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Abstract—In the last two decades, fall detection (FD) systems
have been developed as a popular assistive technology. To support
long-term FD services, various power-saving strategies have been
implemented. Among them, a reduced sampling rate is a com-
mon approach for an energy-efficient system in the real world.
However, the performance of FD systems is diminished owing to
low-resolution (LR) accelerometer signals. To improve the detec-
tion accuracy with LR accelerometer signals, several technical
challenges must be considered, including mismatch of effective
features and the degradation effects. In this work, a deep-
learning-based accelerometer signal enhancement (ASE) model is
proposed as a front-end processor to help typical LR-FD systems
achieve better detection performance. The proposed ASE model
based on a deep denoising convolutional autoencoder architecture
reconstructs high-resolution (HR) signals from the LR signals by
learning the relationship between the LR and HR signals. The
results show that the FD system using support vector machine
(SVM) and the proposed ASE model at an extremely low sam-
pling rate (sampling rate < 2 Hz) achieved 97.34% and 90.52%
accuracies in the SisFall and FallAlID data sets, respectively, while
those without ASE models only achieved 95.92% and 87.47%
accuracies in the SisFall and FallAlID data sets, respectively.
The results also demonstrate that the proposed ASE mode can
be suitably combined with deep-learning-based FD systems.

Index Terms—Accelerometer signal enhancement (ASE), deep
learning (DL) approach, low-resolution fall detection (LR-FD),
wearable sensors.
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I. INTRODUCTION

ALLS are a leading cause of major injuries and
deaths among the aging population. The world health
organization [1] reported that more than 30% of the elderly,
aged over 64 years, fall at least once a year. Approximately
half of them were unable to get back up without assistance
due to fall-related injuries or a lack of physical fitness and
strength [2]. A previous study has shown that 50% of the
elderly population died within 6 months of the fall event
because they were lying on the floor for more than an hour [3].
In the past two decades, automatic fall detection (FD)
systems have been developed as an assistive technology [4].
The main goal of FD systems is to automatically detect crit-
ical fall events and immediately alert medical professionals
or caregivers [4]-[6]. Moreover, these systems can relieve the
psychological stress affecting elders and caregivers [7].

Owing to advancements in information communication
technologies and body sensor networks, various sensor tech-
nologies have been used in FD systems including iner-
tial sensors [6], depth cameras [8], microphones [9], pres-
sure sensors [10], and thermal sensors [11]. In particular,
accelerometers are the most common sensors for FD, which
capture body movements and are sensitive to posture changes.
FD systems using accelerometers have advantages, such as
compactness, low cost, effectiveness, unobtrusiveness, and
high mobility [12].

Wearable sensors must be placed on the body and func-
tion as long as possible to enable long-term FD services.
This demand leads to challenges in the design and devel-
opment of systems, including reliability, security, usability,
and sustainability [13]. For instance, the number of batter-
ies would impact the size and comfortability of sensors [14].
Furthermore, recharging or replacing batteries frequently may
decrease its usability [15] and the user’s acceptance of the FD
system [16]. Therefore, several energy-efficient FD systems
that focus on reducing power consumption and extending
battery life have been developed for long-term FD services.

In a typical FD system, measurement devices (e.g., wrist-
band and smartwatches) send the collected data wirelessly to
a processing unit (e.g., smartphones, laptops, and worksta-
tions) for identifying a fall event. Factors, such as sampling
rate, feature extraction and selection, communication proto-
col, detector design, and utilization of low-power electronic
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components [17]-[22], influence the power consumption in
FD systems. Most studies adjust or optimize the sampling
rates for power-efficient FD systems. This is because, at high
sampling rates, up to 90% of the power consumption of
wearable health monitoring systems is owing to data sam-
pling [23], [24]. Moreover, the lesser the data collected, the
lesser the data transfer volume. This could reduce the power
consumption in FD systems.

Various machine learning (ML) techniques [12] have been
applied to improve the detection performance of the typical
FD systems [25] as they mainly rely on human knowledge to
build rule-based FD classifiers, including k-nearest-neighbors
and SVMs. Furthermore, the advanced deep learning (DL)
techniques have shown superiority in the detection ability,
such as convolutional neural networks (CNNs) and long-short-
term memory (LSTM) [26]. However, previous works [19],
[20] have reported the performance of ML-based FD systems
is sensitive to the sampling rates. In particular, the detection
accuracy of the FD system decreases significantly when the
sampling rate is less than 10 Hz. This is because low sam-
pling rates lead to low-resolution (LR) accelerometer signals
for typical FD systems. The negative effects of LR signals
would hinder the reliability of FD systems.

To tackle the technical issue of LR signals,
Wang et al. [17], [18] proposed a power-saving frame-
work that used a trigger module to switch from a low-power
mode with a sampling rate of 6 Hz to the measurement
mode at 50 Hz when the possible fall event is triggered.
Their approaches can provide an estimated battery life of
664.9 days [17] and 1125 days [18] for FD systems using
both accelerometer and barometric pressure and a single
accelerometer, respectively. However, different from the
previous works [17], [18], the present study focused on
directly enhancing the detection performance of LR-FD
systems without an additional trigger module.

Improving the detection accuracy of typical FD systems
using LR accelerometer signals requires a consideration of
two technical challenges. The first challenge is the mis-
match of effective features. LR accelerometer signals lead to
a loss in fine-grained movement information. The feasible
features used in detection systems that are trained using high-
resolution (HR) signals cannot perform well when LR signals
are processed. In other words, additional efforts are required
to explore the effective features of LR-FD systems. The
second one is the degradation effects. The critical fall char-
acteristics, including free-fall, impact, vibration, and recovery,
are degraded in low-quality signals. Such degradation makes
it difficult to tackle classification problems (e.g., interclass
ambiguity and intraclass variability).

In this study, we aim to propose a DL-based accelerometer
signal enhancement (ASE) model to help typical FD systems
tackle the aforementioned challenges and achieve better detec-
tion performance in LR-FD systems. The proposed DL-based
ASE model is applied as a front-end processor to reconstruct
HR signals from LR signals. The reconstructed HR signals are
then fed to the FD system. The classical FD systems can yield
higher detection accuracy with reconstructed HR signals.

The main contributions of this work are as follows.
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1) A DL-based ASE model, based on a deep denoising
convolutional autoencoder architecture, is proposed to
reconstruct HR accelerometer signals from LR ones.

2) We comprehensively analyze the DL-based ASE model
on wearable FD systems and typical FD systems to
measure the detection performance, which varies with
different sampling rates.

3) Two emulated public FD data sets were employed to
validate the effectiveness of the proposed ASE model
for achieving a higher detection accuracy.

The remainder of this article is organized as follows.
Section II introduces the selected open data sets and their
experimental protocols. In Section III, we describe the design
principles and mechanisms of the proposed ASE model
for FD systems. The results of the experiment with the
proposed FD system are presented in Section IV. The com-
prehensive performance analysis of the ASE model for FD
systems, its limitations, and future works are discussed in
Section V. Finally, we conclude this study in Section VI

II. OPEN DATA SETS

Currently, open data sets for wearable FD, including
SisFall [27], FallAlID [26], UMAFall [28], and UPFall [29],
are available. In this study, SisFall and FallAlID data sets are
used to validate the effectiveness of the proposed DL-based
ASE model on the LR-FD. Compared to other data sets, these
two data sets with diverse fall types and activities of daily
living (ADL) are more challenging and closer to the real-
world situation. In addition, these data sets use accelerometers
with a sampling rate of at least 200 Hz. This may contrast
the effects of the proposed model with different resolution
accelerometer signals from HR signals to LR signals.

A. FallAlID Data Set

The FallAllID data set proposed by Saleh et al. [26] was
used in this study. An inertial measurement unit (IMU) was
placed on the neck, chest, and waist, respectively, to mea-
sure the movement during the experiment. Each inertial sensor
unit includes a triaxial accelerometer (sampling rate: 238 Hz,
range: + 8 g), triaxial gyroscope (sampling rate: 238 Hz,
angular rate: £ 2000 dps), triaxial magnetometer (sampling
rate: 80 Hz, range: £+ 4 G), and a barometer (sampling rate:
10 Hz). A previous study [30] showed that the FD system
using a waist-worn accelerometer is better than those in other
positions. Therefore, we focus on the collected accelerometer
data from the waist.

The experimental data were collected from 15 healthy
young subjects (eight males and seven females). Their average
age, height, and weight were 32 years, 171 cm, and 67 kg,
respectively. We only used the data from ten subjects that per-
formed falls and ADL. In total, this data set has 1053 ADL
and 423 fall trials.

B. SisFall Data Set

The SisFall data set [27] involves two age groups:
1) 15 elder healthy subjects and 2) 23 young healthy subjects.
This study employs the raw data collected from 21 young
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subjects (10 males, 11 females, age 25.0 + 8.6 years, height
165.7 £ 9.3 cm, and weight 57.7 £ 15.5 kg) for the exper-
iment. A group of elder people was not considered in this
study because they were not made to fall in these experiments.
In addition, two young adults were excluded owing to their
incomplete ADL trials. Totally, this data set has 1575 fall and
1659 ADL trials. An IMU (Shimmer, Ireland) placed on the
waist captured the motion data at a sampling rate of 200 Hz.
The proposed model only explores the data collected from
accelerometers, while the sensor consists of accelerometers
and gyroscopes.

C. Downsampling

The downsampling approach is employed to obtain LR sig-
nals from HR signals for exploring the effects of different
resolutions on the FD performance. The LR signals SR are
gathered by applying downsampling approaches to the HR sig-

nals S'R = {5;|j = 1,2, ..., nur} by an integer factor n, which
is defined as follows:
SR = s | k=1+2%x n} (1

where it keeps the first sample from every 2% sample,
0<n<([ngr — 11/2%), and nyR is the total number of samples
in SHR. The corresponding sampling rate of the LR signals
is R/2* Hz, where the original sampling rate of the HR
accelerometer signals is R Hz. In this study, an integer factor
ranging from o« = 1,2,...,7 is applied to the SisFall and
FallAlIID data sets.

III. METHODOLOGY

This study develops an FD system with a DL-based ASE
model as a front-end processor for FD using LR accelerom-
eter signals. The overall system consists of the preprocessing
stages, the ASE model, and the FD system. Initially, a series
of signal preprocessing stage is applied to the raw LR
accelerometer signals S™R, involving impact-defined window
and min—-max normalization. The network architecture of the
proposed deep ASE model involves feedforward CNNs and
deep neural networks. The main goal of the ASE model is to
enhance the LR accelerometer signals and generate HR sig-
nals. Finally, the classical ML-based classifier is applied to the
enhanced signals to classify the fall and ADL. The framework
of the proposed DL-based ASE model for the FD system is
introduced in Fig. 1.

A. Preprocessing

1) Impact-Defined Window: The impact-defined window
approach focuses on covering the critical fall patterns (preim-
pact, impact, and postimpact) in a window based on an impact
point that is determined as the moment when the human body
hits the first determines the highest peak as the impact point
within a searching area. Then, the fixed window sizes are
applied to cover the patterns before and after the impact point.

Given that the input accelerometer signals of a trial are
defined as § = {s;|j = 1,2, ..., ng}, where n, is the total num-
ber of samples in a trial. The sample point involves the 3-D
acceleration s; = {axj, Ay, azj}. First, the data sample with the
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maximum Norm,y, is considered as the impact sample point
sy of the trial, where Normy,y, of s; is calculated by

Normyy. (57) = \/ax? + ay,> + a2 )

Next, based on s;, forward and backward subwindows are
determined as Wy = {5711, ...,s1+st,1,s1+ng} and W), =
{s—ws,» SI—wsy+1, - - . » S1—1}, respectively. Here, WSy and WS,
are the window sizes of Wy and W, respectively. The
details of the impact-defined window approach are introduced
in [6], [30], and [31].

WSy and WS, are determined as 2 and 1.44 s, respectively,
for the SisFall data set, and 2 and 1.23 s, respectively, for
the FallAlID data set. A previous study has shown that typi-
cal FD systems with such window sizes can achieve the best
system performance [31]. In this work, the searching area is
determined as the signals of the trial. Therefore, the impact-
defined window approach applied to each trial can obtain an
impact-defined window. Fig. 2 illustrates the impact-defined
window on a trial.
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TABLE I
IMPLEMENTATION DETAIL OF THE PROPOSED ASE MODEL FOR DIFFERENT SAMPLING RATES

Sampling Rate (Hz) Encoder Convolution layer

Encoder Dense layer

Decoder Convolution layer Decoder Dense layer

SisFall  FallAIID Inputsize Layers Filter size Output channel Layers Hidden units  Layers Filter size Output channel Layers Hidden units
[768,768,768,
200 238.00 768 2 3%3 40 5 768.768] 1 3%3 1 1 768
[384,384,384,
100 119.00 384 2 3x3 35 6 384,768,768] 1 3x3 1 1 768
[192,192,192,
50 59.50 192 2 3x3 30 6 384,768,768] 1 3x3 1 1 768
[96,96,96,96,192,
25 29.75 96 2 3x3 25 8 384,768,768] 1 3x3 1 1 768
[48,48,48,96,192,
12.5 14.88 48 2 3x3 20 8 384,768,768] 1 3x3 1 1 768
[24,24,48,96,192,
6.25 7.44 24 2 3x3 15 8 384,768,768] 1 3x3 1 1 768
[12,24,48,96,192,
3.13 3.72 12 2 3x3 10 8 384,768,768] 1 3x3 1 1 768
[12,24,48,96,192,
1.56 1.86 6 2 3x3 5 8 384.768.768] 1 3x3 1 1 768
Deep-Learning-based . .
Acceleromgter Signal Enhancement First, the encoder convolution layer (ECL) -captures
movement features from a triaxial accelerometer signal. Each
Encoder Decoder K K L.
ECL includes two convolution layers, consisting 5 x (8 —
log,(0O/D)) filters with a filter size of 3x3 and the stride of 1,
gl g g where O and D are the sampling rates of the HR and LR sig-
Low-resolution___ % % ] & L % 3 Enhanced nals, respectively. Then, the encoder dense layer reconstructs
Signals gl z =] 4 g Signals the HR signals from the LR signals. The encoder dense layer
OO0 O consists of five to eight layers. Finally, the decoder adjusts the
ght lay Y )
encoder output to be similar to the original data. All decoder
convolution layers in the ASE model have a filter size of 3x3
@ and a stride of 1. All dense layers employ rectified linear
a

Low-resolution Signals Enhanced Signals
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Fig. 3. (a) Architecture of the proposed DL-based ASE model. The example

of the (b) LR signals and (c) enhanced signals.

2) Min—-Max Normalization: After the impact-defined win-
dow, a min—-max normalization is utilized to process the
data. This approach can reduce scaling effects on the deep
ASE model during the training phase. Given a data sequence
S = {sjli = 1,2,...,ng}, s; can be normalized to the range
[0, 1] using min—max normalization, as shown in

§j — Smin
s]I}OIl’l — J (3)
Smax — Smin
where smax and Smin are the maximum and minimum values

of S, respectively.

B. DL-Based ASE

1) Network Architecture of the ASE Model: The architec-
ture of the proposed ASE model for FD systems is shown
in Fig. 3. The over-model is a deep denoising autoencoder
architecture, which consists of an encoder and decoder that
contain convolution layers and dense layers.

units (ReLU) as the activation function for the hidden lay-
ers. The convolution layers do not involve activation functions.
The details of the ASE models at different sampling rates are
shown in Table I.

2) Training Strategy: Given that the preprocessed HR
and LR accelerometer signals are defined as SR =
{sll'm, s'z'lR, . ,SER} and SR = {s%R, s'Z‘R, e, s}%,[R}, respec-
tively, where N > 2% x M, we use LR-HR signal pairs to
train the ASE model. The enhanced accelerometer signals

SE = {sf, sg e sf,} are represented as
E LR

$% = fdecoder (fencoder (S )) 4)

where fencoder and fgecoder denote the encoder and decoder func-

tions, respectively. The mean absolute error (MAE) is used as
the objective function, and the loss function is formulated as

N
1 HR _ oE
loss = 5 El ‘Sj -5 ‘ 5)

Jj=

where SPR and SE denote the HR and the enhanced signals,
respectively, and N denotes the number of training sets. The
ASE model is trained with the training data that is randomly
divided into a training and a validation subdataset at a ratio
9:1. In the encoder, the layer numbers are set according to the
sampling rate. This is because the lower sampling rate offers
less information than higher sampling rate. Therefore, fewer
filter numbers are sufficient for feature extraction through the
ASE model. Note that the pooling layer and dropout are not
used in the model.
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TABLE 11
L1ST OF THE EXTRACTED FEATURES [31]

No. Features
E _E _E E E E
f1'f5 Mean of axj' ayjl aZj' anormj' avertij' ahurtij
ot E E ,E .E E E
fr-fiz Standard Deviation of ay , ay, azjéangrmg Qyertiy Fhorti
; E ,E oE E

f13'f18 Variance of ax]-r aij az]-l anormj' avertij' ahortij

Maximum of af ,af ,a% , af at, .. ,ak
f19'f24 um o xj Yy Pzj Ynormp “vertij “horti;

Minimum of aZ , af ,af ,ak at,...  at
f25'f30 xjr Yy Yzpr Ynormp Pvertiy “hortij

E _E .E ,E E E
f31'f36 Range of axjr ayj' az}u anarmj' averEti,v' ahu;ti,v
; E oE oE .E
far-far  Kurtosis of ay, @y, @z, Anorm ) Avereij) Qhorei;
E ,E oE .E E E
f42 'ﬁ;s Skewness of ale ayj ’ az]-r anormj' avertij ’ ahartij
; : : E E E

fao-fs1 Correlation coefficient between each pair oi ay, ayé, az; i
fsa-fsa  Correlation coefficient between each pair @norm» Avertiy horti;

E ,E ,E ,E E E E f_
Note. ay, ay,, az;, Anorm Qyereij» Aniorei; € S » where j = 1,2,...,N

C. FD System

In this study, feature extraction and ML models are applied
to the enhanced signals for fall event detection. The fea-
sibility of these processes have been validated in previous
works [6], [30]-[32].

1) Feature Extraction: Feature extraction aims to obtain
effective parameters that can be used to classify ADL and fall
events. The FD system utilizes eight 1-D and one 3-D sta-
tistical features to enhance the accelerometer signals, includ-
ing mean, standard deviation, variance, maximum, minimum,
range, kurtosis, skewness, and correlation coefficient. Previous
studies have shown the effectiveness of these features for typi-
cal FD systems [6], [30]-[32]. First, we calculate three impor-
tant values from the enhanced accelerometer signals, including
Euclidean norm acceleration ayorm and Euclidean norm on ver-
tical and horizontal planes ayeri and aori. Then, the feature
extraction is applied to a sequence of the enhanced accelerom-

eter signals S = {s¥, s5,....s§} to obtain a set of features

F = {f1,f2,....fx}, where k is the number of extracted fea-
E : E E E E E E
tures. Any s;’ is denoted as {axj, Ay Az Qo> Ayertiys Yo

involving 3-D accelerometer signals and three important val-
ues, 1 <j <N, and sf e SE. Fifty four features gathered from
SE are applied to ML models. The utilized features are listed
in Table II.

2) ML-Based Classifier: Two classical ML classifier were
utilized to analyze the effects of the DL-based ASE model
on the LR-FD systems: 1) SVM and 2) k-nearest neighbor
(kKNN). Previous studies have shown that the selected ML
classifiers are relatively more reliable, as compared to other
common ML classifier (e.g., naive Bayes and decision tree),
for FD systems [6], [30]-[32]. Brief introductions of these
classification algorithms are as follows.

1) SVM: Generally, the SVM model distinguishes target
classes with maximum margins based on the hyperplane
optimization. The input data are first mapped onto a new
dimensional space. Then, the decision boundary is deter-
mined by finding the largest possible margin between the
points of the different classes. Finally, the SVM model
classifies the testing data according to the decision
boundary. In this study, a radial basis function (RBF)
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kernel is employed for the SVM. The classifier is opti-
mized with a Bayesian optimizer, where both kernel
scale (gamma) and box constraint are set to 1.

2) kNN: Known also as a lazy classifier, is a typical
instance-based classification model. This classification
mainly relies on majority voting among the k-nearest
training samples to the testing sample. The Euclidean
distance is taken into account to compute the weight
of the neighbors. The previous study [31] has shown
that the classical FD system has the best detection accu-
racy with k = 3 with the Euclidean distance. Therefore,
3NN and the Euclidean distance are employed to classify
fall/ADL in this study.

D. Performance Evaluation

The leave-one-subject-out (LOSO) cross-validation
approach is introduced to validate the effectiveness of the
proposed ASE model on FD systems. This approach can
evaluate performance on unseen subjects and lead to more
reliable models. LOSO approach keeps the data from one
of the subjects as the testing data set; the data consisting of
other subjects are considered as the training data set. Then,
repeating k times until k subjects have been used as the
testing data set, where k is the total number of the subjects.
Finally, the average of the k folds performance is outputted
as the system performance.

Four evaluation metrics, accuracy (ACC), sensitivity (SEN),
specificity (SPE), and precision (PRE), were introduced
to measure the detection performance. These metrics are
defined in

TP + TN
ACC = (6)
TP 4+ FP + TN + FN
TP
SEN= — )
TP + FN
TN
SPE= ®)
TN + FP
TP
PRE= — )
TP + FP

where true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) are cases where the labeled
fall signals are recognized as a fall, the labeled ADL signals
are recognized as an ADL, the labeled ADL signals are rec-
ognized as a fall, and the labeled fall signals are recognized
as an ADL, respectively.

The ASE model was implemented through PyTorch 1.3.1,
running on a workstation with 64 bit Ubuntu 18.04.4, Intel
Xeon Gold 6152 CPU @ 2.10 GHz, and trained and tested
using the Nvidia GTX 2080Ti with 11-GB dedicated memory.
The preprocessing and FD processes are realized using the
Statistics and ML Toolbox in the MATLAB 2016 environment.

IV. EXPERIMENTAL RESULTS
A. Performance Analysis on the ASE-Based FD Systems

In this study, typical FD systems without the proposed ASE
model are used as a baseline. During the training phase, the
selected parameters of FD systems are fixed for both baseline
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Fig. 4.

and ASE-based FD systems. The detection performance of the
FD systems using kNN and SVM models with different sam-
pling rates in the SisFall and FallAlID data sets are shown in
Figs. 4 and 5, where “kNN_original” is the typical FD system
using the kNN model without the proposed ASE model,
and “kNN_enhanced” denotes the kNN-based FD systems
with ASE. The “SVM_original” and “SVM_enhanced” denote
the SVM-based FD systems without and with ASE, respec-
tively. Generally, applying the ASE model to FD systems
improves the system performance in most sampling rates
and evaluation metrics, especially accuracy and sensitivity.
Moreover, the proposed ASE model has more positive effects
when the sampling rate is lower. Particularly, the FD systems
using SVM and ASE models outperform systems with other
systems at most sampling rates. However, the performance
of “kNN_enhanced” is lower than that of *“ANN_original”
while the sampling rate is 119 and 59.5 Hz. The results show
that the SVM-based FD systems with ASE models at the
lowest sampling rate achieved 97.34% ACC in SisFall and
90.52% ACC in FallAIID, while that without ASE models
only achieved 95.92% ACC in SisFall and 87.47% ACC in
FallAlID.

The best detection ACC results of the FD systems with and
without ASE are listed in Tables III and IV, respectively. As
evident from the two tables, the best detection performance is
slightly improved using the proposed ASE model, especially
for the SVM models. The best accuracy of the FD systems
using the ASE model achieved 99.41% for SisFall and 95.6%
for FallAlID.
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(a) ACC, (b) SEN, (c) SPE, and (d) PRE of sampling rates versus typical wearable FD systems with ASE and without ASE in SisFall data set.

TABLE III
BEST PERFORMANCE USING TYPICAL WEARABLE FD SYSTEMS WITH
AND WITHOUT THE ASE MODEL IN THE SISFALL DATA SET (%)

kNN _original ANN enhanced SVM original SVM enhanced

Accuracy 98.70 99.07 98.95 99.41

Sensitivity 98.22 99.11 99.24 99.56

Specificity 99.22 99.04 98.79 99.34

Precision 99.17 98.99 98.73 99.30
TABLE IV

BEST PERFORMANCE USING TYPICAL WEARABLE FD SYSTEMS WITH
AND WITHOUT THE ASE MODEL IN THE FALLALLD DATA SET (%)

kNN _original ANN_enhanced SVM _original SVM_enhanced

Accuracy 94.11 93.97 94.58 95.60
Sensitivity 87.00 90.31 88.89 90.31
Specificity 96.96 95.54 96.96 97.72
Precision 92.00 89.02 92.12 94.09

B. Analysis of Power Consumption and Response Time
on the ASE Model

According to [33], calculating floating-point opera-
tions (FLOPs) is a common approach to estimate the
computational complexity of the DL model. We also test
the FLOPs of the proposed the ASE model as indictors of
the required power consumption and response time. The
simulation environment comprises of the STM32L476JGY
MCU with an operating frequency of 80 MHz and a 1000-mA
mercury battery, and its power consumption calculator is
utilized as the simulated environments. The real-world
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TABLE V
ANALYSIS OF POWER CONSUMPTION AND RESPONSE TIME ON ASE
MODEL IN DIFFERENT SAMPLING RATES
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TABLE VI
ACCURACY VERSUS REGULATION METHODS IN SISFALL (%)

- ML-based Front-end Sampling Rate (HZ)
Sampling Rate (Hz) Power  Battery  Response Classifier Processer 200 100 50 25 125 625 3.13 1.56
. MFLOPs Consumption  Life Time Original  98.70 98.67 98.61 98.45 98.30 98.08 97.09 95.42
FallAIID SisFall
(mAh) (hour) (sec) ASE  99.07 98.79 98.92 98.89 98.70 98.52 97.96 96.60
200  238.00 915 1173.5 0.9 80.2 KNN  ASE (L2) 97.65 98.18 97.62 98.30 97.80 98.58 96.35 94.62
100 119.00 456 585.2 1.7 40.0 ASE (L2 &
S0 5050 227 2011 3 199 Dropout)  98-67 98.61 98.70 98.52 98.08 97.90 96.41 95.30
25 29.75 112 144.0 6.9 9.8 Original ~ 98.95 98.92 98.92 98.76 98.70 98.58 97.74 95.92
125 1488 549 70.5 14.2 48 ASE  99.38 99.41 99.41 99.32 99.07 99.04 98.42 97.34
6.25 744 263 337 29.7 23 SVM  ASE(L2) 99.23 99.10 99.13 98.79 98.67 98.08 96.91 95.95
3303720119 153 63.3 1.0 ASE(L2 & 49 51 99 10 98.98 99.10 98.36 98.98 97.19 95.70
1.56 1.86 4.8 6.1 163.1 0.4 Dropout)

performance of FD systems depends on the accelerometer
and wireless transportation modules. The FLOPs, response
time, and time complexity of the proposed ASE for different
sampling rates and data sets are shown in Table V. The
proposed ASE model at the lowest sampling rate can operate
for 163.1 h with a response time of 0.4 s, whereas at the
original sampling rate, it only has a 0.9-h working period and
a response time exceeding 1 min.

C. Comparison With Regularization Approaches of ASE
Model for FD

Two regularization approaches involving L2 with a weight
of 0.0001 and Dropout = 0.2 are applied to test the
performance of the proposed ASE on different FD approaches
(e.g., kNN and SVM). The experimental results with the
SisFall and FallAlID data sets are shown in Tables VI and VIIL.

TABLE VII
ACCURACY VERSUS REGULATION METHODS IN FALLALLD (%)

ML-based Front-end
Classifier Processer
Original
ASE
ASE (L2)
ASE (L2 &
Dropout)
Original
ASE
ASE (L2)
ASE (L2 &
Dropout)

Sampling Rate (HZ)
238 119 59.5 29.75 14.88 7.44 3.72 1.86
94.11 93.77 93.83 93.22 92.82 91.94 88.96 87.06
93.56 93.56 93.22 93.97 93.50 92.01 91.46 89.16
93.36 93.83 93.02 92.41 91.12 89.30 88.75 77.85

94.24 94.72 94.72 93.56 89.91 87.80 87.26 79.61

94.58 94.44 94.51 94.31 93.83 92.62 90.65 87.47
94.65 94.65 94.78 95.60 94.65 93.56 92.55 90.92
94.72 94.78 94.38 93.56 92.62 91.19 90.51 78.12

95.66 96.00 95.80 95.12 90.04 88.62 89.57 81.17

ANN

SVM

From Tables VI and VII, the FD system using the original
ASE achieves the best accuracy for SVM at most sampling
rates in both data sets, whereas that using ASE with regular-
ization (L2&Dropout) yields better performance at sampling
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rates of 238, 119, and 58.5 Hz in the FallAllD data set. The
results indicate that the regularization approaches work well
only for signals of higher sampling rates. Similar trends are
also observed in the detection performance using the ASE and
ASE (L2&Dropout) models for ANN.

D. Comparison With DL-Based FD Systems

We further verify the effectiveness of the ASE system
on several DL-based FD systems, including multilayer
perception (MLP) autoencoder (AE), CNNs AE, long short-
term memory (LSTM) AE, CNN-LSTM, and deep belief
neural network (DBN). The parameters employed are briefly
introduced as follows.

1) MLP-AE [34]: The model is a three-layer stacked AE
model, consisting of 64, 32, and 64 neurons. The first
two layers are trained to perform feature extraction, and
the final layer detects fall events.

CNN-AE [34]: The model is similar to MLP-AE. First,
we train a two-layer 1ID-CNN AE with 64 filters and
a kernel size of 3 to perform feature extraction. Then,
a dense layer (64 units) is adopted to detect fall events.
LSTM-AE [34]: The model adopts a two-layer LSTM
AE with 64 units for feature learning. Then, a dense
layer (64 units) is used to detect fall events.
CNN-LSTM [35]: The model is a combination of CNN
and LTSM models. It consists of two 1D-CNN layers
(filters = 2 and stride = 3) and one LSTM layer. A max-
pooling layer is added after the first two CNN layers
with a size of 2. The LSTM (64 units) and a dense layer
(64 units) are then used to carry out fall event detection.
DBN [36]: Unsupervised pretraining is first applied with
a three-layer restricted Boltzmann machine (RBM). The
hidden units of the RBM are 32, 64, and 64. A combi-
nation of the RBM and a dense layer (64 units) is then
trained for FD.

The detection results using these DL models with and with-
out ASE models are shown in Tables VIII and IX, respectively.
Generally, the proposed ASE model can enhance the detec-
tion performance of models at most sampling rates. However,
the accuracy of several detection models using ASE in the
FallAlID data set is still slightly lower (<0.5%) than the model
without ASE, including MLP-AE at 3.72 and 1.86 Hz, and
CNN-LSTM at 3.72 Hz. The FD system using CNN-LSTM
at 12.5 Hz and CNN-AE at 238 Hz can achieve the best accu-
racy in the SisFall (99.38%) and FallAlID (95.58%) data sets,
respectively.

2)

3)

4)

5)

V. DISCUSSION

The results reveal that the accuracy of the typical FD
systems without the proposed ASE model decreases notably
when the sampling rate is less than 6.25 Hz in SisFall and
14.88 Hz in FallAlID. These results are similar to those of
previous studies [19], [20]. This reduction in accuracy is owed
to the loss of important information and critical movement
patterns in LR signals. As shown in Figs. 6 and 7, the
accelerometer signals degrade significantly when the sampling
rate decreases from the initial sampling rate (Raw-200 Hz)

TABLE VIII
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ACCURACY VERSUS DIFFERENT DL APPROACHES IN SISFALL (%)

ML-based Front-end Sampling Rate (HZ)
Classifier Processer 200 100 50 25 12,5 625 3.13 1.56
ULp.Ap  Original 98.08 9818 97.77 97.90 97.80 9644 96.26 94.93
ASE  99.26 99.23 99.26 99.17 99.10 98.39 98.02 95.76
CNN.Ap  Original 9818 9808 9842 9855 9821 97.87 97.40 9598
ASE  99.10 99.29 99.29 99.32 99.13 98.67 98.18 95.95
LSTnap Original 9351 9363 9583 9521 9592 95.11 9382 93.04
ASE  98.92 99.01 98.86 99.13 98.92 98.86 97.93 96.20
Original 95.61 95.27 96.29 94.56 95.98 96.13 94.47 9338
CNN-LSTM "5k 99.32 99.26 99.10 99.26 99.38 98.45 97.77 95.52
bpn | Original 98.95 98.76 9759 97.06 96.23 97.50 96.04 93.63
ASE  97.56 97.80 97.84 98.48 9836 98.39 97.40 95.05
n  Original 98.70 98.67 98.61 98.45 98.30 98.08 97.09 95.42
ASE  99.07 98.79 98.92 98.89 98.70 98.52 97.96 96.60
suy | Original 9895 9892 9892 9876 98.70 98,58 97.74 9592
ASE  99.38 99.41 99.41 99.32 99.07 99.04 98.42 97.34

TABLE IX
ACCURACY VERSUS DIFFERENT DL APPROACHES IN FALLALLD (%)

ML-based Front-end Sampling Rate (HZ)
Classifier Processer 238 119 59.5 29.75 14.88 7.44 3.72 1.86
MLP-AE Original 93.25 94.02 93.62 92.16 91.88 91.40 90.84 90.25
ASE  94.84 94.67 95.27 93.89 93.58 92.00 90.75 87.91
CNN-AE Original 93.04 93.44 94.07 93.49 93.67 91.61 89.68 88.86
ASE  95.58 94.88 95.30 94.56 94.01 93.43 92.18 90.92
LSTM-AE Original 92.12 92.01 92.54 91.67 92.41 90.17 89.96 86.93
ASE  94.29 94.93 95.10 94.77 93.66 92.04 91.67 89.79
Original 91.95 92.30 93.13 91.29 91.27 91.33 91.24 87.51
CNN-LSTM ASE  93.85 94.63 94.20 94.57 93.68 92.94 90.90 89.84
DBN Original 87.61 88.20 85.85 85.10 83.02 72.65 72.65 72.65
ASE  90.69 92.04 91.20 90.83 91.29 90.30 90.67 89.24
NN Original 94.11 93.77 93.83 93.22 92.82 91.94 88.96 87.06
ASE  93.56 93.56 93.22 93.97 93.50 92.01 91.46 89.16
SVM Original 94.58 94.44 94.51 94.31 93.83 92.62 90.65 87.47
ASE  94.65 94.65 94.78 95.60 94.65 93.56 92.55 90.92

to an extremely low sampling rate (Downsampled-1.56 Hz).
Moreover, it leads to several technical challenges for FD
systems such as mismatch of the effective features and
degradation effects.

To deal with these challenges, an ASE model is proposed
to reconstruct the accelerometer signals from LR to HR. As
presented in Fig. 6, several important movement features of
the fall signals (Enhanced-1.56 Hz) are reconstructed using
the proposed ASE model, such as impact, free fall, and vibra-
tion. The reconstructed signals can help FD systems tackle
degradation effects and the mismatch problems of the effec-
tive features. Moreover, the proposed ASE model has positive
effects on HR-FD systems, as shown in Tables III and IV. It
filters the noise (e.g., muscle vibration) and keep the motion
patterns, which improves the ability of the FD system to
classify falls and ADL.

Fig. 7 demonstrates that the enhanced ADL patterns are
more similar to a fall than an ADL, especially the sampling
rate is lower than 6.25 Hz, where the reconstructed signals
lack periodicity. However, the enhanced signals still enable
the FD system to achieve better detection performance. This
is because the proposed ASE model strengthens the differ-
ences between the ADL and fall patterns compared to the
raw patterns. The FD system has the potential to obtain more
effective features from the enhanced signals to distinguish falls
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model.
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Example signals of the ASE model on A03 “Jogging slowly” in SisFall data set. The first row shows the raw accelerometer signals and the LR

signals with different downsampled sizes. The second row shows the reconstructed signals using the proposed ASE model.

from ADL. Future work is to develop more powerful signal
reconstruction models for long-term telehealthcare monitoring
systems. Additional techniques will be applied to reconstruct
the movement characterizes, e.g., periodicity.

The proposed ASE model can enhance the detection
performance of several well-known DL methods, includ-
ing MLP-AE, CNN-AE, LSTM-AE, CNN-LSTM, and
DBN. However, the best performance of DL methods is
slightly worse than that of typical ML methods (e.g., kNN
and SVM). Therefore, further refinement of the combination
of DL-based FD and ASE model is required in future studies.
Moreover, we plan to design a lightweight model for power
efficiency.

The experimental results show that FD systems using
SVM and ASE models can achieve the best accu-
racy with the SisFall and FallAlID data sets. Similarly,
various fall systems [37], [38] have shown the supe-
riority of SVM for FD systems owing to its good
generalization capacity. However, SVM still has several tech-
nical challenges, including large-scaling problems, online
SVM training, kernel function selection, and parameter
optimization [39]. We plan to design a more advanced

mechanism to support FD systems to tackle these chal-
lenges as these issues are critical during the development of
SVM-based FD systems. Furthermore, cloud-based parame-
ter optimization based on [40] may improve efficiency and
performance.

To the best of our knowledge, this is the first study focus-
ing on improving the performance of LR-FD systems using the
DL-based ASE model. A similar signal enhancement approach
has been successfully implemented in other fields, such as
face recognition [41], speech recognition [42], and enhance-
ment [43], [44]. For a typical FD system, the proposed ASE
model could be a front-end processor to enhance the LR sig-
nals before further processing. The results demonstrate that the
ASE model enables LR-FD systems to achieve better detec-
tion accuracy. Additionally, the extra computational cost of the
ASE model is acceptable and valuable for FD systems as the
power consumption of the data sampling is much greater than
any other process, even using ML or DL models [23], [24].

Previous studies have applied other power-saving tech-
niques to FD systems that achieved over 90% detection
performance [17], [18]. However, it is difficult to directly
compare the design principle as the objective of this study
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is different from early studies. First, they proposed a power-
efficient FD method that can adjust or optimize sampling
rates to balance the detection performance and sampling rate
selection. Different from these previous works, we focus on
directly enhancing the LR-FD system using the DL-based ASE
model. Hence, the proposed ASE model has great potential
to be incorporated into their studies to achieve better system
performance when dealing with LR accelerometer signals. We
plan to fuse the proposed ASE model and [17] and [18] to
develop energy-efficient FD systems in the future. Second, the
energy-efficient mechanisms of [17] and [18] were validated
on private data sets. It is difficult to assess the effects of the
sampling rates and effectiveness of the proposed ASE model
on their data sets. This is because the impact of sampling rates
on different data sets is diverse. For example, in this study, the
sampling rate has a greater impact on the public FallAlID data
set than on the public SisFall data set when more complicated
experiments are employed. Finally, the proposed ASE model
is developed for ML-based FD systems. However, the power-
efficient mechanisms [17], [18] are designed for rule-based
detection FD algorithms instead of ML-based FD algorithms,
making it difficult to apply their approaches to ML-based FD
algorithms directly.

To investigate the potential feasibility of the proposed ASE
model in real-time implementation, we have estimate the
response time and power consumption of the proposed ASE
model based on FLOPs [33]. Considering the feasibility and
usability in the real world, the proposed ASE model at 25 Hz
with a working period of 6.9 h and 9.8 s is more suit-
able for real-world implementation. However, further research
on designing a lightweight ASE model is required for real-
time detection and mobile devices. In several real-world FD
systems [12], the sensor side only captures and transmits
signals to processing units. The proposed ASE model is imple-
mented in the server side for signal enhancement and FD
because of its powerful computational resources.

The main limitation of this study is that the applied open
data sets involve emulated fall events and ADL performed by
healthy young subjects rather than real-world data from elder
people. Their movement characteristics and features may be
different from those of the emulated experiments [45]. This
can lead to the model, trained with the emulated data, per-
forming worse on real-world data [46]. Therefore, a real-world
data set (e.g., FARSEEING [47]) will be included to validate
the effectiveness of the proposed ASE model on FD systems
in the future.

VI. CONCLUSION

To enhance the performance of LR-FD systems, techni-
cal challenges, such as mismatch of effective features and
degradation effects, are required for further investigation. In
this study, we propose a DL-based ASE model that recon-
structs the HR signals from the LR signals by learning
the relationship and correlation between the LR and HR
signals. The predicted fine-grained movement information
from the enhanced accelerometer signals enables LR-FD
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systems to tackle technical challenges and achieve bet-
ter performance. The results show that the ASE model
can efficiently help LR-FD systems achieve better system
performance.
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