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Abstract—Speech perception is the key to verbal communica-
tion. For people with hearing loss, the capability to recognize
speech is restricted, particularly in a noisy environment or the
situations without visual cues, such as lip-reading unavailable
via phone call. This study aimed to understand the improvement
of vocoded speech intelligibility in cochlear implant (CI) sim-
ulation through two potential methods: 1) speech enhancement
(SE) and 2) audiovisual integration. A fully convolutional neural
network (FCN) using an intelligibility-oriented objective func-
tion was recently proposed and proven to effectively facilitate
the speech intelligibility as an advanced denoising SE approach.
Furthermore, audiovisual integration is reported to supply better
speech comprehension compared to audio-only information. An
experiment was designed to test speech intelligibility using tone-
vocoded speech in CI simulation with a group of normal-hearing
listeners. The experimental results confirmed the effectiveness
of the FCN-based denoising SE and audiovisual integration on
vocoded speech. Also, it positively recommended that these two
methods could become a blended feature in a CI processor
to improve the speech intelligibility for CI users under noisy
conditions.

Index Terms—Audiovisual integration, cochlear implant (CI),
denoising, speech enhancement (SE), fully convolutional neural
network (FCN), speech intelligibility.

I. INTRODUCTION

OMMUNICATION is an essential tool that people
employ to achieve particular goals, from primary needs to
higher level satisfactions [1]. Verbal communication is among
the most efficient means to deliver messages people would like

Manuscript received March 18, 2020; revised June 29, 2020; accepted
July 22, 2020. Date of publication August 17, 2020; date of current ver-
sion December 10, 2021. This work was supported in part by the Ministry of
Science and Technology of Taiwan under Grant MOST 106-2221-E-001-017-
MY?2, Grant 107-2221-E-001-012-MY2, Grant 108-2628-E-001-002-MY?3,
and Grant 108-2811-E-001-501-. (Corresponding author: Yu Tsao.)

Rung-Yu Tseng and Yu Tsao are with the Research Center for Information
Technology Innovation, Academia Sinica, Taipei 11529, Taiwan (e-mail:
yu.tsao @citi.sinica.edu.tw).

Tao-Wei Wang was with the Research Center for Information Technology
Innovation, Academia Sinica, Taipei 11529, Taiwan.

Szu-Wei Fu was with the Research Center for Information Technology
Innovation, Academia Sinica, Taipei 11529, Taiwan, and also with the
Department of Computer Science and Information Engineering, National
Taiwan University, Taipei 10617, Taiwan.

Chia-Ying Lee is with the Institute of Linguistics, Academia Sinica, Taipei
11529, Taiwan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCDS.2020.3017042.

Digital Object Identifier 10.1109/TCDS.2020.3017042

, Senior Member, IEEE

to share. The nature of language acquisition in humans remains
fuzzy, but theories from Skinner [2] and Chomsky [3] to rela-
tively modern studies [4]-[6] have touched base to depict the
speech production in humankind. Using language to commu-
nicate, it is easier for people to understand as well as predict
others’ actions. Verbal communication, therefore, becomes a
crucial process for people to gain social rewards in their every-
day life [7]. Most importantly, valid verbal communication
makes people feel not alone.

Verbal communication relies on two aspects: 1) being
able to generate and 2) recognize the speech. Speech per-
ception in humans involves both the internal brain process
and external environmental conditions. It had been consid-
ered that auditory processing dominates the speech perception
until Sumby and Pollack [8] revealed the visual contribu-
tions on oral speech intelligibility. In the following decade,
the effect of audiovisual integration was tested and proved
by Erber [9]. Furthermore, McGurk [10] demonstrated the
details on how visual information affects speech recognition.
Current research [11]-[13] regarding speech perception has
validated that the primary auditory cortex also processes visual
information and officially claimed that speech perception was
no longer merely hearing. A higher audiovisual gain has been
found in speech perception and generation in hearing-impaired
children [14]. This implies that the brain process of audiovi-
sual integration could be the key for language acquisition and
development to support verbal communication.

The surroundings where people receive sound crucially
affect speech perception as well. The speech environment that
might cause variability in speech perception is defined by
transmission, such as phones or speakers with accents, and
noise conditions [15]. Challenges to the clarity of acoustic
speech signals increase the cognitive demands for understand-
ing, and types and levels of background noise are crucial
elements causing acoustic difficulties [16]. As a result, studies
in speech enhancement (SE) step in the investigation of speech
perception. To improve the recognition accuracy under noisy
speech environments, the aim is to minimize the mismatching
environmental factors interfering with listeners by enhancing
the quality and intelligibility of speech as well as reducing the
irrelevant background noise.

Distorted or degraded speech signals were used as the
experimental tool in previous studies [17]-[20] to understand
the process of speech recognition in noise. The so-called
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“unnatural” speech signal plays the role in the system of
speech perception to increase the mismatch between acoustic
information and the environmental factors and forces listeners
to locate the most reliable components at processing to under-
stand the speech. Meanwhile, distorted speech has shown the
level of endurance in human audiences when facing changes
in speech structure [21]-[23]. The success of research using
distorted speech to study speech generation and recognition
has been extended from normal hearing (NH) groups to indi-
viduals with hearing loss, such as people wearing the cochlear
implant (CI) devices [24]-[32].

Individuals with hearing loss are limited in their communi-
cation, and according to the World Health Organization [33],
hearing loss is the fourth highest cause of disability glob-
ally. The current estimated population with hearing loss is
466 million worldwide and the number in 2050 is expected
to be greater than 900 million if no further action is taken.
Under WHO’s grades of hearing impairment [34], people with
severe-to-profound hearing loss were recommended to wear
the hearing aids and CI devices serve as a proven treatment
option for them (12 months of age or older) by the food
and drug administration (FDA) guidelines. To prevent hearing
loss requires controlling risk factors. The Centers for Disease
Control and Prevention (CDC) highlights three focus areas:
1) early screening and diagnosis for infants and children;
2) protecting hearing by recognizing harmful sound levels at
home and community; and 3) preventing occupational noise
exposure. From the information provided by WHO and CDC,
hearing loss is an undeniable issue in need of the interference,
and noise reduction could be a convincing strategy to slow the
growth of hearing loss.

Since speech is a complex representation, speech percep-
tion requires higher level cognitive processing. The feature of
noise-vocoding distorted speech [35] has allowed researchers
to destroy the entire intelligibility in the speech to focus
on structurally acoustic stimuli. This makes the vocoded
materials a promising tool in studying speech perception.
Caldwell et al. [36] also found that the acoustic challenge
caused by spectrally degraded speech could be used to under-
stand the experience of sound quality in CI users. The result
could be employed to improve the design of CI devices and
further to mitigate relatively poor speech perception for people
wearing CIL.

The SE process consists of two parts: 1) to enhance the
intelligibility and quality of processed speech and 2) to reduce
the noises in the background. The previous well-established
algorithms have helped to improve the SE in CI users [29],
[37]-[43] but there are only a few studies with a newly upgrad-
ing deep learning-based algorithm. Traditional SE methods
are based on identifying the difference between clean and
noisy speech [44]-[49]. Emerging deep learning-based mod-
els could more accurately match the training and testing
conditions to both theoretically and practically optimize the
SE performance. For their multilayered architecture, deep-
learning-based models take advantages of extracting represen-
tative features to achieve better performance in classification
or regression tasks. Speech recognition has become among the
typical processes that would benefit from this model [50].

The importance to include the visual information in speech
perception for CI users could be noticed through the recom-
mendation from WHO. Other than hearing aids for people
with a severe-to-profound level of hearing loss, the WHO
also advises to at least have lip-reading or signing essential
to facilitate communication [34]. The experimental results,
further, in children with CI devices have demonstrated to be
better multisensory integrators to incorporate visual and audio
information at word recognition in speechreading tasks [51].
The greater audiovisual involvement in speech recognition is
expected to advance CI users’ speech perception. Comparing
to CI patients, NH participants have exhibited less variation in
characteristics of biological, surgical, and device-related ele-
ments at performing the tasks [52]. Assuming similar auditory
encoding and processing for both CI and NH groups, the sim-
ulated vocoded result by the NH group is able to get nearer
the core of the cognitive process beyond the unavoidable
individual differences.

This study intended to evaluate how speech intelligibility
could be improved under denoising SE technology by simu-
lated vocoded corpus on an NH group. A more efficient deep
learning-based denoising algorithm was the main SE process
using in the current research work. As a pilot study, the experi-
ment was also conducted to test the effectiveness of visual cues
in speech perception. In addition, it was anticipated that the
cutting-edge deep learning-based denoising algorithm targets
different background noise to help improve human hearing.
The task additionally includes two levels of signal-to-noise
ratios (SNRs) to understand the threshold of speech percep-
tion in noise for listeners. Furthermore, the results from this
study could shed light on the possible outcome in the group
with hearing loss, particularly for people wearing CI devices.

II. MATERIAL AND METHODS

Forty participants with gender balance were recruited from
the Academia Sinica community to take part in the experiment
with the monetary compensation for their time. The group
ages were between 20 and 39 with a mean age of 29.38 years
old (standard deviation, SD, = 4.63). All participants were
native Mandarin speakers with normal or corrected-to-normal
vision as well as NH to perceive the stimuli well during the
experiment. Except for one left-handed male participant, all
others were right handed. All 40 participants did not report
a history of neurological diseases or sensational problems.
Written informed consent approved by the Academia Sinica
Institutional Review Board for this study was obtained from
each participant before conducting the experiment.

The stimuli for this study were video and audio recordings
of Mandarin sentences spoken by a native speaker. The source
of recordings was based on the Taiwan Mandarin Hearing in
Noise Test (Taiwan MHINT, TMHINT, [53]). All TMHINT
materials were unique and each consisted of ten Chinese char-
acters with a length of about 3—4 s. Also, they were specifically
designed to have similar phonetic characteristics across the
dataset. Among the total of 320 TMHINT utterances, 200
utterances were randomly selected for the SE training set and
the remaining 120 utterances for the testing set. The utterances
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Fig. 1. Block diagram of the four-channel tone-vocoder implementation. The
first step of speech input is to be processed by the preemphasis filter. Then, it
is filtered by the third-order bandpass filters and follows to be extracted by a
full-wave rectifier. Right after, there comes a second-order lowpass filter, and
the strategy ACE is used to compress the envelope of each band. Finally, the
modulated compression generates the vocoded speech.

for training and testing sets had no overlap between as well
as the types of noise.

The utterances were recorded in a quiet room with sufficient
light and the speaker in the video was captured from the front
view. Videos were filmed at 30 frames/s (fps) with a resolu-
tion of 1920 pixels x 1080 pixels. Stereo audio channels were
recorded at 48 kHz, which is precisely the same recording
environmental setting as that in Hou er al. [54]. The com-
plete experiment included the practice stage and followed by
the official testing session with 20 and 100 sentences, respec-
tively. Both selected numbers of utterances for each session
were randomly displayed during its part. Each participant was
wearing BOSE Triport OE On-Ear Headphone at participating
in the experiment.

The experiment employed a tone vocoder (Fig. 1) as the
sound generator to present the stimulus for participants with
NH. In the block diagram of a four-channel tone vocoder,
the input signal was first processed through the pre-emphasis
filter. Then, the third-order Butterworth bandpass filters filtered
the emphasized signal into four frequency bands between 400
and 6000 Hz (with cutoff frequencies of 400, 887, 1750, 3282,
and 6000 Hz). The temporal envelope of each spectral channel
was extracted by a full-wave rectifier followed by a second-
order Butterworth lowpass filter. The envelope of each band
was then compressed by the advanced combinational encoder
(ACE) strategy in this study.

The ACE strategy continuously varied its compression ratio
(CR) on a frame-by-frame basis, with the maximum and min-
imum values of the compressed amplitude limited within a
preset range. The compressed envelopes then modulated the
amplitudes of a set of sine waves with frequencies equal to
the center frequencies (643, 1319, 2516, and 4641 Hz) of the
bandpass filters. Finally, the amplitude-modulated sine waves
of the four bands were summed, and the level of the summed
signal was adjusted to produce a root-mean-square (RMS)
value equal to that of the original input signal.

Using vocoder simulations for NH listeners under various
background noise, speech maskers or numbers of electrodes
were found in many previous studies as the proven strategy to
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Fig. 2. Experimental software. The experimental software is run by using
MATLARB. Fig. 3 represents the condition with video information. (This exper-
imental toolkit is available via https://github.com/JasonSWFu/VideoAudio.)

understand and further provide basic information on the speech
processing in CI users [25], [55]-[60]. However, vocoder sim-
ulations were not used for estimating the precise level of
performance for each single CI user. This strategy was used to
access the performance given particular changing parameters
and it allows vocoder simulations to be a valuable tool in CI-
related research. Therefore, the tone-vocoder simulation was
adapted for NH participants in the current study to understand
the possible sound processing in CI users.

To understand the intelligibility of sound processing in a
noise environment, three different conditions were used dur-
ing the listening test: 1) without noise maskers (Clean); 2) with
noise maskers (noisy, masking materials came from the online
data set “PNL 100 Nonspeech Sounds” [61]); and 3) the
SE upon noise maskers. This experiment covered two noise
maskers street and engine to represent different noise types
(nonstationary and stationary), respectively. The stationary
noise means that the whole spectrum of a signal has relatively
stable power within any equal interval of frequencies, which
is time independent; while the nonstationary noise owns the
opposite characteristics.

In the experiment, all participants were randomly assigned
into two different SNR groups, 1 and 4 dB, with equal num-
bers of participants in each group. In each SNR group, the
testing order for different conditions was put in random for
every participant. The 120 TMHNIT utterances in the test-
ing set were prepared with the order of simple randomization
into each condition. Test conditions were labeled in all figures
throughout this article as Clean (without any noise masker),
FCN_E (the FCN denoising algorithm targeting the engine
noise masker), FCN_S (the FCN denoising algorithm target-
ing the street noise masker), Noisy_E (engine noising masker),
and Noisy_S (street noise masker).

The interface of the experimental software is shown in
Fig. 2, and all participants were well instructed to perform
the computer-based experiment. During both practice and for-
mal experimental stages, participants were asked to focus on
the stimuli by listening to the sound and reading the lips in
the video. The stimuli were presented with the sound level
of 60 dB while the level would be adjusted within upper or
lower 5 dB upon participants’ requests. After the stimuli were
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Fig. 3.
noisy input is filtered by multilayered FCN denoising process.

displayed, participants had to repeat what they recognized
accordingly. If they accidentally did not hear or see during the
presentation of stimuli, such as clearing the throat or blink-
ing, they would have one more opportunity to retake it. Once
they made the final repetition, the correct answer would be
displayed on the screen for checking the accuracy of speech
recognition. The accurate character counts were then recorded
by choosing the number from O to 10 on the interface.

The fully convolutional neural network (FCN), a deep
learning-based model, was the main algorithm for SE [50],
[62] in this study (the codes for FCN denoising algo-
rithm is available at https://github.com/JasonSWFu/End-
to-end-waveform-utterance-enhancement). The FCN was a
waveform- and utterance-based denoising SE system. The
FCN model could effectively preserve features from local
structures with a relatively smaller number of weights for
its convolution-layers-only architecture. In addition, FCN con-
volved the time-domain signal with filters instead of multiply-
ing the frequency representation of a signal by the frequency
response of the filter. A feature in the time domain carried
much less corresponding energy information than that in the
frequency domain, but mainly utilized the relation with its
neighbors to represent the frequency concept. This crucial
independence stood out that FCN was able to become a more
effective denoising algorithm than other conventional fully
connected deep neural networks (DNNs) for waveform-based
denoising SE [50], [63], [64].

Most traditional deep-learning models have been designed
for a framewise process; the result would be less accurate
for their problem of incontinuity. The FCN denoising algo-
rithm could fix this by achieving utterance-based enhancement.
Furthermore, an FCN could address not merely fixed-length
utterances as all fully connected layers were removed in the
FCN. This meant, in the FCN denoising algorithm, that input
features from different lengths would not have to fit in the
matrix multiplication. Assuming that the filter length was /
and the length of input signal was L (without padding), the
length of the filtered output would be L — [+ 1. For that FCN
contained only convolutional layers, the filters in the operation

Architecture of utterance-based raw waveform enhancement by the deep learning-based FCN algorithm. It provides the progress of SE that how

of the convolution could process inputs with different lengths.
More specifically, during the training stage, the FCN-based
SE model is trained in an end-to-end utterance-wise manner;
while in the testing stage, the enhancement process can be
carried out in a segment-wise manner.

In this study, the FCN denoising algorithm was built to try
to incorporate both the mean square error (MSE) and the short-
time objective intelligibility (STOI) into the objective function.
The aim is to minimize the loss during the training of FCN.
The process could be represented by the equation as follows:

O(wau(0), Wa(1)) = (| Wu () = Wu0) |3 = st0i(wa (1), (1))
L
(1

where w, () and w,(¢) are the clean and estimated utterance
with index u, respectively. L, is the length of w,(¢) (note that
each utterance has a different length), and o is the weighting
factor of the two targets (which is set the same as used in our
previous work [50]). stoi(.) is the function that calculates the
STOI value of the noisy/processed utterance given the clean
one. Hence, the weights in FCN could be updated by gradient
descent as follows:

0wy (1), W (1)) Wy (1)
IWu (1) fl(;”k

where f; ¢ 1) is the ith layer, jth filter, and kth filter coefficient
in FCN. n is the index of the iteration number, B is the batch
size, and A is the learning rate.

The structure of the overall proposed FCN for utterance-
based waveform enhancement was shown in Fig. 3, where
Filter_m_n denoted the nth filter in layer m. Each filter coiled
together all generated waveforms from the previous layer
and then created one further filtered waveform utterance. The
goal of SE was to produce one clean utterance, in which
the last layer only contained one final filter, Filter_M_1.
This completed end-to-end framework indicated again the
efficiency of the FCN denoising algorithm to process the
utterance-based enhancement without additional preprocessing
or postprocessing.
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Fig. 4. FCN evaluation scores: (a) STOI and (b) NCM. Along with the change
in SNRs, the FCN received higher scores for both STOI and NCM compared
to noisy conditions, regardless of the types of noise (engine and street); this
indicated that the FCN could better facilitate the speech recognition.

Compared to other deep-learning-based SE models, FCN
provided a better SE result with reduced model sizes [64].
Meanwhile, FCN was proven to more effectively enhance
speech on nonstationary noises [65]. The STOI was among the
major evaluation methods used in related SE studies [66], [67].
The STOI measure for FCN indicated a better result than the
Noisy condition, particularly for the nonstationary noise type
[Fig. 4(a)]. In addition, the normalized covariance measure
(NCM) was adopted to understand the performance in process-
ing the speech utterances [68]-[70]. The NCM was based on
the covariance between the probing and responsive envelope
signals. This metric required only a small number of bands
(not limited to a contiguous set) and used simple binary (1 or
0) weighting functions. It was, therefore, frequently employed
to measure the speech intelligibility of vocoded speech [71].
In addition, NCM measure in predicting reliably the intelligi-
bility of noise-suppressed speech was demonstrated its success
by Ma et al. [68]. The NCM measure, in this study, showed
consistently higher scores under FCN conditions, especially
when targeting a nonstationary noise type [Fig. 4(b)] as STOI
did.

Not only were the STOI and NCM scores able to quan-
titatively specify the enhancement resulting from the FCN
denoising algorithm in the speech intelligibility but spectro-
gram plots and amplitude envelopes also qualitatively showed
the advantage of the FCN denoising algorithm. According to

Vocoded

Normal

Clean

Noisy_E

Noisy_S

FCN_E

FCN_S

Fig. 5. Spectrograms of an utterance under different conditions (x axis:
time in second and y axis: frequency in kHz). The spectrograms show that
FCN denoising algorithm helped reconstruct better utterances under two dis-
tinguished types of noise, engine, and street, for both original and vocoded
speech.

Haykin [72], when studying array processing and signal detec-
tion, a time-varying signal could be spectrally represented as a
spectrogram. A spectrogram could reveal how noise is reduced
to highlight the acoustic characteristics of utterances.

As shown in Fig. 5, sentences of clean condition are
arranged in the top row of the spectrograms, and the other four
conditions are followed from the second to bottom rows. With
the help of the FCN denoising algorithm, the noise maskers
were reduced to represent a similar spectral plot as that of
the normal utterances (left panel in Fig. 5). In addition, the
features of each utterance were highlighted under conditions
with the FCN denoising algorithm, particularly in vocoded CI
(right panel in Fig. 5) compared to normal ones. The spectro-
gram results demonstrated that the FCN denoising algorithm
was able to diminish the noise distortion with less noise resid-
ual as shown in the plots. This implied a more promising
improvement of speech intelligibility via FCN modeling.

From a past research result (American National Standard:
Methods for Calculation of the Speech Intelligibility
Index [73]), the middle-frequency band has a crucial position
in the speech intelligibility process. In this study, the four-
channel tone-vocoded speech was used to generate sentences
as the experimental stimuli to construct a more challeng-
ing condition for CI simulation. Given the circumstances, the
amplitude envelopes from the second channel were plotted as
comparisons for two different SNR tasks, 1 and 4 dB, under
each condition.

The amplitude envelopes provided strong evidence as shown
in Fig. 6 that after applying the FCN denoising algorithm to the
target sentence, the waveform was nearer the original shape (a
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Fig. 6. Amplitude envelopes from the second-channel frequency band (x axis:
time in second and y axis: amplitude). The amplitude envelops from the FCN
denoising algorithm resemble to the original clean target sentence, and it
indicates the processed speech with better speech intelligibility.

clean condition; the top row for both SNR tasks). The ampli-
tude of each peak was more similar to the source sentence
than sentences of the noisy conditions. In addition, the smaller
amplitude could be more clearly represented while it remained
distorted under the noisy conditions. The results of the ampli-
tude envelopes suggest that better speech intelligibility could
be achieved using the FCN denoising algorithm.

III. RESULTS

The descriptive statistic of the listening test showed that
the entire performance (mean of 46.91 and SD of 26.34) with
the aid of video was better than the audio-only conditions. The
participants showed a rather diverse level at conducting differ-
ent SNR tasks with a separate SD of 25.87 for 1 dB and 25.32
for 4 dB. When working on conditions manipulated as video
aided and audio only, people’s hearing exhibited a relatively
smaller variation in the SD of 19.38 and 20.18, respectively.

The analysis of variance (ANOVA, in Table I) indicated
that three variables, SNR, video, and conditions, used in this
study were individually reaching the statistical significance to
facilitate the performance of the listening test. Notably, the
p-value of 0.0126 for video versus conditions showed a statis-
tically significant effect on visual facilitation. This confirmed
that visual cues were having effect on conditions, but specific
aids for each condition were in need of looking into the differ-
ence. The paired T-Tests were then conducted to examine the
detailed visual aids across different conditions and the effect

TABLE I
ANOVA STATISTICAL TESTING PROVED THAT EACH EXPERIMENTAL
MANIPULATIONS (SNR, VIDEO, AND CONDITION) FUNCTIONED IN A
STATISTICALLY SIGNIFICANT MANNER IN AFFECTING PARTICIPANTS’
PERFORMANCE. IN ADDITION, ACROSS DIFFERENT CONDITIONS, VISUAL
AIDS GREATLY FACILITATED TO IMPROVE THE LISTENING TEST RESULTS

df Sum Sq Mean Sq F value Pr(>F)
SNR 1 16154 16154 108.923  <2e-16
Video 1 121104 121104 816.556 <2e-16
Condition 4 79604 19901 134.184  <2e-16
SNR:Video 1 237 237 1.599 0.2068
SNR:Condition 4 1006 252 1.696 0.1501
Video:Condition 4 1916 479 3.229 0.0126
SNR:Video:Condition 4 493 123 0.831 0.5061

TABLE 11

PAIRED T-TEST RESULTS FOR 1 dB. FOR TASKS INVOLVING THE
NONSTATIONARY NOISE TYPE, STREET, FCN SHOWED BETTER
FACILITATION COMPARED TO NOISY CONDITIONS, PARTICULARLY WHEN
THERE WERE NO VISUAL CUES TO FURTHER HELP PEOPLE’S HEARING

Video Noise  Condition Mean SD t df p-value
es Street I\E‘Elgy ‘j“;‘gg ggg 2.3664 ig 0.02874
Engine Noisy 50:60 16:38 1.2257 19 0.2353
L Sue Igégy g:i)g %gg 38505 %g 0.001056
Engine Noisy 16:10 8:46 0.64491 19 0.5267

from the rest of variables, SNR, and conditions, under two
SNR groups.

The paired T-Test results provided more information regard-
ing how the FCN denoising algorithm facilitates human
listening performance compared to the noisy condition. In
Table 11, the T-Test results for the lower-SNR tasks indicated
that particularly under the nonstationary noise type, street, the
FCN better helped people during the listening test. Regardless
of visual aids, conditions of FCN targeting street noise both
reached the statistical significance with p-values of 0.02874
(with video) and 0.001056 (without video), respectively. It
was noteworthy that when lacking visual aids for people’s
hearing, the benefit from FCN became more recognizable as
the p-value reached its most practical statistical significance
(<0.01). The result of higher-SNR tasks was listed in Table III.
It was similar to the lower-SNR results, yet only one statistical
significance, as p-value of 0.02611, had been reported on the
condition FCN targeting street noise when there was no visual
aids.

The higher- and lower-SNR tasks had resembled results in
the paired T-Test. It was only that greater difference between
the FCN and noisy conditions under the nonstationary noise
type, street, to be proved statistically significant for the 1-dB
task regardless of visual aids and 4-dB task without video.
However, the performance of FCN targeting engine noise was
not differentiated from the noisy condition statistically.

The insignificant T-Test results for these two distinct SNR
tasks suggested that there might be some preference for FCN
targeting engine noise. When it came without the visual aid,
the p-values of FCN targeting engine noise were 0.745 for
4-dB versus 0.5267 for 1-dB tasks. Another set of outcome
for the tasks with the visual aid was 0.1708 for 4-dB versus
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TABLE III
PAIRED T-TEST RESULTS FOR 4 dB. THE OVERALL TENDENCY HAD
SIMILAR RESULTS AS 1 dB BUT WITH HIGHER p-VALUES. THIS
CONFIRMED AGAIN THAT FCN FUNCTIONED AS A RELIABLE
FACILITATOR, ESPECIALLY WHEN HAVING BACKGROUND NOISE, SUCH
AS THE NONSTATIONARY NOISE TYPE, STREET, AND THE LACK OF
OTHER AIDS SUCH AS VISUAL CUES

Video  Noise  Condition = Mean SD t df  p-value
es Street Iz];‘z‘gy é;%g ggg 1.7302 ig 0.09981

Engine  \oisy 6765 1236 1420 g9 01708

o Street I‘E‘Egy %Z%g 121 ;7;5 2.4127 %é 0.02611

Engine Noisy 27:70 13:12 -0.33007 19 0.745

0.2353 for 1-dB tasks. In statistics, a lower p-value means
stronger evidence in favor of alternative hypothesis to imply
the effect of experimental manipulation. In conditions with
video aids, lower p-value reasonably appeared in 4-dB tasks.
For the conditions without video aids, however, lower p-value
fell in 1-dB tasks to hint that FCN better helped the hearing
during lower-SNR even with no additional visual information.
For the condition of FCN targeting engine noise, the variation
of p-values in different SNR groups might reveal a tendency
about the degree of improvement by FCN.

The percentage of accuracy in the listening test was drawn in
Fig. 7, and the provided results were alike as for the statistical
testing. According to Fig. 7(a), results of lower-SNR tasks
showed generally greater scores in FCN compared to the noisy
conditions, regardless of the types of noise masker. However,
taking the visual information into consideration, participants
were doing better in FCN targeting engine noise; while without
visual aids, the higher accuracy fell in the condition of FCN
targeting street noise. The performance for higher-SNR tasks
unveiled another tendency in Fig. 7(b). The highest accuracy
still occurred at the condition FCN targeting the nonstationary
noise masker, street. However, the results here showed that not
both FCN conditions dominated in the 4-dB tasks as they did
in the lower-SNR tasks.

The analysis of the ANOVA and the paired T-Test presented
no statistically significant indication for the FCN targeting the
stationary noise type, engine, but the improved performance
through the facilitation by FCN did exist. The interaction plot
was to show that two independent variables interact if the
effect of one of the variables varies depending on the level
of the other variable. Fig. 8 displayed the interaction between
variables condition and SNR. During the higher-SNR task,
which was relatively clear for human hearing, the FCN target-
ing engine noise was merely in the third spot of all the effective
conditions. As tasks moved toward lower-SNR, however, the
FCN targeting engine noise became a better performer while
the other three conditions remained the same ranking. This
matched the paired T-Test results that there might be a possi-
ble preference for FCN targeting engine noise to step in the
facilitation of human hearing.

Both inferential and descriptive statistics in different SNR
tasks suggested the ease of a higher-SNR sound to be caught
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Fig. 7. Listening test results: performance of (a) 1-dB tasks and (b) 4-dB

tasks. Conditions with video are marked in a diagonal pattern for both SNRs
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Fig. 8. Interaction plot between two distinct SNRs over different conditions.
FCN targeting engine noise better facilitated human hearing during the lower-
SNR tasks while the other three conditions remained the same ranking in spite
of the change of different SNR tasks.

by people’s hearing. In general, for both SNRs, the clean con-
dition without any noise masking took participants the least
effort to hear the sounds; however, visual information help-
ing improve hearing was overwhelming across every single
condition, no matter which SNR tasks were involved.

The listening test scores and statistical results of ANOVA
and the paired T-Test all demonstrated that the FCN was
able to serve as an effective denoising algorithm and helped
enhance the intelligibility of speech recognition. Furthermore,
the paired T-Test results and the interaction plot provided more
clues regarding how the FCN contributed to human hearing
and what conditions might be the best fit for FCN involvement.
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IV. DISCUSSION

Consistent with past research [74]-[76], visual information
is of great help in facilitating people’s hearing. In the cur-
rent listening test results, the performance was improved with
the aid of visual cues across various conditions. However, the
level of facilitation differs. First, the visual information works
well even as background noise appeared and helps particu-
larly better in tasks with specific types of noise maskers. For
higher-SNR tasks, with the help of visual information, listen-
ers are able to considerably improve their performance under
the nonstationary noise type, street, with the FCN denoising
process. The effectiveness of visual cues shows the most extent
compared to other conditions.

The performance of both lower- and higher-SNR tasks
reveals that there might be a critical threshold for listeners
to detect the sound in noise. In the result of lower-SNR tasks,
the support from the FCN denoising is manifest for both types
of noise maskers. The possible reason could be that 1 dB is too
challenging for listeners to differentiate the background noise
from the targeting sounds; both background noise and targeting
sounds become homogeneous during sound processing. Visual
cues and FCN help sharpen the targeting sounds for listeners
to distinguish them from the background noise. Alternatively,
the higher SNR task allows participants to rather effortlessly
hear both the sound and noise; therefore, the boundary of the
noise and targeting sound emerges. People with NH can more
easily process the target perceiving and denoising in higher-
SNR tasks. The threshold for the NH and CI groups might not
be the same, but the critical threshold is an important clue to
enhance speech intelligibility.

This study also collected evidence from the postanalysis to
reconsider the function of the FCN denoising algorithm for dif-
ferent SNR tasks. The listening test scores and the interaction
plot revealed the FCN targeting engine noise was slightly
higher than the FCN targeting street noise within lower-SNR
tasks. The result implied that in spite of the effect of the FCN
targeting engine noise was not universally observed across dif-
ferent conditions, the effectiveness of FCN could become more
obvious once people have less visual cues or more interrupt-
ing background noise for them to understand the targeting
sounds. As a result, the listening test performance indicates
that the FCN denoising algorithm works differently toward
alternative types of noise in higher-SNR tasks but dominates
in lower-SNR tasks as participants need the enhancement to
detect the comparatively weaker line between targeting sounds
and background noises as the phenomenon of stochastic reso-
nance [77]-[79]. That is, the FCN denoising algorithm works
particularly competent in a noisy listening environment.

The FCN denoising algorithm plays a role to potentially
improve participants’ performance in the listening test. Given
the noise interference, participants’ performance under FCN
conditions was the best among the test results, for both lower-
or higher-SNR tasks. In addition, the accuracy rate of the FCN
conditions is generally higher when involving background
noise, such as street sounds, a nonstationary noise type. This
matches the results of Tsai [65]’s previous study that the FCN
extracts cleaner speech to achieve an improved listening test
result, particularly for a nonstationary noise type. Comparing

to purely noisy conditions, listeners hear better under the sta-
tionary noise type. The listening test results provide more
confidence to record the effectiveness of the FCN denoising
algorithm in enhancing the speech perception.

V. CONCLUSION

The FCN algorithm is demonstrated as a better denoising
SE model as it is similar to a traditional CNN but not limited
to process fixed-length inputs [50]. Given the flexibility that
FCN can contribute, the denoising technology has been lev-
eled up and the listening test results in this study further prove
the effectiveness of FCN in vocoded speech intelligibility. In
addition, under specified noise maskers, conditions with FCN
were able to provide listeners more enhanced speech percep-
tion to obtain higher accuracy in scores. Since the preliminary
result in CI simulation is positive in verifying the superiority
of the FCN, having CI users participate in the future investi-
gation is the most empirical means to determine the real effect
on the group with hearing loss.

The future implement based on the results from this article
will be anticipating two levels. The first step is to transform the
finding of the joint effect onto audiovisual SE. Hou et al. [54]
have reported an audiovisual SE model using CNN to generate
enhanced speech and then reconstruct images. In the current
study, the SE model was based on FCN and the following work
should be to build the fused encoder—decoder FCN-based SE
model for audiovisual SE. After completing the audiovisual
SE, during the next stage, it should be to apply the ready
audiovisual integration algorithm onto multidevices for both
ears and eyes.

As all might be aware that most CI users have only hear-
ing impairment with no dysfunctions for other senses, such as
sight, smell, or touch, and it seems reasonable that wearing
aids for users are mainly to facilitate their hearing. However,
as our brain processes the information in the way of sensory
integration, the vision of CI users is used to help their weak-
ened auditory sense. In addition, during the situations that CI
users receive less or none visual information, for instance,
conversations during the phone call, it is necessary for them
to have help from multidevices. CI users are able to expect
better hearing from both the FCN denoising algorithm within
their CI processor and converted images to show enhanced
speech visually on their wearing goggles. This study expects
to further provide the scientific evidence to include the visual
information in the assistive auditory devices with better help
for CI users.

As a pilot study for audiovisual-aided vocoded speech intel-
ligibility, the listening test results have successfully demon-
strated its improvement. The performance in the experiment
validates the power of audiovisual integration to enhance
vocoded speech intelligibility by the much better accuracy
rate under conditions with a visual aid. This experimental
evidence strongly implies the possibility of an updated audio-
visual CI system. Applying the human process of audiovisual
information onto the current operating algorithm in CI pro-
cessors is a means to better the speech perception for people
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wearing CI devices. In addition, given this encouraging listen-
ing test results in CI simulation, one can envision an advanced
fusion system joining deep learning-based FCN denoising
algorithm and audiovisual integration to further boost the
speech intelligibility for the hearing-loss group.

To consolidate the updated fusion system, functional
optimization of the FCN denoising modeling is a necessary
future work as current CI devices remain multiple engineering
issues on the speech processor [80], [81]. The deep structure,
however, still requires more computational hardware needs and
higher costs than those of traditional models. To properly allo-
cate these resources, developing quantization techniques were
used to compress the model [82]. With the help of a quan-
tized deep learning-based model, speech intelligibility would
display a more progressive improvement in its reduced pro-
cessing time [83]. The fusion of audiovisual integration and
denoising SE modeling could be working competently in CI
devices as the revamped hardware is evolved progressively in
the near future.

Speech intelligibility is crucial for both NH and hearing-
loss groups to manage the conversations in social interaction,
and denoising technology serves as a tool to improve inter-
personal communication by enhancing the quality of hearing.
Beneficial from the development of a deep-learning technique,
the FCN denoising algorithm makes progress based on the
advantages of conventional modelings to advance toward a
more promising enhancement for speech intelligibility. In addi-
tion, the impact of visual cues on enhancing the vocoded
speech is clearly proven through the experiment. The listening
test results in this CI simulation provide solid evidence that
both audiovisual integration and SE technology could greatly
facilitate people’s hearing even in a noisy environment. To
the final goal to contribute to a hearing-loss group, applying
both audiovisual information and FCN in a future investiga-
tion involving CI users is a foreseeable process to determine
the true value of deep learning-based modeling for SE and the
influence of audiovisual integration.
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