x)dx, (11)
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where

un(t)
∫ L

−L

M∑
m=1

ϕm(x)ϕn(x)dx

=
∫ L

−L

N∑
n=1

un(t)ϕn(x)ϕn(x)dx

= r(t)
∫ L

−L
f (x)ϕn(x)dx. (12)

After performing the integration in (11) and (12), the
following ordinary differential equations are obtained:

dan(t)

dt
= bnan(t)+ unr(t)+ [hV nv(t) + h Rnr(t)] an(t),

(13)

where

bn = − 1

L

[∫ L

−L

M∑
m=1

g(x) sin
mπ(x +L)

2L
sin

nπ(x +L)

2L
dx

]
,

(14)

un = 1

L

[∫ L

−L
f (x) sin

nπ(x + L)

2L
dx

]
, (15)

hV n = 1

L

[∫ L

−L

M∑
m=1

mπ

2L
cos

mπ(x +L)

2L
sin

nπ(x +L)

2L
dx

]
,

(16)

h Rn = − 1

L

[∫ L

−L

M∑
m=1

f (x) sin
mπ(x +L)

2L
sin

nπ(x +L)

2L
dx

]
.

(17)

Based on the frequency of the basis function, the system
can be divided into fast and slow systems. After removing the
fast systems (N = 8 and M = 15, for example), the infinite-
dimensional ordinary differential equation system specified
by (8) and (13) can be simplified to a finite set of ordinary
differential equations, which can be rewritten in the following
general form:

ȧ(t) = Aa (t)+ Br (t)+ H (a(t), r(t))

y (t) = Ca (t). (18)

Although the cross-bridge model contains a first derivative
evaluated over a space of partial differential equations, its
dimension is still relatively high.

B. Dimension Reduction With Balanced Truncation
A lower-dimensional linear time invariant system can be

obtained through a linear transformation with the balanced
truncation method. Suppose a (t) = R−1ã (t), where R is
the basic functional transformation matrix. To remove the
nonlinear part of (18), let v (t) = vmax and r (t) = rmax ,
yielding the following:

˙̃a(t) = R(A + hV nvmax + h Rnrmax)R
−1ã (t)+ RBr (t)

y (t) = C R−1ã (t). (19)

Due to the symmetry of the observability and controlla-
bility matrix, the SVD (Singular Value Decomposition) of

Fig. 3. Steady-state error of the dimensionality reduction model
(N = 8, K = 3, and K =2) compared with the finite element solution,
with the constant input α(t) = 0.8.

Fig. 4. Simulation result of the 3-dimensionality model with initial value
(p0 = 0.1, μ = 0, σ = 1), and with activation input α(t) = 0.8 when
t ∈ [0,1], α(t) = 0 when t ∈ [1,2].

the square decomposition product and the transformation
matrix R can be obtained by balanced truncation with the
first k columns of the matrix, V U
−1/2. After replacing vmax
and rmax with the nonlinear terms v (t) and r (t), respectively,
the infinite-dimensional cross-bridge models can be approxi-
mated as a K-dimensional model, which can be rewritten as
follows:

˙̃a(t) = R [A + hV nv(t)+ h Rnr(t)] R−1ã (t)+ RBr (t)

y (t) = C R−1ã (t). (20)

To verify the effectiveness of this method, the reduced-
dimensionality models presented above (N = 8, K = 2
and 3) were numerically solved and compared by obtain-
ing the finite element solution of (1)–(5), which were
discretized in variable x . The muscle velocity v (t) and
EMG signal α(t) were specified during the numerical
computation.

Fig. 3 shows the steady-state error of the dimensionality
reduction model with constant α (t) input when N = 8,
K = 3, and K = 2. The steady-state was relatively large when
K = 2 compared to the finite element solution. In contrast,
the steady-state error of the balanced truncation result with
K = 3 and the spatial approximation method with N = 8 was
sufficiently small and more acceptable.

Thus, to obtain a Huxley-type muscle model with a lower
dimensionality and higher accuracy, the dimensionality reduc-
tion model (K = 3) was selected. Fig. 4 shows the model’s
dynamic response when K = 3.
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C. Electromyography (EMG)-Driven Huxley-Type
Musculoskeletal Force Model

In applications, it is difficult to directly measure the speed of
muscle contraction. Therefore, a simple inversely proportional
relationship was used to estimate the speed based on the
muscle strength [21]:

(F + Fa)(v(t) + vb) = (F0 + Fa)vb. (21)

This can be rewritten as follows:
v(t) = vb F0

/
(Fa + F(t))− vb. (22)

Before dimensionality reduction, it is difficult to obtain an
analytical solution of Equation (1). After using the balanced
truncation method with K = 3,

p(x, t) =
3∑

k=1

ãk(t)ψk(x), (23)

ψk(x) =
N∑

j=1

R jkϕ j (x). (24)

where R jk denotes the j row and k column of basic functional
transformation matrix R. ϕ j (x) denotes the jth basis function.

Substituting (21), (22), (23), (24), and (2) into (1) yields:
˙̃ak(t) = Ãk(t)ãk(t)+ B̃kr(t), k = 1, 2, 3, (25)

F(t) =
3∑

k=1

ãk(t)
Qmηsh2

2l

∫ L

−L
xψk(x)dx, (26)

where

Ãk(t) = h Rkr(t)+ hV k(va(t)− vb)+ b, k = 1, 2, 3,

(27)

va(t) = vb F0

Fa +
3∑

k=1
ãk(t)

Qmηsh2

2l

∫ L
−L xψk(x)dx

, (28)

Notice that the following terms can be directly obtained by
integration:

Ck = Qmηsh2

2l

∫ L

−L
xψk(x)dx . (29)

The EMG-driven Huxley-type musculoskeletal force model
can be obtained as follows:

˙̃ak(t) = Ãk(t)ãk(t)+ B̃kr(t), k = 1, 2, 3, (30)

Ãk(t) = h Rkr(t)+ vbhV k(
F0

Fa + F(t)
− 1)+ b,

k = 1, 2, 3, (31)

F(t) =
3∑

k=1

Ckãk(t). (32)

The following variables exist in the model:
C0,C1,C2 are related to the muscle force F(t); vb, F0, Fa

are related to the muscle speed v(t); b, hR1, hR2, hR3,
hV1, hV2, hV3 are related to the state function a(t); B0, B1, B2
are related to the input EMG signal r(t).

The calculated sequences are (31), (30), (32), and the initial
values at t = 0 of the equations are given as follows:

F(0) = 0, (33)

ãk(0) = 0, k = 1, 2, 3. (34)

Fig. 5. Force estimation method based on dimensionality reduction
model.

Fig. 6. Force estimation method based on reduced-dimensionality
model.

IV. PARAMETER IDENTIFICATION AND GRASPING FORCE

ESTIMATION METHOD BASED ON REDUCED-
DIMENSIONALITY HUXLEY-TYPE

SKELETAL MUSCLE MODEL

After completing the dimensionality reduction of the skele-
tal muscle biological model, there are still many unknown
parameters in the model, and most of these parameters are
related to the biological characteristics of the human body.
Therefore, these parameters need to be identified before the
grasping force estimation. To obtain accuracy and stable force
estimation results, the estimation method is proposed as shown
in Fig. 5.

A. Filtering and Feature Extraction of Raw EMG Signal
The MYO armband used in this study could obtain the orig-

inal EMG signal on eight electrodes at a sampling frequency
of 200 Hz and send it to the computer via Bluetooth. However,
the original EMG signal contained a considerable amount of
noise, so it was necessary to filter the signal first. The general
commonly used filtering steps are as follows [2], [3], [4], [5].
First, the 4th-order Butterworth high-pass filter (30Hz) were
applied to remove motion artifacts, and then the wave rectifica-
tion and normalization with the peak of maximum voluntary
contraction (MVC) were used for EMG processing. Finally,
the mean absolute value (MAV) feature of EMG signal was
used as the input of reduced-dimensionality model.

During MAV feature extraction require the extraction of a
smooth envelope of the EMG signal. This is usually achieved
by low-pass filtering, which introduces time lags due to phase
distortion. Offline, this error is easily compensated by zero-
phase filtering, however, not suitable for real-time state-space
based myoelectric control. Thus, a standard Kalman filter was
used to extraction the MAV feature of EMG signal [33],
as shown in Fig. 6.

To filter the noise of the i th channel’s EMG signal at
time τ , the model and measurement equations are written in
the following general form:

αi
τ+1 = αi

τ +αi
τ + Gτwτ

zi
τ = αi

τ + vτ , (35)

where x0 ∼ (x̄0, Px0),wτ ∼ (0,Qτ ), vτ ∼ (0, Rτ ).
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Fig. 7. Result of the EMG processing based on the Kalman filter and
low-pass filter during MAV feature extraction.

zi
τ is the rectified EMG signal at time τ of channel i , wτ is

the process noise, and vτ is the measurement noise.
With xτ = [

α1
τ , α

2
τ , . . . , α

i
τ ,α

1
τ ,α

2
τ , . . . ,α

i
τ

]
, the

filtered αi
τ can be acquired from the following updating

equation [27]:

P0 = Px0, x̂0 = x̄0, (36)

The status updating equation is as follows:
P−
τ+1 = Aτ Pτ AT

τ + Gτ QτGT
τ

x̂τ+1 = x̂τ , (37)

The estimated value updating equation is as follows:
x̂τ+1 = x̂−

τ+1 + Lτ+1[zτ+1 − Hτ+1x̂−
τ+1], (38)

The error covariance updating equation is as follows:
Pτ+1 = (I − Lτ+1 Hτ+1)P

−
τ+1, (39)

The Kalman gain updating equation is as follows:
Lτ+1 = P−

τ+1 H T
τ+1(Hτ+1 P−

τ+1 H T
τ+1 + Rτ+1)

−1. (40)

The results of the EMG signal extraction using this method
were compared with the low-pass filter with a cut-off fre-
quency of 2 Hz and the parameters Q and R of the Kalman
filter are set to 0.01 and 2.6 respectively.

Fig. 7 shows that the EMG signal extraction method based
on the Kalman filter could obtain more real-time signals. The
ordinary low-pass filter had a similar processing effect, but it
had a delay of more than 100 ms. Therefore, the EMG signal
extraction method based on the Kalman filter was chosen for
the grasping force estimation and control.

B. Parameter Identification With Particle Swarm
Optimization Algorithm

Since there are some unknown parameters in the model,
and most of them have non-linear relationships, a particle
swarm optimization algorithm was used to tune and optimize
the model parameters. The calculation steps were as follows:

1) The input vector containing the variables defined above
is set as follows:

Parameter = [γ, b, B1, B2, B3,C1,C2,C3, h R1,

h R2, h R3, hV 1, hV 2, hV 3, F0, Fa ].
(41)

2) The following objective function was used to minimize
the error between the estimated grasping force Fp and
the actual grasping force Ft :

J =
√√√√ T∑
τ=1

[
Fp(ατ , Paramter)−Ft(ατ , Paramter)

]2
.

(42)

3) The initial values and ranges were set as follows:
γ ∈ [−3, 0], according to (4);
b ∈ [−2, 0], according to (14);
B1 ∈ [0, 1], B2 ∈ [−2, 0], B3 ∈ [−1, 0], according
to (15);
hV 1, hV 2, hV 3 ∈ [−1, 0], according to (16);
h R1, h R2, h R3 ∈ [−3, 0], according to (17);
C1,C2,C3 ∈ [−20, 20], according to (29);
and the range of forces
F0 ∈ [0, 3], Fa ∈ [0, 10], according a previous
publication [34].

4) Initial particles and velocities were randomly generated
in the interval near the initial value with v ∈ [0.5,−0.5],
and the fitness and optimal particles were calculated.

5) The iterative calculation was performed with the follow-
ing steps:
Particle speed updating, particle population updating,
fitness updating, selection of the best selection of the
best particle, and repeating of these steps until J ≤ Jmin.

This process was performed offline since there were many
parameters that needed to be identified, and to ensure the
accuracy of the model, the iteration process (5) will be
repeated more than 1000 times in practice. Fortunately, unless
the model was completely invalidated with significant physio-
logical changes, this process would only need to be performed
once a new person participated in the experiment.

V. GRASPING FORCE ESTIMATION EXPERIMENT

DESIGN AND VERIFICATION

To verify the accuracy and long-term stability of the skeletal
muscle reduced-dimensionality model proposed in this article,
a total of 150 experiments were performed on different 10 days
during one month with an interval of 2-14 days by three
participants. The raw data of the surface EMG signal was
collected by the MYO armband from Thalmic Labs and sent
to the computer wirelessly. When using the model-based force
estimation method, the cutoff frequency generally does not
exceed 200Hz [4], [16]. Therefore, the 200Hz sampling rate
was used for this method.

The grasping force data was obtained by designing
a spherical grasped sample, which contained a built-in
JHBM-H3 plane force sensor that could measure a grasping
force of 0–50 N. As shown in Fig. 8 and Fig. 9, the spherical
grasped sample consists of two plastic hemispheres and is
connected by a force sensor and a few of screws in the middle.
The grasping force signal was collected by an NI USB-6211
multifunction input/output device, and the sampling frequency
was the same as that of the armband.

A. Offline Full-Parameter Identification Experiment
Based on Particle Swarm Optimization Algorithm

The parameters were identified and optimized using the par-
ticle swarm optimization algorithm with the experimental data.
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Fig. 8. Grasping force estimation experimental process and equipment.

Fig. 9. Structure of the spherical grasped sample with force sensor.

Due to a large amount of identification data and parameters,
this process must generally be performed offline. The first part
of the experimental process was as follows:

1) Alcohol was used to wipe the location where the arm-
band was worn to ensure good contact between the
armband and the skin. The armband was then put on the
arm close to the elbow joint, and the sampling procedure
was started.

2) The spherical sensor was held, and then the arm muscles
were relaxed until the amplitudes of the EMG signal
fluctuations were small and stable.

3) The signal acquisition was started. During the exper-
iment, a grasping force was applied to the grasped
sample. Five kinds of grasping tasks were performed:
linear increase (5 s), step increase with three stages (5 s),
intermittent increase and decrease (5 s), continuous
increase and decrease (5 s), and rapid increase and
decrease (5 s).

4) The duration of one set of experiments was 25–30 s, and
the parameters were identified and optimized using the
particle swarm optimization algorithm with the experi-
mental data.

The grasping force estimation performance was evalu-
ated by the mean absolute error (MAE), mean square error
(MSE), coefficient of determination (R2) and correlation coef-
ficient (CC), defined as follows:

M AE = 1

N

N∑
i

|xi − yi |, (43)

M SE = 1

N

N∑
i

(xi − yi )
2, (44)

TABLE I
EVALUATION RESULTS OF PARAMETER IDENTIFICATION

TABLE II
THE CC VALUE OF PARAMETER IDENTIFICATION WITH

FIVE KINDS OF GRASPING EXPERIMENTS

R2 = 1 − 1

N

N∑
i
(xi − yi )

2

N∑
i
(xi − x̄)2

, (45)

CC =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑

i=1
(xi − x̄)2

N∑
i=1

(yi − ȳ)2

. (46)

where xi represents the measured forces, yi represents the
estimated forces, x̃ represents the average of the measured
forces, and N is the number of samples.

For each participant, the method uses 30s of valid data
collected on the first day for parameter identification, about
6000 sample data. The offline identification results are shown
in Table I, Table II and Fig. 10. Results show that the identi-
fication results are accurate for different grasping tasks. The
CC value is high enough and change between 0.9573-0.9881.

B. Huxley-Type Musculoskeletal-Model-Based Grasping
Force Estimation Experiment

In this part of the experiment, parameter identification was
not performed. The purpose of the experiment was mainly to
verify the stability and accuracy of the model.

Using the model given by (30)–(32), the grasping force
predicted by the model could be compared with the measured
grasping force. The following steps were involved in the
experimental procedure:

1. The armband was worn again after a period of time, and
steps 1–3 of the first part experimental process were
repeated. At the same time, the grasping forces were
estimated in LABVIEW with the collected signals by
the method proposed in Section IV.

2. The duration of one set of experiments was 25 s, and a
total of ten sets of experiments were carried out.

To verify the long-term validity of the model, the above
experimental procedure was repeated 150 times during a
month with an interval of 2-14 days by three participants.
The experimental results of the grasping force estimation are
shown in Fig. 11.
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Fig. 10. Parameter identification results with particle swarm optimization algorithm on day 1 with five kinds of grasping tasks.

Fig. 11. Grasping force estimation result based on reduced Huxley-type musculoskeletal model on day 31 with five kinds of grasping tasks.

Fig. 12. The testing performance of CC values for the first participant
with five kinds of grasping force estimated tasks on different five days.

TABLE III
AVERAGE EVALUATION RESULTS OF THE FIRST PARTICIPANT

WITH THE FORCE ESTIMATED EXPERIMENTS

The five kinds of grasping tasks results of the first partici-
pant in a month are shown in Fig. 12. The minimum CC value
appears at task4 on the 10th day is 0.9585, and the maximum
CC value appears at task5 on the 22nd day is 0.983. Across
all days, task5 has the highest average accuracy of 0.9777 and
task4 has the lowest average accuracy of 0.9642. In terms
of daily performance, the daily CC average values are stable
changing from 0.968 to 0.9742.

The overall evaluation results of the first participant in a
month are shown in Table III. For participant 1, the average
maximum grasping force was 36.598 N, the average MAE

Fig. 13. The testing performance of CC values for the second participant
with five kinds of grasping force estimated tasks on different five days.

was 1.776, the average MSE was 7.264, and the average R2

was 93.010%. According to the value of the maximum grasp-
ing force amplitude, the model had high accuracy in the range
of grasping forces of 0–38 N.

The five kinds of grasping tasks results of the second
participant in a month are shown in Fig. 13. The minimum
CC value appears at task4 on the 10th day is 0.9547, and
the maximum CC value appears at task1 on the 22nd day
is 0.9887.

Across all days, task1 has the highest average accuracy
of 0.9833 and task4 has the lowest average accuracy of 0.9611.
In terms of daily performance, the daily CC average values are
stable changing from 0.971 to 0.9787.

The evaluation results of the second participant over a
month are shown in Table IV. For participant 2, the average
maximum grasping force was 32.276 N, the average MAE
was 1.722, the average MSE was 6.810, and the average R2

was 93.180%. According to the value of the maximum grasp-
ing force amplitude, the model had high accuracy in the
range of grasping forces of 0–34 N. When the grasping
force reached 36 N, the accuracy decreased, but it was still
above 90%.

The five kinds of grasping tasks results of the first partici-
pant in a month are shown in Fig. 14. The minimum CC value
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TABLE IV
AVERAGE EVALUATION RESULTS OF THE SECOND PARTICIPANT

WITH THE FORCE ESTIMATION EXPERIMENTS

Fig. 14. The testing performance of CC values for the third participant
with five kinds of grasping force estimated tasks on different five days.

TABLE V
AVERAGE EVALUATION RESULTS OF THE THIRD PARTICIPANT

WITH THE FORCE ESTIMATION EXPERIMENTS

appears at task3 on the 1th day is 0.9538, and the maximum
CC value appears at task5 on the 22nd day is 0.9827. Across
all days, task1 has the highest average accuracy of 0.9742 and
task3 has the lowest average accuracy of 0.9663. In terms
of daily performance, the daily CC average values are stable
changing from 0.9652 to 0.9788.

The evaluation results of the third participant over a month
are shown in Table V. For participant 3, the average maximum
grasping force was 27.162 N, the average MAE was 1.548, the
average MSE was 5.174, and the average R2 was 92.754%.
The grasping force of the test participant was relatively small
overall, but the model also had a high accuracy within 0–32 N.

In a conclusion, task1 has a high accuracy, with an overall
average of 0.9779, and task4 has the lowest accuracy, with
an overall average of 0.9648 which is accuracy enough.
In addition, with the longest interval of same tasks for
each participant, the accuracy just decreased by 1.5%, 2.24%
and 1.87%, respectively. The MAE and MSE values were
relatively small, with average mean values of 1.682 and
6.416, respectively, and the recognition accuracy of the three
participants exceeded 90%. The grip strengths of the three
participants were different, and the recognition range of the

grip strength could cover the normal range of grasping force.
In addition, after the model was trained on the first day, there
was no significant decline in the estimation during the test
over the next month. This means that long-term stability was
obtained.

Compared with the continuous force estimation realized by
support vector regression (SVR) and multi-modal feature com-
bination proposed by Mao et al [15], the proposed grasping
force estimation method can improve the performance of the
CC value by 1.93% and required less training set. On the other
hand, compared with a 5-day repeatability experiment showed
a 4.1% decrease of classification accuracy per day [35],
this method has no significant decline during 30 days with
the largest variation of 2.69% under same task. In general,
the proposed method with dimensionality reduction model
showed more accuracy and stable continuous force estimation
performance compared with previous studies.

VI. DISCUSSION

The Huxley-type musculoskeletal muscle model is based on
a nonlinear partial differential equation, which belongs to an
infinite-dimensional system with space and time dependence.
These characteristics make the differential equation difficult
to solve, which limits the application of the model. To solve
this problem, the spectral method and the balanced trunca-
tion method were used to reduce the dimensionality of the
model, and theory was involved for the parameter identifi-
cation, realizing accurate and stable grasping force estimates
finally. The innovation and advantages of this method are as
follows:

(1) An efficient force estimation method based on sEMG
signals was obtained by reducing the dimensionality
of the Huxley-type muscle model. As shown in the
experiments, after being trained on the first day, the
accuracy of the model was ensured for the next month.

(2) Due to the biological principles of this model and the
physical meanings of the parameters, it is convenient to
modify the model to improve the accuracy and avoid
overfitting by parameter correction.

(3) By using the Kalman filtering, the real-time applicability
and practicality of the model were further improved,
which made it more suitable for real-time force control
and muscle state monitoring based on electromyography,
with wide application prospects.

In addition, problems and future improvements of this
method are described as follows:

(1) The influence of the shape of the object, the kinemat-
ics, and the dynamics of the skeleton were ignored
in the model. Therefore, to achieve a more accurate
estimation, the kinematics and dynamics parameters of
the participants’ hands need to be measured and tuned.
However, for the application of muscle prosthetics, these
characteristics can be replaced by the parameters of the
prosthesis, which are easy to obtain.

(2) A more general skeletal muscle model is used in this
method, which not only ensures the stability and accu-
racy of the force estimation but also inherits the model’s
errors. To further improve the accuracy, a more complex
muscle model can be introduced that also requires
re-balancing between the model complexity and accu-
racy. However, the accuracy and stability of the
model are sufficient for most applications based on
myoelectricity.
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As a result, this method has good application prospects for
myoelectric force control and provides a potential method for
human grasping force estimation.

VII. CONCLUSION

In this study, a reduced Huxley-type musculoskeletal model,
featuring with low complexity, was proposed to estimate
the grasping force, which achieves high recognition stabil-
ity and real-time estimation. Different types of experiments
were carried out to verify the effectiveness and stability of
the method proposed. The experimental results showed that
the estimated force based on the model after dimensionality
reduction matched the actual measured grasping force closely,
with a relatively stable estimation result after a long-time
test. Despite owning accurate estimation results and reduced
computational cost, the model after dimensionality reduction is
still a third-order ordinary differential equation with a number
of undetermined parameters. In the future, we will improve
this force estimation method by further reduce the model
dimensionality and decrease the undetermined parameters,
making it more suitable for practical applications.
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