
 

Abstract—Asynchronous Events (AEs) during mechanical 

ventilation (MV) result in increased work of breathing and 

potential poor patient outcomes. Thus, it is important to 

automate AE detection. In this study, an AE detection method, 

Automated Logging of Inspiratory and Expiratory Non-

synchronized breathing (ALIEN) was developed and compared 

between standard manual detection in 11 MV patients. A total 

of 5701 breaths were analyzed (median [IQR]: 500 [469-573] 

per patient). The Asynchrony Index (AI) was 51% [28-78]%. 

The AE detection yielded sensitivity of 90.3% and specificity of 

88.3%. Automated AE detection methods can potentially 

provide clinicians with real-time information on patient-

ventilator interaction.  

I. INTRODUCTION

Asynchronous events (AEs) occur when a patient’s 
breathing on mechanical ventilation (MV) is not 
synchronized with ventilator support. Frequent occurrence of 
AEs result in poor patient-ventilator interaction, leading to 
an increase in work-of-breathing and potentially other 
adverse effects [1, 2]. These adverse effects include patient 
discomfort, increased need for sedation, increased length of 
MV, and higher mortality [3]. Thus, AE detection in real-
time may be useful as a clinical marker for assessment of 
patient-ventilator interaction, and used as an indication for 
the need to modify ventilation settings, or adjust sedation 
level for better patient-ventilator interaction [4, 5]. 

AEs can occur anytime during partially- or fully- 
controlled ventilation. However, it is more frequent during 
partially assisted modes where the patient is breathing 
spontaneously and the ventilator support is triggered by 
patient respiratory effort [3, 6]. Currently, patient-ventilator 
interaction is assessed using the Asynchrony Index (AI), a 
measure of the AEs as a percentage of the total number of 
breaths (AI = 100% × Number of AE/ total breaths) [6]. 
However, this metric is normally calculated retrospectively 
where clinicians detect AEs by manually inspecting patient 
airway pressure and flow waveforms [2, 3, 6]. This process 
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is onerous and not practical for assessing patient-ventilator 
interaction in real-time. 

Several studies have investigated methods to automate 
AE detection. Gutierrez et al. [7] used spectral analysis of 
the airway flow waveform, but this method focused only on 
the airway flow and not the pressure changes, neglecting the 
mismatching of pressure and flow that defines an AE [8]. 
Sinderby et al. [9] investigated ventilation asynchrony using 
electrical diaphragmatic signals (Eadi). This method has 
shown promising results to detect and minimize AEs, but it 
requires the Eadi signal and thus added invasive sensors and 
cost. Blanch et al. [10] reported a system that detects 
Ineffective Efforts (IEs) with high specificity and sensitivity. 
However, IEs make up only a small portion of all AEs [10] 
and only expiration was considered in this study. Cuvelier et 
al. [11] showed that correlating flow and pressure waveforms 
has the potential to identify IEs at both inspiration and 
expiration. However, it was only verified on a very small 
sample with 56 asynchronous breaths. More testing needs to 
be conducted to verify the findings. Thus, there is a need for 
robust, real-time AE detection method without additional 
invasive measuring tools. In addition, it should be efficient, 
consistent, and objective compared to manual detection. 

This research presents a method to automate AE 
detection and AI estimation. This method is known as the 
Automated Logging of Inspiratory and Expiratory Non-
synchronized breathing (ALIEN). ALIEN monitors the shape 
of the patient’s airway pressure and flow waveform, with 
independent algorithms to classify AEs during inspiration 
and expiration. ALIEN was developed using retrospective 
airway pressure and flow data from MV patients. The 
ALIEN method was compared with conventional manual 
inspection to assess its performance. 

II. METHODS

A. Patients and Ventilator Settings

Retrospective data from 11 MV patients admitted to the
Christchurch Hospital, Intensive Care Unit (ICU) were used 
in this study. Patients were ventilated using Puritan Bennett 
840 ventilators (Covidien, Boulder, CO, USA) with different 
ventilation modes as determined by attending clinicians. 
Ventilation modes included: 1) Bi-Level pressure ventilation 
(BL); 2) Synchronized Intermittent Mandatory Ventilation 
(SIMV); and 3) Assisted Spontaneous Breathing (ASB). For 
each patient, 30 minutes of pressure and flow data were 
analyzed. The use and publication of the data was approved 
by the New Zealand Upper South Regional Ethics 
Committee. 
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B. Automated Asynchrony Event Detection

ALIEN uses a combination of methods to detect
asynchronous breathing using the observed airway pressure 
and flow data. An algorithm-based method detects 
anomalous deflections in the flow and pressure waveforms 
compared to typical waveforms. The statistical method 
detects deviations of breath-specific parameters from a 
patient-specific model. Inspiratory AE detection relies on an 
algorithm-based method, while expiratory AE detection 
combines the algorithmic and statistical methods. Results 
were collated to calculate overall per-patient AI values. 

C. Inspiratory Asynchrony Event Detection

An algorithm is used to detect AEs via gradient sign
changes in airway pressure and flow waveforms. For each 
breath, the pressure and flow are segmented based on the 
sign of their gradient, showing whether the waveform is 
increasing or decreasing. In a synchronized breath, there are 
typically two breath segments during inspiration, consisting 
of a sharp initial increase in flow and pressure, followed by a 
steady decrease as shown in Fig. 1(a) 1st breath. A breath 
with more than 2 segments in either pressure or flow is 
labelled as an AE (Fig. 1(a) Breaths 2 and 3). Fig 1(b) shows 
a graphical representation of the gradient-based 
segmentation method. 

a) 

b) 

Figure 1. (a) Top is the airway pressure, P and bottom is the airway flow, 

Q. The 1st breath from the left is synchronized breath but 2nd and 3rd are 

asynchronous, (b) Gradient-based segmentation method. 

To reduce the effect of noise, segments are discarded if 
their net change in flow (dQ) or pressure (dP) is less than a 
corresponding breath-specific threshold. For deflections in 
flow, the threshold is proportional to the maximum 
inspiratory flow (Qmax,insp) in the breath cycle being 
evaluated. For deflections in pressure, the threshold is 
proportional to the difference between the maximum 
inspiratory pressure and the Positive End-Expiratory 
Pressure (PEEP) (Pmax,insp – PEEP). The resulting inspiratory 
flow and pressure proportionality fractions, KQ,insp and Kp,insp, 

were optimized using Receiver Operator Characteristic 
(ROC) analysis. Equations (1) and (2) define the conditions 
for classifying asynchrony: 

| dQ | ≥ KQ,insp Qmax,insp(n)   (1) 

| dP | ≥ KP,insp (Pmax,insp(n) – PEEP(n))  (2) 

where n is the breath number. If a dQ or dP value within a 
breath satisfies either Equation (1) or (2), it is considered as 
a segment. A breath is labelled as an AE, if it consists of 
more than 2 segments. This method detects double 
triggering, auto triggering, delayed cycling at inspiration, 
periodic breathing, and other types of variance and 
discontinuity, which all are classified as AEs [3]. 

D. Expiratory Asynchrony Event Detection

During expiration, AEs are detected through a
combination of algorithmic and statistical methods. As for 
inspiration, an algorithm detects AEs via unexpected 
gradient sign changes in the flow waveform (dQ) as defined 
by Equation (3), with KQ,exp optimized using ROC. An 
expiratory AE is defined when a breath consists of more than 
2 segments, as calculated using Equation (3). 

| dQ | ≥ KQ,exp Qmax,exp(n) (3) 

In addition, an exponential model is fitted to the 
expiratory flow waveform and 2 metrics associated with this 
curve fit are used to classify AE. The metrics are i) the 
exponential decay time-constant, τ, and ii) the area between 
the model fit curve and the actual expiratory flow, ADiff as 
shown in Fig. 2.  

Figure 2. Expiratory AE detection criteria, i) Exponential decay model fit 

(τ) and ii) difference in area under the curve (ADiff). 

For an asynchronous breath, one or both of these metrics 
(τ or ADiff) will deviate significantly from those obtained for a 
synchronous breath [8]. To calculate the breath-specific 
exponential τ and ADiff, a single compartment lung model was 
used [12]: 

P(t) = Ers∫Q(t) + RrsQ(t) +P0 (4) 

where P is the airway pressure, t is time, Ers is the respiratory 
system elastance, ∫Q(t) is the air leaving the lung, Rrs is the 
respiratory system resistance, Q(t) is the airway flow and P0 
is the offset pressure. During expiration phase, P is 
approximately equal to the P0 yielding: 

Ers∫Q(t) + RrsQ(t) = 0  (5) 

Solving differential equation for Q(t) yielded: 

Q(t) = Q0e ^ (–τ/t)  (6) 

where Q0 is the initial flow, τ = Rrs/Ers, is the time constant. 
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For each breath, τ and ADiff are calculated and compared with 
the median (med) of that metric calculated over 500 breaths. 
If either metric deviates significantly from its median, the 
breath is labelled as an AE. A significant deviation is defined 
with a proportional term (Kτ,exp for τ, and KA,exp for ADiff) that 
were optimized using ROC. Thus, a breath is also labelled as 
an AE if it satisfy any of Equations (7) or (8). 

For the metric τ, an expiratory breath is asynchronous if  

τ(n) > med(τ) + Kτ,expmed(τ)       or 

τ(n) < med(τ) – Kτ,expmed(τ)            (7) 

For the metric ADiff, an expiratory breath is asynchronous if 

ADiff(n) >  med(ADiff) + KA,expmed(ADiff)    or      

ADiff(n) <  med(ADiff) – KA,expmed(ADiff)        (8) 

E. Manual Asynchrony Event Detection 

To validate the automated AE detection methods, 
comparisons were made with manually identified AEs. 
Researchers were guided by clinicians in the classification of 
synchronous and non-synchronous breaths. For each breath, 
researchers manually logged AEs, separating inspiratory and 
expiratory AEs. Exactly 30 minutes of data were manually 
classified for each patient, providing a total of 5701 
classified breaths over the 11 patients. 

III. RESULTS 

ALIEN inspiratory detection had sensitivity = 90.7% and 
specificity = 94.8%, measured across all 5701 breaths. 
ALIEN expiratory detection had sensitivity = 77.0% and 
specificity = 77.7%. Combining both inspiratory and 
expiratory detection, the ALIEN algorithm yielded a total 
sensitivity = 91.2% and a total specificity = 81.7%. Table I 
shows a summary of the optimal AE detection proportional 
constants selected by ROC analysis. The summary of AI and 
AE detection for all 11 patients is shown in Table II. 

TABLE I.  SUMMARY OF AE DETECTION PROPORTION CONSTANT 

 Proportional Constant Optimal Value 

Inspiratory KQ,insp 0.0012 

KP,insp 0.0009 

Expiratory KQ,exp 0.0022 

Kτ,exp 0.8 

KA,exp 1.0 

Fig. 3 shows the agreement between AI determined using 
ALIEN and manual methods during inspiration (Fig. 3(a)) 
and expiration (Fig. 3(b)). There is no significant bias in Fig. 
3(a), indicating that the ALIEN method does not tend to 
over- or under- estimate AI during inspiration. Fig. 3(b) 
shows equivalent data for expiration. The expiratory results 
are not as reliable as during inspiration, with a positive bias 
of 0.12, indicating that ALIEN tends to overestimate AI 
compared to manual detection during expiration. 

a) 

 

 

 

 

 

 

b) 
 
 
 
 
 
 
 
 
 
 

Figure 3. Bland-Altman plot for manual AI versus ALIEN AI calculation. 
(a) Inspiratory phase, (b) expiratory phase. 

IV. DISCUSSION 

Studies on AE detection to date have mostly been carried 
out through manual visual inspection of airway pressure and 
flow waveforms by clinicians. However, this method is 
manual, onerous, and cannot provide real time information in 
guiding better patient-ventilator interaction. Furthermore, 
Columbo et al. [14] showed that manual AE identification 
via inspection of waveforms is inherently limited and error-
prone, whether carried out by first-year ICU residents or 
expert senior intensive care physicians [13]. Thus, it is clear 
that there is a need of an automated method that can quantify 
these AEs in a consistent fashion.  

TABLE II.  THE SUMMARY OF ALIEN AE DETECTION  

Patient 

Number 

Ventilation 

Mode 
Breaths 

Number of 

AE (Manual) 

Number of AE 

(ALIEN) 

Manual 

AI (%) 

ALIEN  

AI (%) 

ALIEN 

Sensitivity 

(%) 

ALIEN 

Specificity 

(%) 

1 BL 613 211 385 34 63 92.4 52.7 

2 SIMV 533 115 112 22 21 72.2 93.1 

3 ASB 264 93 97 35 37 88.2 91.2 

4 BL 468 316 342 68 73 94.0 70.4 

5 SIMV 478 1 1 0 0 - 99.8 

6 BL 750 616 566 82 75 89.1 87.3 

7 SIMV 469 69 131 15 28 78.3 80.8 

8 ASB 446 341 424 76 95 95.0 4.8 

9 SIMV 523 267 289 51 55 83.1 73.8 

10 SIMV 657 657 656 100 100 99.8 100.0 

11 BL 500 402 488 80 98 99.5 10.2 
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As shown in Fig. 3, ALIEN is able to detect inspiratory 
AI with a high degree of accuracy, but it consistently over-
estimates expiratory AI. However, automated expiratory AI 
detection is still strongly correlated with manually detected 
AI, and the bias towards overestimation could be eliminated 
via post-processing. The ALIEN inspiratory algorithm only 
provides accurate inspiratory detection, defined by both high 
sensitivity and high specificity, under pressure controlled or 
pressure support ventilation. In these modes, both airway 
pressure and flow waveform can be used for AE detection. 
Comparatively, during volume controlled mode, the flow-
based inspiratory AE detection is less reliable. Hence, 
inspiratory volume controlled detection is forced to rely only 
on the pressure waveform to detect asynchrony, and is less 
accurate due to the decrease in available information. 
Expiratory detection can be used in all modes, but has an 
overall lower sensitivity and specificity. Both pressure and 
flow also exhibit much greater variability in the expiratory 
portion of their waveforms compared to the inspiratory 
portion, making it more difficult to clearly detect 
asynchrony. Advanced signal filtering could be one possible 
solution to this issue. 

The subjectivity and potential for error in manual 
detection during accuracy assessment must be noted [13]. 
Such error can be large and, depending on definitions used 
or operator error, a large number of AEs may not be 
classified. In particular, all breaths have some variability. 
Thus, the objective methods presented here may be a better 
standard than the limited “gold standard” of manual 
detection. This lack of a true, objective gold standard makes 
assessment and validation of the methods difficult [14]. In 
defense of the methods presented, approximately half of the 
patients have very similar identified AE levels. In addition, 
Patient 5 has only 1 asynchrony in 478 breaths, a null or zero 
test case. Hence, the methods presented and their results 
may, in fact, be a more true representation of patient 
response, and should be validated against clinical outcomes. 

The ALIEN algorithm was able to capture AE, but does 
not capture the magnitude or effect of each AE. Thus, further 
research is warranted to investigate methods for quantifying 
the magnitude of AEs. The ALIEN AE expiratory detection 
also warrants further investigation to improve its overall 
sensitivity and specificity. Finally, the method does enable 
clinical studies that could link size or severity of AEs or AI 
to clinical outcomes and to better refine the clinical use of 
these metrics. 

V. CONCLUSION 

The proposed ALIEN algorithm, combining inspiratory 
and expiratory AE classifiers can be used as a method to 
measure AI for mechanically ventilated patients. Monitoring 
the AI trends over time could provide a clinical marker to 
assess patient-specific patient-ventilator interaction at 
different ventilation settings, ensuring that the ventilator 
settings can be optimized for the patient. Furthermore, 
ALIEN’s ability to automate asynchrony logging could 
enable investigation of the impact of patient-ventilator 
asynchrony on patient condition. 
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