
Release and Testing Stop Time of a
Software: A New Insight

P.K. Kapur" A.K. Shrivastava2

I Center for Interdisciplinary Research, Amity University, Naida, u.P. , India
2 Department of Operational Research, University of Delhi, Delhi, India

Ipkkapur I@gmail.com ,2 kavinashI987@gmail.com

Abstract: Testing is a vital phase in the software development life

cycle. But, the way it is performed, varies from one organization
to another. One of the prime concern in softwa re indus try is to

determine the optima l dura tion of tes ting. Both researchers as well

as software developers have been working towards solving this

issue since long. The duration of testing is directly proportional

to its reliability level but prolonged testing costs a lot in terms of

higher testing and market opportunity cost. Therefore

determination of optimal testing time has become an important

optimization problem in the field of software development. As a

common industrial practice, software release also marks the end

of testing phase of a software. But, this often accompanies issues

like delayed release in case the testing is continued to ensure a

high reliability level or a low reliability level in case the software

is released early. To counter these problems, now a days testing

is divided into two phases i.e. pre-release and post release testing

phase. During post release testing phase organization aims at

treating remaining software faults and subsequently enhance

product experience for customers. In this paper we present a

generalized approach of optimal scheduling policy to determine

the optimal release and testing stop time of a software while

minimizing overall testing cost. In our proposed work, software

testing & operational phases are governed by different

distribution functions in distinct phases, i.e. in prerelease, post

release phase (before and after testing stop time) in our proposed

cost model. Numerical example is given to support our findings

with the help of a real life software failure data set of Tandem

Computers.

Keywords: Software Reliability, Release, Testing Stop Time

I. INTRODUCTION

During the software development process, there are various
questions on which management have to take decision. One
such crucial question is deciding onto the release policies and
the optimal time to stop software testing. Release of software
is dependent on testing phase as, software testing points out
the defects that are embedded during the development cycle of
a software. Rigorous testing ensures software reliability and
hence increases customer's confidence in the product. Testing
plays an important role in determination of software release
time. Management is dependent upon its testing team which is
responsible for fmding bugs in the software and their removal
before the software is unveiled in the market. Hence, before
software release it should be tested well so that it satisfies
users requirement as well as management expectations.

978-1-4673-7231-2/15/$31.00 ©2015 IEEE

For this software is tested by a testing team which is not the
part of software development. They test all the software from
all aspects so that software works properly in any
circumstances. Testers use the software like users do in the
field to check if there are any unexpected results. This testing
is done to ensure the quality of the software product in the
operational phase.

There are several reasons which clearly tell us as why
Software testing is important. Some of the major reasons are
listed below:

1. Software testing IS really required to point out the
defects and errors that were made during the
development phases.

2. It's essential since it makes sure of the Customer's
reliability and their satisfaction in the application.

3. It is very important to ensure the Quality of the product.
Quality product delivered to the customers helps in
gaining their confidence.

4. Testing is necessary in order to provide the facilities to
the customers like the delivery of high quality product or
software application which requires lower maintenance
cost and hence results into more accurate, consistent and
reliable results.

5. Testing is required for an effective performance of
software application or product.

6. It's important to ensure that the application should not
result into any failures because it can be very expensive
in the future or in the later stages of the development.

7. It's required to stay in the business.

Moreover, many bugs that are found during the testing phase
can be used as ideas for feature enhancement. Errors found in
the earlier stages of the development reduce the cost of
production. Hence it is very important to fmd the errors as
early as possible. This could be done by reviewing the
specification documents or by walkthrough. The downward
flow of the defect will increase the cost of production. Hence
testing can prove to be corrective as well as innovative phase
of a software lifecycle.

But prolonged testing to fmd all the bugs in the software is not
feasible in the current market situation. As spending time on
testing guarantee software reliability but on the other hand it
costs a lot to the fIrm in terms of market opportunity cost and
due to market competition. Hence there is a trade-off between
minimizing cost and at the same time providing reliable
software to the users.

In the existing literature on software testing, it was assumed
that testing stops with release of the software. But, this process
can be further improved by releasing the software earlier to
get the advantage of market opportunity cost and the continue
testing even after software release. Market opportunity cost is
the benefIt in terms of monetary value, market capture, sales
etc. which the fIrm could have received by releasing the
software earlier. But early release of the software may land in
low software reliability which can cause more number of
failures in fIeld and hence goodwill loss fro fIrm. Hence
testing after release is also important to ensure reliability in
fIeld. On the other hand, a late release leads to consumption of
more resources and hence increase the production cost.
Moreover, late release might end up in the loss of market
opportunities. Therefore the decision of release and testing
stop time has utmost importance from firm's point of view.

In current industry practices, testing after release for fIxing the
bug by patch release is in trend. Patching is a common
phenomenon now that is followed by almost all the software
fIrms. A patch, sometimes also called ajix, is a small program
of software that is used to correct errors that successfully
deceived the testing team during pre-release testing phase of a
software. Patches are used to update our software and helps to
protect the software from unwanted or unexpected functioning
which can cause failure. These patches serve a number of
different functions like fIxing security holes, optimizing the
utilization of resources in the software system, add newer and
more secure features, remove old and unprotected features,
update drivers to increase software effIciency and many more.

Now, the important question that strikes the mind of every
product manager is how to decide the optimal periods of these
phases i.e. release and testing stop time of software. Figure 1
and 2 shows the existing and current situations of software
release and testing stop time problem. In fIgure 1 software
release time coincides with the testing stop time of software.
Whereas fIgure 2 shows the current practices involved in
software industry, in which software is released earlier and
testing continues after release and stops at a point where
testing team is sure for the software reliability.

Fig. 1 Optimal Release Time Without Patching

Fig. 2 Optimal Release Time With Patching

In the second strategy errors encountered are corrected and
bundled as a software patch which is presented to the user.
The idea of early release of software and to continue testing
after release is to increase their testing base from a limited
nwnber of testers to signifIcantly large number of testers
which contributes to customer side testing of the software. To
fInd the solution of above mentioned release time problem
mathematical models are used. These models help in the
process of making these crucial decisions for the organization.
Software Reliability Growth Models (SRGMs) have been put
to use in order to formulate and solve many optimization
problems in literature. These models help to determine the
reliability growth by testing with time.

Since the software release time is such a crucial decision to
make, the topic has been extensively studied in the past two
decades and a nwnber of optimal release policies have been
proposed in the literature [1,2,3,11,12,26]. There are many
attributes on which a fIrm has to think of before making the
fmal releasing a software. As, shipping the software too early
might result in pendency of faults in the software and on the
other hand, if testing proceeds for a very long time, the surety
of reliable product increases but the cost of testing, contract
penalty and loss of market initiative may constitute an even
larger portion of the cost of late delivery. Hence, both,
economic factors and technical factors have to be taken care of
while deciding the optimal release time of the software
product. Due to the complexity of software architectures, it is
becoming increasingly diffIcult for the software developers to
produce reliable systems effIciently. There are many examples
in the existing literature that shows the importance of working
on software reliability and its failure. Some recent major
computer system failures caused by software bugs are as
follows [6]:

a)

b)

In early 2014, a Swiss bank found itself in huge trouble
when their customers reported of receiving statements
containing details for other bank clients along with their
own statement due to a software glitch which led to
issuing of bank statements addressed to the wrong
people.

Thousands of law students across United States poured
their efforts during an exam only to fmd that the
software denied accepting their submissions. This
happened during August 2014 which took a turmoil both
on the students and organizing council.

2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 2-4, 2015,
AlIT, Amity University Uttar Pradesh, Noida, India

c) In late 2014, Amazon faced a huge setback of $100,000
due to a bug in its price comparison software which
landed up as a festive bonanza for buyers and they
picked up items as expensive as mobile phones for a
single penny.

Practically it is impossible for a testing team to come out with
an error free software. Moreover, the smallest of bug can drive
an organization towards great losses. The best thing an
organization can do in order to minimize the associated risk is
by proper scheduling of different prerelease and post release
phases.

Several researchers have proposed quantitative methods to
estimate the number of defects and their distribution in a
software [11,19,23,26]. These models known as Software
Reliability Growth Models (SRGMs) are used to frame several
software related optimization problems. SRGMs provide
mathematical relationship between various attributes that
affect the process of testing. The simplest SRGM was
suggested by Okumoto and Goel is based on exponential
distribution function [5]. They considered an unconstrained
cost objective in the first method and an unconstrained
reliability objective in another. Dohi proposed optimal
software release policies with debugging time lag[I]. Yamada
and Osaki [28] examined NHPP based release time problems
with cost minimization and reliability maximization objective.
Kapur and Garg [16] discussed testing effort based with
release policies with aspiration level of failure intensity. They
also introduced the concept of penalty cost in modeling
releasing time problem of software [17]. Huang and Lyu [7,8]
discussed release policies considering the effect of testing
effort expenditure. Yun and Bai [30] proposed that software
release time problems assuming software life cycle to be
random. Later Kapur [14] developed release time problem to
minimize cost of a software having random life cycle, subject
to achieve a desired level of intensity assuming. Further,
Kapur and Garg [15] developed a software cost model
incorporating the cost of dependent faults along with
independent faults. Pham and Zhang [27] incorporated
warranty and risk cost to the traditional cost function. Later on
some researchers worked on bi-criterion release time problem,
Such as Kapur [13] developed a multi-objective optimization
problem for determination of release time.

Today, no software ends up with a single release. Multiple
upgradations of software is a general phenomenon. Many
researchers [18,20, 24] analyzed this practice and worked to
model this phenomenon mathematically. They worked
towards finding the optimal release time of multi up-graded
software. Kapur [20,21] proposed a cost model for removing
the faults when there are successive releases of the software.
As a general practice in today's software industry, software
fixes are made available to the users in between two
successive releases to ensure a bug free operation of the
software. These fixes are remedial programs for errors
detected and corrected during post release testing phase of a
software. They are made available to the users as patches. In

this paper, we analyzed the idea of patching and related
policies as a software developer and aimed at minimizing the
cost at the vendor side. As per the concept of patching, a
software can be released before testing is complete (as
investigated using earlier NHPP based software reliability
models). This idea is further supported by Jiang and Sarkar
[9]. Following this concept, there is a time period when both
developer and users simultaneously perform the task of testing
the software. Rest of the article is organized as follows:
section-II consists of notations, assumptions along with the
modeling framework for the cost without and with patching.
Numerical analysis of the proposed mathematical cost is
supplemented in section-III. Finally Conclusion is drawn in
section-IV.

II. MODELING FRAMEWORK

A. Notations

m(t) The mean value function or the expected number of faults
removed by time t.

a Constant, representing the initial number of faults lying
dormant in the software when the testing starts.

m(I;J Number of faults removed during the lifecycle of the
software

b Failure detection/correction rate.

F(t) Distribution functions for fault correction.

h(t) Time dependent fault correction rate per remaining faults.

r Release Time of the software

T Testing stop time of the software

c, Cost of testing per unit time

c2 Market opportunity cost

C3 Cost of debugging a fault by the testers before the release
of the software

c. Cost of debugging a fault by the testers after the release
of the software (i.e in operational phase) when it is being
reported by one of the users

cs Cost of debugging a fault by the testing team after release
of the software when the failure is detected by the testing
team

c6 Cost of debugging a fault reported by user after testing
stop time

B. Assumptions
The proposed model IS based upon the following basic
assumptions:

l. Failure observation / fault removal phenomenon is
modeled by NHPP.

2. Software is subject to failures during execution caused
by faults remaining in the software.

3. Each time a failure is observed, an immediate debugging
effort takes place to fmd the cause of the failure in order
to remove it.

4. Failure rate is equally affected by all the faults remaining
in the software.

5. All faults are removed perfectly.

6. Total numbers of faults lying dormant in the software are
finite.

7. Lifecycle of the software is finite.

8. Cost of patching is negligible.

Market opportunity cost which is assumed to be
monotonically increasing, twice continuously differentiable
convex function of 7 . Since the qualitative conclusion of the
study is not much affected by the actual functional form
market opportunity cost therefore we will use the form used
by Jiang and Sarkar [9].

Using above assumptions and hazard rate approach for
deriving the mean value function of cumulative number of
faults removed, we have:

dm(t)
=

f(t)
(a-m(t))

dt I-F(t)
(1)

Where h(t) = f(t)
is the time dependent fault correction

1-F(t)
rate per remaining faults.

Solving equation (1) we get

m(t)=a.F(t) (2)

Now by taking different distribution function we get different
mean value functions.

A. Cost Model Without Patching
In the cost models considered so far, the release time of a
software marks the end of testing phase and idea of patching is

not considered. Going by the mathematical notations, 7* = T* .
Hence there are two phase i.e [0,7]and[7,1;cl.Also in the

existing literature we assume that testing and operational
phases are governed by the same distribution function. But in
the cost model proposed below we have taken different
distribution function for testing and operational phases which
is more practical due to several reasons viz. testing team may
carry on the task of testing in pre and post release testing
phases with different priorities, objectives and experience
level.
In the first phase [0,7] the total number of faults removed by

the testing team is m(7) = a.F; (7) (3)

Cost incurred in this phase is given by C3 .m(7)

Where F; (7) is the rate by which the faults are removed from

the software by the testing team in the interval [0,7] .

In the second phase [7, T;c] researchers assumed that all the

remaining faults in the software are reported from the software
users during its lifecycle are removed by the testing team.
Hence the total number of faults removed by the testing team
in the second phase is given by

m(T;c -7) = a(1-F;(7)).F;(T;c -7) (4)

Where F2 (T;c -7) is the rate by which the faults are removed

from the software by the users in operational phase [7, T;cl .

Cost incurred in this phase is given by c4.m(T;c -7)

Total cost incurred in this case when patching IS not
considered is given by:

(5)

Where 72 is the functional form of market opportunity cost
used by Jiang and Sarkar [9].

B. Cost Model With Patching

In this case, lifecycle of the software is divided into three

phases viz. [0,7],[7,T]and[T,T;cl.

Phasel: [0,7]
In this phase testing team is working to detect/correct
failure/fault and the total number of faults removed in this
interval is given by

m(7) = a.F;(7) (6)

So, the expenses in this phase are only due to tester and is

given by c3 ·m(7)

Where F; (7) is the fault removal rate in the interval [0, r] .
Phase 2 : [r,T]

In this phase there are two testing groups working
simultaneously i.e. testers and users. However, both of them
are expected to detect the bugs at a different rate owing to
different intensity and efficiency of testing of these two
groups. In addition, the sizes of the both the groups (testers
and users) are also different. Intensity of testing (usage) refers
to the average amount of time spent on testing in one day.
Since the purpose of testing team is to find bugs, so they are
continuously work on the software to detect maximum number
of bugs before testing stops. On the other hand, software users
spend only limited amount of time on on the software. In other
words users spend considerably less amount of time as
compared to testers. Thus, both these teams differ in their
testing intensities. Efficiency of testing refers to the measure
of effective time spent in detecting errors. When the same
amount of time is spent in professional testing and customer
usage, we expect that a bug is more likely to be detected by a

2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 2-4, 2015,
AlIT, Amity University Uttar Pradesh, Noida, India

dedicated member of testing team than by a customer. This is
due to the availability of better skills, tools and professional
training to dedicated testers. Also prior to the software release,
these software testers have already spent a significant amount
of time on failure detection and removal of its cause.
Therefore rate of failure detection with normal users will be
less as compared to dedicated testers.

Failure observation rate in this phase will be higher as in the
earlier phase, i.e. before the software release time r , only
testing team was involved in testing for detection of failure
and correction of fault, but now after software release, testing
team and users both are involved in the task of failure
detection in the software. The total number of faults removed
in this phase is given by :

T-r T-r
m(T-r)=(a-m(r»· J F2(X).J,(x)dx+(a-m(r». J F3(X)'J,(x)dx

o 0

=m'(T-r)+m"(T-r) (7)

Where F(t) = 1- F(t) and
T-,

m'(T-r)=(a-m(r»· f F2(X)'h(x)dx represents the total

number of faults removed by the testing team when failure is
reported by customers end and

T-r
m"(T-r)=(a-m(r»· f F3(X)'!2(X)dx represents the total

number of faults removed by the testing team in the interval

[r,T] . Also (a-m (r)) represents the remaining number of

faults after r and F2(T -r)&F;(T -r) are the failure

detection rates of the two independent groups (testers and
users) involved in detection of failure in the interval [r,T] .

Cost incurred in this

c4.m'(T -r)+cs.m"(T -r)

Phase 3 : [T, 'I;cl

phase IS given by

Now, in this phase, only users are involved in the detection of
failure and report it to the software testers.

Total number of faults removal in this phase is given by:

where

(a-m(r)){ 1 -(T F2(x), J;(x)dx+ T F3(x), J;(x)dx) 1
denotes the remaining number of faults after the testing stop
time T and � ('I;c -T) denotes the rate by which faults are

removed in the third phase.

Cost incurred in this phase is given by c6.m('I;c -T)

Total cost in the case where patching is considered is given by

C(r,T) = cl.r + c2.r2 + c3.m(r) +

c4·m'(T - r) + cs.m"(T - r) + c6.m(T;c - T)
(9)

C. Objective
In this paper, our motive is to determine the optimal release
and testing stop time while minimizing the total expected cost
when patching is considered. The objective function in both
the cases is given below in (PI) and (P2) respectively.

1) Without Patching

Min C(1') = cl.1'+c2.1'2 +c3'm(1')+c4.m(I;c -1')

With Patching

MinC(r,T) =c\.r+c2.r
2
+c3.m(r)+

c4·m'(T -r) +cs.m"(T -r) + c6·m('I;c -T)

III. NUMERICAL ILLUSTRATION

For illustration purpose and also for the sake of simplicity we
have taken exponential distribution function in this paper for

fault detection/correction rate i.e. F(t) = l_e-bf • Further we

have considered that testing and operational phase are
governed by the same distribution function i.e.

b\ = b2 = b(say). Also by the argument given in section II let

b3 = rb be the rate by which users are detecting the failure.

Where r is the ratio of fault detection rate under customers'
usage with respect to tester's testing in the second phase. Also

b4 = sb where s is the ratio of fault detection rate under

customers' usage with respect to testers' testing in the third
phase. Note that s � r due to the fact that in third phase users
base is increased hence the chance of detecting a failure in this
phase is more as compared to the previous phase.

Hence F;,F;,F;and�in (6), (7) and (8) are given by

1'; (r) = a.(l-e-br) F2 (T -r) = 1-e -b-(T-r) ,

,F3(T -r) = l_e-rb-(T-r) and �('I;c -T) = l_e-sb(1i,-T)

Substituting the values of F;, F;, F; and � in equation (6), (7)

and (8) we get

m(1') =a.F;(1') =a.(1-e-b,) (10)

meT -r) = (a -m(r))· (1-(1-F2(T -r))· (1-F3(T -r)))

= (a -m(r))· (1-F2(T -r)· F3(T -r))

(11)

- - rb
m'(T -r) = (a-m(r))· (1-F2(T -r)· F;(T -r)).

b+ rb

(12)

- - b
m"(T -r) = (a-m(r))· (1-F2(T -r)· F;(T -r)).

b + rb

(13)

m(r;c -T) = (a-m(r)).(1-(1-F;(T -r).F;(T -r)))·�(r;c -T)

= a.e-br .e-b(1+rXT-r) .(1-e-sb(1ic-T)) (14)

To fmd the optimal release time and testing stop time in both
the cases of without and with patching is considered suppose

r = 0.4 , s = 0.5 ,r;c = 100 ,c1 = 300 , c2 = 20 ,c3 = 100 ,

c4 = 500 ,c5 = 100 ,c6 = 500 .Note that a = m(r;J .Also the

parameters of the above G-O model are estimated using
Statistical Package for Social Sciences (SPSS) on Tandem
data for fIrst release [28].First release of tandem data consists
of 100 faults which were found during the testing of 20 weeks.

The parameter estimates and R2 values obtained using non
linear regression method for the above SRGM G-O model are
given in table 1.

TABLE 1: Parameter Estimates

1 :083

Using the above values in the cost function and optimizing it
by using maple software we get

Fig. 3. Graph of cost function without patching

r* =T* = 17.59,c*(r) =36574.34 for the case of without

patching and rp* =1O.67,�)* = 24.55 and c,(r,T) =31600.07
for the case of with patching. As evident from the above
results that optimal release time in the case when patching is
considered is earlier than the testing stop time when patching

is not considered i.e. rp' < r * and optimal testing stop time

Tp * is later than the T* optimal testing stop time when

patching is not considered. Also there is a signifIcant amount
(13.6%) of reduction in the cost when patching is considered.
This shows that our proposed framework is benefIcial to the
fIrm in terms of cost reduction. Figure 3 and 4 represents the
graph of cost function for without and with patching
respectively.

Fig. 4. Graph of cost function with patching

IV. CONCLUSION

Now a day's patch release has become an integral part of
software development strategies. Vendors frequently release
patches for fIxing bugs and functional updates during post
release testing phase of the software. Numerical analysis
included in the paper shows that if a fIrm is providing
software patches, it should release the software before its
scheduled release time (without patching) and can opt for post
release testing; which leads to signifIcant decrease in the
software testing cost thus making it more profItable for the
organization. In future we can extend our model to fInd
optimal release and testing stop time under reliability and
budgetary constraints.

REFERENCES

[I] Dohi T., Kaio N. "Osaki S. "Optimal Software Release Policies
with Debugging Time Lag" Published in International Journal of
Reliability, Quality and Safety Engineering Volume 04, Issue
03, September 1997_

[2] Dalal, S.R. & Mallows, c.L., "When should one stop testing
software?" Journal of the American Statistical Association, 83,
872-879 (1988).

[3] Ehrlich, W., B. Prasanna, 1. Statmpfel, & J. Wu, , "Determining
the cost of a stop-test decision", IEEE Transactions on
reliability, 28(3) , (1993).

[4] Goel, A.L., Okumoto, K., "Time dependent error detection rate
model for software reliability and other performance measures",
IEEE Transaction Reliability, R-28(3), 206-211(1979).

[5] Okumoto, K. & Goel, A. L. (1980), "Optimum Release Time for
Software Systems Based on Reliability and Coat Criteria",
Journal of system Software, 1, 315-318

(1)(). (1).
1

b b T r
a e e

r

      


(1)() 1

. (1).
1

b b Ta e e
r

      


2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sep. 2-4, 2015,
AlIT, Amity University Uttar Pradesh, Noida, India

[6] Hower, R., "What are some recent major computer system
failures caused by software bugs?",
http://www.softwareqatest.comlqatfaql.html. (February 2015).

[7] Huang C. Y., "Cost-reliability-optimal release policy for
software reliability models incorporating improvements in
testing efficiency", Journal of system Software, 77, 139-
155(2005).

[8] Huang C. Y. & Lyu, M. R., "Optimal Release Time for Software
Systems considering Cost, Testing-Effort and Test Efficiency,
IEEE transactions on Reliability, 54(4), 583-591(2005).

[9] Huang C. Y., Kuo, S.Y. & Lyu, M. R., " Optimal Software
Release Policy based on Cost and Reliability with Testing
Efficiency", In: Proceedings of 23rd IEEE annual international
computer software and applications conference, Phoenix, AZ,
468-473 (1999).

[10] Jiang, S. & Sarkar, S., "Optimal Software Release Time with
Patching considered", in Proc. 13th Annual Workshop
Information technologies and Systems, Seattle, 61-66, (2003).

[II] Kapur P.K., Pham H., Gupta A, Jha P.c., "Software Reliability
assessment with OR application", Springer, Berlin (2011).

[12] Kapur P.K., Garg R.B., Kumar S., "Contribution to hardware
and software reliability", World Scientific publishing Co. Pvt.
Ltd., Singapore, 1999 ..

[13] Kapur, P.K., Agarwal, S. & Garg, R. B., , "Bi-criterion Release
Policy for Exponential Software Reliability Growth Models",
Recherche Operationanelle I Operational Research, 28, 165-180,
(1994).

[14] Kapur, P.K., Garg, R. B. & Bhalla, V. K., , "Release Policy with
Random Software Life Cycle and Penalty Cost", Microelectron
Reliability, 33(1), 7-12, (1993).

[15] Kapur, P.K. & Garg, R.B., "A Software Reliability Growth
Model for an Error Removal Phenomenon", Software Reliability
Journal, 291-294, (1992).

[16] Kapur, P.K. & Garg, R. B., "Optimal Software Release policies
for Software Systems with testing Effort", International Journal
System Science, 22(9), 1563-1571, (1991).

[17] Kapur, P.K. & Garg, R. B., "Cost-Reliability Optimum Release
Policies for Software System under Penalty Cost", International
Journal System Science, 20, 2547-2562, (1989).

[18] P.K. Kapur, H.Pham, Anu G. Aggarwal, Gurjeet Kaur, "Two
dimensional multi-release software reliability modelling and
optimal release planning" IEEE Tra ns on Relia bility, Vol. 61
(3), pp. 758-768,2012.

[19] Kapur P.K., Pham H., Anand S. and Yadav K., "A unified
approach for developing software reliability growth models in
the presence of imperfect debugging and error generation
reliability," IEEE Transactions on Reliability, vol. 60, no. I, pp.
331 - 340, 2011.

[20] Kapur, P. K., Sachdeva, N., Singh, 1 N. P., "Optimal Cost- A
Criterion to Release Multiple Versions of Software", accepted
for publication in International Journal of Software Assurance,
Engineering and Management, , Volume 5, Issue 2, pp 174-180
June 2014.

[21] Kapur P.K., Pham H., Singh IN.P & Sachdeva N. "When to
stop testing multi up-gradations of software based on cost
criteria" published in International Journal of Systems Science:
Operations & Logistics Volume 1, Issue 2, 2014.

[22] McDaid, K. & Wilson, S.P., "Deciding how long to test
Software", The Statistician, 50(2), 117-134, (2001).

[23] Musa J.D., Iannino A and Okumoto K., Software Reliability:
Measurement, Prediction, Applications, McGraw Hill, 1987.

[24] Ompal Singh, P. K. Kapur, A. K. Shrivastava, Vijay Kumar
"Release time problem with multiple constraints" published in
International Journal of System Assurance Engineering and
Management March, Volume 6, Issue 1, pp 83-91,2015.

[25] Okumoto, K. & Goel, A L., "Optimum Release Time for
Software Systems Based on Reliability and Coat Criteria",
Journal of system Software, I, 315-318,1980.

[26] Pham H., System Software Reliability, Reliability Engineering
Series, Springer, 2006.

[27] Pham, H., Zhang X., (1999), "A software cost model with
warranty and risk costs", IEEE Trans Comp 48(1), 71-75.

[28] Wood, A , "Predicting Software Reliability", IEEE Computers,
11, 69-77, (1996).

[29] Yamada, S. & Osaki, S., "Optimal Software Release Policies
with simultaneous Cost and Reliability Requirements",
European Journal of Operational Research, 31, 46-51, (1987).

[30] Yun, W.Y. & Bai, D.S. , "Optimum Software Release Policy
with Random Life Cycle", IEEE transactions on Reliability,
39(2), 338-353, (1990).

