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An Incremental Self-Organizing Architecture for
Sensorimotor Learning and Prediction

Luiza Mici , German I. Parisi, and Stefan Wermter

Abstract—During visuomotor tasks, robots must compensate
for temporal delays inherent in their sensorimotor processing
systems. Delay compensation becomes crucial in a dynamic envi-
ronment where the visual input is constantly changing, e.g.,
during the interaction with a human demonstrator. For this pur-
pose, the robot must be equipped with a prediction mechanism
for using the acquired perceptual experience to estimate possi-
ble future motor commands. In this paper, we present a novel
neural network architecture that learns prototypical visuomotor
representations and provides reliable predictions on the basis of
the visual input. These predictions are used to compensate for
the delayed motor behavior in an online manner. We investi-
gate the performance of our method with a set of experiments
comprising a humanoid robot that has to learn and generate visu-
ally perceived arm motion trajectories. We evaluate the accuracy
in terms of mean prediction error and analyze the response of
the network to novel movement demonstrations. Additionally, we
report experiments with incomplete data sequences, showing the
robustness of the proposed architecture in the case of a noisy
visual input.

Index Terms—Hierarchical learning, motion prediction, self-
organized networks.

I. INTRODUCTION

REAL-TIME interaction with the environment requires
robots to adapt their motor behavior according to the per-

ceived events. However, each sensorimotor cycle of the robot
is affected by an inherent latency introduced by the processing
time of sensors, transmission time of signals, and mechanical
constraints [1]–[3]. Due to this latency, robots exhibit a discon-
tinuous motor behavior which may compromise the accuracy
and execution time of the assigned task.

For social robots, delayed motor behavior makes human–
robot interaction (HRI) asynchronous and less natural.
Synchronization of movements during HRI may increase rap-
port and endow humanoid robots with the ability to collaborate
with humans during daily tasks [4]. A possible solution
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to the sensorimotor latency is the application of predictive
mechanisms which accumulate information from the robot’s
perceptual and motor experience and learn an internal model
which estimates possible future motor states [5], [6]. The
learning of these models in an unsupervised manner and their
adaptation throughout the acquisition of new sensorimotor
information remains an open challenge.

Latencies between perception and possible motor behav-
ior occur in human beings [7] as well. Such discrepancies
are caused by neural transmission delays and are constantly
compensated by predictive mechanisms in our sensorimotor
system that account for both motor prediction and anticipa-
tion of the target movement. Miall et al. [8] proposed that
the human cerebellum is capable of estimating the effects of
a motor command through an internal action simulation and
a prediction model. Furthermore, there are additional mecha-
nisms for visual motion extrapolation which account for the
anticipation of the future position and movement of the tar-
get [9]. Not only do we predict sensorimotor events in our
everyday tasks but we also constantly adjust our delay com-
pensation mechanisms to the sensory feedback [10] and to the
specific task [11].

Recently, there has been a considerable growth of learning-
based prediction techniques which mainly operate in a “learn
then predict” approach, i.e., typical motion patterns are
extracted and learned from training data sequences and then
learned patterns are used for prediction [2], [12]–[14]. The
main issue with this type of approach is that the adapta-
tion of the learned models is interrupted by the prediction
stage. However, it is desirable for a robot operating in natu-
ral environments to be able to learn incrementally, i.e., over a
lifetime of observations, and to refine the accumulated knowl-
edge over time. Therefore, the development of learning-based
predictive methods accounting for both incremental learning
and predictive behavior still need to be further investigated.

In this paper, we propose a novel architecture that learns
sensorimotor patterns and predicts the future motor states in
an online manner. We evaluate the architecture in the con-
text of an imitation task in an HRI scenario. In this scenario,
body motion patterns demonstrated by a human demonstra-
tor are mapped to trajectories of robot joint angles and then
learned for being immediately imitated by a humanoid robot.
We approach the demonstration of the movements through
motion capture with a depth sensor, which provides us with
reliable estimations and tracking of 3-D human body pose.
Thus, the 3-D joint positions of the skeleton model constitute
the input to the architecture. The learning module captures
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spatiotemporal dependencies through a hierarchy of grow-
ing when required (GWR) [15] networks, which has been
successfully applied to the classification of human activi-
ties [16], [17]. The learning algorithm processes incoming
robot joint angles and progressively learns prototypes of
motion segments. Finally, an extended GWR algorithm, imple-
mented at the last layer of our architecture, approximates a
prediction function and utilizes the learned motion segments
for predicting forthcoming motor commands.

We evaluate our system on a dataset of three subjects per-
forming ten arm movement patterns. We study the prediction
accuracy of our architecture while being continuously trained.
Experimental results show that the proposed architecture can
adapt quickly to unseen patterns and can provide accurate
predictions albeit continuously incorporating new knowledge.
Moreover, we show that the system can maintain its high
performance even when training takes place with missing
sensory information.

II. RELATED WORK

A. Motion Prediction

Motion analysis and prediction are an integral part of
robotic platforms that counterbalance the imminent senso-
rimotor latency. Well-known methods for the tracking and
prediction are the Kalman filter models, as well as their
extended versions which assume nonlinearity of the system,
and the hidden Markov models (HMMs). Kalman filter-based
prediction techniques require a precise kinematic or dynamic
model that describes how the state of an object evolves while
being subject to a set of given control commands. HMMs
describe the temporal evolution of a process through a finite
set of states and transition probabilities. Predictive approaches
based on dynamic properties of the objects are not able to
provide correct long-term predictions of human motion [18]
due to the fact that human motion also depends on other
higher-level factors than kinematic constraints, such as plans
or intentions.

There are some alternatives to approaches based on prob-
abilistic frameworks in the literature and neural networks are
probably the most popular ones. Neural networks are known
to be able to learn universal function approximations and
thereby predict nonlinear data even though dynamic prop-
erties of a system or state transition probabilities are not
known [3], [19]. For instance, multilayer perceptrons and
radial basis function networks as well as recurrent neural
networks have found successful applications as predictive
approaches [2], [12], [13], [20]. A subclass of neural network
models, namely the self-organizing map (SOM) [21], is able to
perform local function approximation by partitioning the input
space and learning the dynamics of the underlying process in
a localized region. The advantage of the SOM-based methods
is their ability to achieve long-term predictions at much less
expensive computational time [22].

Johnson and Hogg [23] first proposed the use of multilayer
self-organizing networks for the motion prediction of a tracked
object. Their model consisted of a low-level SOM layer learn-
ing to represent the object states and the higher SOM layer

learning motion trajectories through the leaky integration of
neuron activations over time. Similar approaches were later
proposed by Sumpter and Bulpitt [24] and Hue et al. [25], who
modeled time explicitly by adding lateral connections between
neurons in the state layer, obtaining performances comparable
to that of the probabilistic models.

Several other approaches use SOMs extended with tempo-
ral associative memory techniques [20], e.g., associating to
each neuron a linear autoregressive model [26], [27]. A draw-
back which is common to these approaches is their assumption
of knowing a priori the number of movement patterns to
be learned. This issue can be mitigated by adopting growing
extensions of the SOM such as the GWR algorithm [15]. The
GWR algorithm has the advantage of a nonfixed, but varying
topology and requires no specification of the number of neu-
rons in advance. Moreover, the prediction capability of the
self-organizing approaches in the case of multidimensional
data sequences has not been thoroughly analyzed in the lit-
erature. In this paper, we present experimental results in the
context of a challenging robotic task, whereby real-world
sensorimotor sequences have to be learned and predicted.

B. Incremental Learning of Motion Patterns

In the context of learning motion sequences, an architec-
ture capable of incremental learning should identify unknown
patterns and adapt its internal structure in consequence. This
topic has been the focus of a number of studies on program-
ming by demonstration [28]. Kulić et al. [29] used HMMs
for segmenting and representing motion patterns together with
a clustering algorithm that learns in an incremental fashion
based on intramodel distances. In a more recent approach, the
authors organized motion patterns as leaves of a directed graph
where edges represented temporal transitions [30]. However,
the approach was built upon automatic segmentation which
required observing the complete demonstrated task, thereby
becoming task-dependent. A number of other works have also
adapted HMMs to the problem of incremental learning of
human motion [31]–[34]. The main drawback of these meth-
ods is their requirement for knowing a priori the number
of motions to be learned or the number of Markov models
comprising the learning architecture.

Ogata et al. [35] proposed a model that considers the case
of long-term incremental learning. In their work, a recur-
rent neural network was used to learn a navigation task in
cooperation with a human partner. The authors introduced
a new training method for the recursive neural network in
order to avoid the problem of memory corruption during new
training data acquisition. Calinon and Billard [36] showed
that the Gaussian mixture regression (GMR) technique can
be successfully applied for encoding demonstrated motion
patterns incrementally through a Gaussian mixture model
(GMM) tuned with an expectation-maximization algorithm.
The main limitation of this method is the need to specify
in advance the number and complexity of tasks in order to
find an optimal number of Gaussian components. Therefore,
Khansari-Zadeh and Billard [37] suggested a learning pro-
cedure capable of modeling demonstrated motion sequences
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Fig. 1. Overview of the proposed system for the sensorimotor delay compensation during an imitation scenario. The vision module acquires motion from a
depth sensor and estimates the 3-D position of joints. Shoulder and elbow angle values are extracted and fed to the visuomotor learning algorithm. The robot
then receives predicted motor commands processed by the delay compensation module.

through an adaptive GMM. Cederborg et al. [38] suggested to
perform a local partitioning of the input space through kd-trees
and training several local GMR models.

However, for high-dimensional data, the partitioning of the
input space in a real-time system requires additional compu-
tational time. Regarding this issue, it is convenient to adopt
self-organizing network-based methods that perform in parallel
partitioning of the input space through the creation of proto-
typic representations as well as the fitting of necessary local
models. The application of a growing self-organizing network,
such as the GWR, allows for the learning of prototypical
motion patterns in an incremental fashion [39].

III. METHODOLOGY

A. Overview

The proposed learning architecture consists of a hierarchy
of GWR networks [15] for processing input data sequences
and learning inherent spatiotemporal dependencies (Fig. 1).
The first layer of the hierarchy learns a set of spatial pro-
totype vectors. The temporal dependence of the input data
is captured as temporally ordered concatenations of consecu-
tively matched prototypes which become more complex and
of higher dimensionality when moving toward the last layer.
When body motion sequences are provided, the response of the
neurons in the architecture roughly resembles the neural selec-
tivity toward temporally ordered body pose snapshots in the
human brain [40]. This simple, but effective data sequence rep-
resentation is also convenient in a prediction application due to
implicitly mapping past values to the future ones. The concate-
nation vector is composed of two parts: the first part carries
information about the input data at previous time steps and
the second part concerns the desired output of this mapping.

The evaluation of the predictive capabilities of the proposed
architecture for compensating robot sensorimotor delay will
be conducted in an imitation scenario where a simulated Nao
robot imitates a human demonstrator while compensating for
the sensorimotor delay in an online manner.

B. Learning With the GWR Algorithm

The GWR network is composed of a set of neurons and
edges that link the neurons forming topological relationships.
The network starts with a set of two neurons randomly initial-
ized and, during the learning iterations, both neurons and edges
can be created, updated, or removed. At each learning iteration,
t, the first and the second best-matching units (BMUs) are

computed as the neurons with the smallest Euclidean dis-
tance with respect to the input sample x(t). The activity of
the network, a(t), is computed as a function of the Euclidean
distance between the weight vector of the first BMU, wb, and
the input data sample x(t)

a = exp(−||x(t) − wb||). (1)

Whenever the activity of the network is smaller than a given
threshold aT , a new neuron is added with a weight vector

wr = 0.5 · (x(t) + wb). (2)

The activation threshold parameter, aT , modulates the amount
of generalization, i.e., the largest discrepancy between an
incoming stimulus and its BMU. Edges are created between
the first and the second BMUs. An edge aging mechanism
takes care of removing rarely activated edges, i.e., edges
exceeding the age threshold and neurons without edges con-
sequently. In this way, neurons representing data samples that
have been seen in the far past are eliminated leading to an
efficient use of available resources from the lifelong learning
perspective. Moreover, a firing rate mechanism that measures
how often each neuron has been activated by the input leads
to a sufficient training before new neurons are created. The
firing rate is initially set to one and then decreases every time
a neuron and its neighbors are activated in the following way:

�hi = ρi · κ · (1 − hi) − ρi (3)

where ρi and κ are the constants controlling the behavior of
the decreasing function curve. Typically, the ρ constant is set
higher for the BMU (ρb) than for its topological neighbors
(ρn). Given an input data sample x(t), if no new neurons are
added, the weights of the first BMU and its neighbors are
updated as follows:

�wi = εi · hi · (x(t) − wi) (4)

where εi and hi are the constant learning rate and the firing
counter variable, respectively. The learning of the GWR algo-
rithm stops when a given criterion is met, e.g., a maximum
network size or a maximum number of learning epochs.

C. Temporal Sequence Representations

GWR networks do not encode temporal relationships of the
input. This limitation has been addressed by different exten-
sions, such as hierarchies of GWRs augmented with a window
in time memory or recurrent connections [16], [17], [41], [42].
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Fig. 2. Schematic of the output computed by each layer of our learning
architecture (not all neurons and connections are shown). Given an input data
sample x(t), the weight of the BMU is concatenated with the weights of the
previously activated neurons (depicted in fading yellow) in order to compute
the output o(t). The length of the concatenation vector is a constant τ (τ = 3
in this example). The z−1 blocks denote the time delay.

Since our goal is to both encode data sequences and to generate
them, we adopt the first approach in which relevant informa-
tion regarding data samples in a given time window is always
explicitly available. Also, in contrast to the self-organizing
networks equipped with Gamma filters [42], the time-window
technique does not introduce additional computational com-
plexity and does not affect the GWR learning dynamics.
Moreover, the use of a hierarchy of GWR networks allows for
the encoding of multiple time-varying sequences through pro-
totype neurons which can be reused for representing different
sequences.

The GWR learning mechanism described in Section III-B
is employed for training the first two layers of the proposed
architecture, namely the GWR1 and GWR2 networks. The out-
put of both networks is computed as the concatenation of the
weights of consecutively activated neurons within a predefined
temporal window τ (see Fig. 2)

o(t) = wb(t) ⊕ wb(t−1) ⊕ · · · ⊕ wb(t−τ+1) (5)

where ⊕ denotes the concatenation operator. Moving up in
the hierarchy, the output o(t) will represent the input for the
GWR network of the higher layer. In this way, the GWR1
network learns a dictionary of prototypes of the spatial body
configurations domain, while the GWR2 and P-GWR networks
encode body motion patterns accumulated over a short and a
relatively longer time period, respectively.

Following this hierarchical learning scheme, we adapt the
GWR neuron elimination strategy in a layer-wise manner to
address the problem of forgetting rarely encountered, but still
relevant, information. For instance, at the level of the GWR1
network which represents spatial body configurations, it is
more probable that rarely seen input data samples are due to
sensory noise. Therefore, we can set a lower edge age thresh-
old here, leading to a higher rate of neuron elimination. For
the GWR2 and P-GWR networks, on the other hand, rarely
seen data samples are most likely due to subsequences encoun-
tered in the far past. We can set a relatively higher edge age
threshold so that neurons are removed more rarely.

D. Predictive GWR Algorithm

The problem of one-step-ahead prediction can be for-
malized as a function approximation problem. Given a

multidimensional time series denoted by {y(t)}, the function
approximation is of the form

ŷ(t + 1) = f̂ (y(t), y(t − 1), . . . , y(t − (p − 1))|�) (6)

where the input of the function, or regressor, has an order of
regression p ∈ Z

+, with � denoting the vector of adjustable
parameters of the model and y(t + 1) is the predicted value.
We adapt the GWR learning algorithm in order to implement
this input–output mapping and apply this learning algorithm to
the last layer of our architecture, i.e., to the P-GWR network.

The input samples fed to the P-GWR network are concate-
nations of the temporally ordered BMUs from the preceding
layer (5). We divide the input into two parts: 1) the regressor,
xin(t) and 2) the desired output, i.e., the value to predict xout(t)

xin(t) = x(t) ⊕ x(t − 1) ⊕ · · · ⊕ x(t − p + 1)

xout(t) = x(t + 1) (7)

with p denoting the number of the past values. Each neu-
ron of the P-GWR network will then have two weight vectors
which we will call the input win and the output wout weight
vectors. During training, the input weight vector will learn to
represent the input data regressor and the output weight vector
will represent the corresponding predicted value. This learning
scheme has been successfully applied to the vector-quantized
temporal associative memory (VQTAM) model [20], shown
to perform well on tasks such as time series prediction and
predictive control [43].

The learning procedure for the Predictive GWR algorithm
resembles the original GWR with a set of adaptations for
temporal processing. During training, the first and the sec-
ond BMUs at time step t, b, and s, are computed considering
only the regressor part of the input

b = arg min
n∈A

||xin(t) − win
n ||

s = arg min
n∈A/{b} ||x

in(t) − win
n || (8)

where win
n is the input weight vector of the neuron n and A is

the set of all neurons. However, for the weight updates both
xin(t) and xout(t) are considered

�win
i = εi · ci ·

(
xin(t) − win

i

)

�wout
i = εi · ci · (

xout(t) − wout
i

)
(9)

with the learning rates 0 < εi < 1 being higher for the BMUs
(εb) than for the topological neighbors (εn), as in the GWR
algorithm. This learning mechanism guarantees that the regres-
sor space is vector quantized while the prediction error (P.E)
is decreased at each learning iteration.

The predictive GWR algorithm operates differently from
supervised prediction approaches. In the latter, the P.E signal
guides the learning, whereas in the predictive GWR the P.E
is implicitly computed and minimized without affecting the
learning dynamics. Moreover, unlike the SOM-based VQTAM
model, the number of input–output mapping neurons, or local
models, is not predefined nor fixed, but instead adapts to the
input data.
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E. Predicting Sequences

Given an input regressor at time step t, xin(t), the one-step-
ahead estimate is defined as the output weight vector of the
P-GWR BMU

ŷ(t + 1) = wout
b (10)

where b is the index of the BMU (8). In the case that the
desired prediction horizon is greater than 1, the multistep-
ahead prediction can be obtained by feeding back the predicted
values into the regressor and computing (8) recursively until
the whole desired prediction vector is obtained. An alterna-
tive to the recursive prediction is the vector prediction which
is obtained by increasing the dimension of the xout vector
with as many time steps as the desired prediction horizon h.
Thus, the input regressor and the desired output would have
the following form:

xin(t) = x(t) ⊕ x(t − 1) ⊕ · · · ⊕ x(t − p + 1)

xout(t) = x(t + 1) ⊕ x(t + 2) ⊕ · · · ⊕ x(t + h) (11)

where p denotes the index of the past values. The same dimen-
sionality should be defined for the weight vectors win and
wout of the P-GWR neurons as well. This solution requires the
training of the architecture with this setting of the weights.

IV. IMITATION SCENARIO

A. Overview

The scenario consists of a Nao robot incrementally learn-
ing a set of visually demonstrated body motion patterns and
simultaneously imitating them while compensating for the
sensorimotor delay. We showcase the predictive capabilities
of the proposed architecture in the context of an imitation
scenario motivated by the fact that it can potentially imply
behavior synchronization in the HRI. For humans, the syn-
chronization of behavior is a fundamental principle of motor
coordination and is known to increase rapport in daily social
interaction [4]. Psychological studies have shown that, dur-
ing a conversation, humans tend to coordinate body posture
and gaze direction [44]. This phenomenon is believed to be
connected to the mirror neuron system [45], suggesting a com-
mon neural mechanism for both motor control and action
understanding. Interpersonal coordination is an integral part
of human interaction. Thus, we assume that applied to HRI
scenarios it may promote the social acceptance of robots.

A schematic description of the proposed system is given in
Fig. 1. The users’ body motion is the input of the model and
the motor commands for the robot are obtained by mapping
the users’ arm skeletal configuration to the robot’s arm joint
angles. This direct motion transfer allows for a simple, yet
compact representation of the visuomotor states, that does not
require the application of computationally expensive inverse
kinematics algorithms. Demonstrated motion trajectories are
learned incrementally by training our hierarchical GWR-based
algorithm. This allows for extracting prototypic motion pat-
terns which can be used for the generation of robot movements
as well as the prediction of future target trajectories in parallel.
In this robot task, the prediction of future visuomotor states is

necessary to compensate for the sensory delay introduced by
the vision sensor, the signal transmission delay as well as the
robot’s motor latency during motion generation. The simulated
Nao robot is used as the robotic platform for the experimental
evaluation.

B. System Description

A general overview of the proposed architecture is depicted
in Fig. 1. The system consists of three main modules.

1) The vision module, which includes the depth sensor and
the tracking of the 3-D skeleton through OpenNI/NITE
framework.1

2) The visuomotor learning module, which receives angle
values and provides future motor commands.

3) The robot control module, which processes motor com-
mands and relays them to the microcontrollers of the
robot, which in our case is a locally simulated Nao.

Our contribution is the visuomotor learning module which
performs incremental adaptation and early prediction of human
motion patterns. Although the current setup uses a simulated
environment, we will consider a further extension of the exper-
iments toward the real robot. Therefore, we simulate the same
amount of motor response latency as it has been quantified in
the real Nao robot, i.e., between 30 and 40 ms [2]. This latency
could be even higher due to reduced motor performance, fric-
tion, or weary hardware. Visual sensor latency for an RGB and
depth resolution of 640 × 480, together with the computation
time required from the skeleton estimation middleware, can
peak up to 500 ms [46]. Taking into consideration also possi-
ble transmission delays due to connectivity issues, we assume
a maximum of 600 ms of overall sensorimotor latency for our
experiments described in Section V.

C. Data Acquisition and Representation

The motion sequences were collected with an Asus Xtion
Pro camera at 30 frames/s. This type of sensor is capable
of providing synchronized color information and depth maps
at a reduced power consumption and weight, making it a
more suitable choice than a Microsoft Kinect for being placed
on our small humanoid robot. Moreover, it offers an effi-
cient and markerless body tracking method [47] which makes
the interface less invasive. The distance of each participant
from the visual sensor was maintained between the sensor’s
operational range, i.e., 0.8–3.5 m. To attenuate noise, we com-
puted the median value for each body joint every three frames
resulting in ten joint position vectors per second [16].

We encode the demonstrator’s postures as vectors of joint
angles. The latter allows a straightforward reconstruction of
the regressed motion without applying inverse kinematics,
which may be difficult due to redundancy and leads to less
natural movements. Nao’s arm kinematic configuration dif-
fers from the human arm in terms of degrees of freedom
(DoF). For instance, the shoulder and the elbow joints have
only two DoFs while human arms have three. For this reason,
we compute only shoulder pitch and yaw and elbow yaw and

1OpenNI/NITE: http://www.openni.org/software.
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Fig. 3. Examples of arm movement patterns. The visual input data,
represented as 3-D skeleton sequences, are mapped to the robots’ joint angles.

roll from the skeletal representation by applying trigonomet-
ric functions and map them to the Nao’s joints by appropriate
rotation of the coordinate frames. Wrist orientations are not
considered since they are not provided by the OpenNI/NITE
framework. Considering the two arms, a frame contains a total
of 8 angle values of body motion, which are given as input to
the visuomotor learning module.

V. EXPERIMENTAL RESULTS

We conducted experiments with a set of movement pat-
terns that were demonstrated either with one or with both
arms simultaneously: raise arm(s) laterally, raise arm(s) in
front, wave arm(s), and rotate arms in front of the body both
clockwise and counter-clockwise. Examples of the movement
patterns are illustrated in Fig. 3. In total, ten different motion
patterns were obtained, each repeated ten times by three par-
ticipants (one female and two male) which were given no
explicit indication of the purpose of the study nor instructions
on how to perform the arm movements. In total, we obtained
30 demonstrations for each of the patterns. We first describe
the incremental training procedure, then we assess and ana-
lyze in detail the prediction accuracy of the proposed learning
method. We focus on the learning capabilities of the method
while simulating a possible recurring malfunctioning of the
visual system leading to loss of entire data chunks. We con-
clude with a model for choosing the optimal predicted value
for a system with a variable delay.

TABLE I
TRAINING PARAMETERS FOR EACH GWR NETWORK IN OUR

ARCHITECTURE FOR THE INCREMENTAL LEARNING

OF SENSORIMOTOR PATTERNS

A. Hierarchical Training

The training of our architecture is carried out in an online
manner. This requires that the GWR networks are trained
sequentially one data sample at a time. The networks are ini-
tialized with two neurons with random weight vectors. The
GWR1 network is trained in order to perform spatial vector
quantization. Then the current sequence is gradually encoded
as a trajectory of activated neurons as described in (5) and
given in input to the GWR2 network of the second layer. The
same procedure is then repeated for the second layer until the
training of the full architecture is performed. The learning of
the 30 demonstrations of one motion pattern from all three
subjects constitutes one training epoch.

The learning parameters used throughout our experiments
are listed in Table I. The parameters have been empirically
fine-tuned by considering the learning factors of the GWR
algorithm. The firing threshold fT and the parameters ρb,
ρn, and κ define the decreasing function curve of the fir-
ing counter (3) and were set in order to have at least seven
trainings of a BMU before inserting a new neuron. It has
been shown that increasing the number of trainings per neu-
ron does not affect the performance of a GWR network
significantly [15]. In the GWR algorithm, the learning rates
are generally chosen to yield faster training for the BMUs
than for their topological neighbors. However, given that
the neurons’ decreasing firing counter modulates the weights
update (4), an optimal choice of the learning rates has lit-
tle impact on the architecture’s behavior in the long term.
The training epochs were chosen by analyzing the converging
behavior of the composing GWR networks in terms of neural
growth.

The activation threshold parameter aT , which modulates the
number of neurons, has the largest impact on the architecture’s
behavior. The closer to 1 this value is, the greater is the num-
ber of neurons created and the better is the data reconstruction
during the prediction phase. Therefore, we kept aT relatively
high for all GWR networks. We provide an analysis of the
impact of this parameter on the prediction performance of our
architecture in Section V-B3. Finally, the maximum edge age
parameter, which modulates the removal of rarely used neu-
rons, was set increasingly high with each layer. As assumed
in Section III-C, the neurons activated less frequently in the
lower layer may be representing noisy input data samples,
whereas in higher layers the neurons capture spatiotemporal
dependencies which may vary significantly from sequence to
sequence.
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Fig. 4. Behavior of the proposed architecture during training on an unseen sequence demonstrated by one subject (three iterations over one sequence are
shown). From top to bottom illustrated are: the skeleton model of the visual sequence, the ground truth data of robot joint angles, the values predicted from
the network, and the Euclidean distance between predicted values and the ground truth over time (red dashed line indicating the statistical trend).

B. Predictive Behavior

We now assess the predictive capabilities of the proposed
method while the training is occurring online. Considering that
the data sample rate is 10 frames/s (see Section IV-C), we set
a prediction horizon of six frames in order to compensate for
the estimated delay of 600 ms.

1) How Fast Does the Architecture Adapt to New
Sequence?: An example of the online response of the archi-
tecture is shown in Fig. 4. We observed that, except in
cases of highly noisy trajectories, the network adapted to an
unseen input already after a few video frames, e.g., ≈ 100
frames which correspond to 10 s of the video sequence, and
refined its internal representation after three iterations over
the motion sequence demonstrated by one subject, i.e., after
30 demonstrations. This can be seen by the statistical trend of
the P.E.

2) Behavior Analysis and Prediction Performance During
Incremental Learning: We presented the movement sequences
one at a time and let the architecture train for 50 epochs on
each new sequence. The training phase was a total of 500
epochs for the whole dataset. Then, we reran the same exper-
iment by varying the presentation order of the sequences and
report the results averaged across all trials. In this way, the
behavior analysis does not depend on the order of the data
given during training. We analyzed the cumulative P.E (C.P.E)
of the model by computing the mean squared error (MSE) over
all movement sequences learned up to each training epoch. For
comparison, we also computed the MSE between the values
predicted by the model and the sensory input after being

processed by the GWR1 and the GWR2 networks. We refer
to this performance measure as the P.E since it evaluates
directly the prediction accuracy of the P-GWR network while
removing the quantization error propagated from the first
two layers.

The flow of the overall MSE during training and the neu-
ral growth of the GWR networks composing the architecture
are reported in Fig. 5. The moment in which we introduce a
new motion sequence is marked by a vertical dashed line. As
expected, the C.P.E increases as soon as a new sequence is
introduced [leading to the high peaks in Fig. 5(a)], for then
decreasing immediately. However, the error does not grow but
remains constant even though new knowledge is being added
every 50 learning epochs. This is a desirable feature for an
incremental learning approach. In Fig. 5(b), we observe that
with the introduction of a new motion sequence there is an
immediate neural growth of the three GWR networks fol-
lowed by the stabilization of the number of neurons indicating
a fast convergence. This neural growth is an understandable
consequence of the fact that the movement sequences are
very different from each other. In fact, the GWR1 network,
performing quantization of the spatial domain, converges to
a much lower number of neurons, whereas the higher lay-
ers, namely the GWR2 and the P-GWR network, have to
capture a high variance of spatiotemporal patterns. However,
the computational complexity of a prediction step is O(n),
where n is the number of neurons. Thus, the growth of
the network does not introduce significant computational
cost.
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Fig. 5. (a) C.P.E averaged over all learned sequences up to each learning
epoch (in blue) and the P.E computed between the predicted sequence and the
sequence represented by the architecture (in red). (b) Average and standard
deviation of the neural growth of the three GWR networks during learning.

Fig. 6. Prediction MSE versus the number of neurons in the P-GWR network.

3) Impact of Activation Threshold: In the described exper-
iments, we set a relatively high activation threshold parameter
aT which led to a continuous growth of the GWR networks.
Thus, we further investigated how a decreased number of neu-
rons in the P-GWR network would affect the overall P.E. For
this purpose, we fixed the weight vectors of the first two layers
after having been trained on the entire dataset, and ran multiple
times the incremental learning procedure on the P-GWR
network, each time with a different activation threshold param-
eter aT ∈ {0.5, 0.55, 0.6, . . . , 0.9, 0.95, 0.99}. We observed
that a lower number of neurons, obtained through lower thresh-
old values, led to quite high values of the MSE (Fig. 6).
However, due to the hierarchical structure of our architecture,
the quantization error can be propagated from layer to layer. It
is expected that similar performances can be reproduced with
a lower number of neurons in the P-GWR network when a
lower quantization error is obtained in the preceding layers.

4) Sensitivity to Prediction Horizon: We now take the
architecture trained on the whole dataset and evaluate its

Fig. 7. Mean absolute error (in radians) for increasing values of prediction
horizons (expressed in frames). In our case, 20 frames correspond to 2 s of
a video sequence.

Fig. 8. Prediction MSE averaged over 50 epochs of training on each motion
pattern. Up to 30% of data loss, the MSE does not grow linearly but rather
stays mostly constant. From this point on, the increasing percentage of data
loss leads to an inevitable growth of the P.E.

prediction accuracy while increasing the prediction horizon
up to 20 frames, which correspond to 2 s of a video sequence.
For achieving multistep-ahead prediction, we compute the pre-
dicted values recursively as described in Section III-E. In
Fig. 7, we report the mean absolute error and the standard devi-
ation in radians in order to give a better idea of the error range.
The results show a relatively higher magnitude of error for
prediction horizons bigger than ten frames. This should come
as no surprise since producing accurate long-term predictions
is a challenging task when dealing with human-like motion
sequences. However, it seems that on average the error does
not grow linearly but remains under 0.25 radians.

C. Learning With Missing Sensory Data

In the following experiment, we analyze how the predictive
performance of the network changes when trained on input
data produced by a faulty visual sensor. We simulate an occur-
ring loss of entire input data chunks in the following way:
during the presentation of a motion pattern, we randomly
choose video frames where a whole second of data samples
(i.e., ten frames) is eliminated. The network is trained for 50
epochs on a motion sequence, each time with a different miss-
ing portion of information. We repeat the experiment thereby
increasing the occurrence of this event in order to compro-
mise up to 95% of the data and see how much the overall P.E
increases. Results are averaged over epochs and are presented
in Fig. 8. As it can be seen, the prediction MSE stays mostly
constant up to 30% of data loss. This means that the network
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can still learn and predict motion sequences even under such
circumstances.

D. Compensating Variable Delay

Experimental results reported so far have accounted for
compensating a fixed time delay which has been measured
empirically by generating motor behavior with the real robot.
However, the proposed architecture can also be used when the
delay varies due to changes in the status of the hardware. In
this case, given the configuration of the robot at time step t
in terms of joint angle values Jξ (t), where ξ is the time delay
estimation, the optimal predicted angle values to execute in
the next step can be chosen in the following way:

P∗ = arg min
i∈[0,h]

||Jξ (t) − P(t + i)|| (12)

where P(t+ i) are the predictions computed up to a maximum
h of the prediction horizon.

The application of this prediction step requires a method
for the estimation of the time-delay ξ , which is out of the
scope of this paper. Current time-delay estimation techniques
mainly cover constant time delays, random delay with a spe-
cific noise characteristic, or restricted dynamic time delay [48],
which nonetheless do not address uncertainty affecting real-
world robot applications. Computational models inspired by
biology have also been proposed for the time-delay estima-
tion [48]. However, these models assume knowledge of the
sensorimotor dynamics.

VI. DISCUSSION

A. Summary

In this paper, we presented a self-organized hierarchical neu-
ral architecture for sensorimotor delay compensation in robots.
In particular, we evaluated the proposed architecture in an imi-
tation scenario, in which a simulated robot had to learn and
reproduce visually demonstrated arm movements. Visuomotor
sequences were extracted in the form of joint angles, which
can be computed from a body skeletal representation in a
straightforward way. Sequences generated by multiple users
were learned using hierarchically arranged GWR networks
equipped with an increasingly large temporal window.

The prediction of the visuomotor sequences was obtained
by extending the GWR learning algorithm with a mapping
mechanism of input and output vectors in the spatiotempo-
ral domain. We conducted experiments with a dataset of ten
arm movement sequences showing that our system achieves
low P.E values on the training data and can adapt to unseen
sequences in an online manner. Experiments also showed that
a possible system malfunction causing loss of data samples
has a relatively low impact on the overall performance of the
system.

B. Growing Self-Organization and Hierarchical Learning

The building block of our architecture is the GWR
network [15], which belongs to the unsupervised competitive
learning class of artificial neural networks. A widely known

algorithm of this class is the SOM [21]. The main compo-
nent of these algorithms are the neurons equipped with weight
vectors of dimensionality equal to the input size. Through
learning, the neurons become prototypes of the input space
while preserving the input’s topological features, i.e., similar
inputs are mapped to neurons that are near to each other. In
the case of SOMs, these neurons are distributed and remain
fixed in a 2-D or a 3-D lattice which has to be defined a pri-
ori and requires an optimal choice of its size. In the GWR
network, the topological structure of the neurons is dynamic
and grows to adapt to the topological properties of the input
space. In this regard, the GWR network is similar to the GNG
algorithm [49], another widely used growing self-organizing
neural network. However, the neural growth of the GWR algo-
rithm is not constant, as in the case of the GNG, but rather
depends on how well the current state of the network repre-
sents the input data. Thus, from the perspective of incremental
learning, the GWR algorithm is more suitable than the GNG
since new knowledge can be added to the network as soon as
new data become available.

The hierarchical arrangement of the GWR networks
equipped with a window in time memory is appealing due
to the fact that it can dynamically change the topological
structure in an unsupervised manner and learn increasingly
more complex spatiotemporal dependencies of the input data.
This allows for reuse of the neurons during sequence encod-
ing, having learned prototypical spatiotemporal patterns out
of the training sequences. Although this approach seems to
be quite resource-efficient for the task of learning visuomotor
sequences, the extent to which neurons are reused is tightly
coupled with the input distribution. In fact, in our experiments
with input data samples represented as multidimensional vec-
tors of both arms’ shoulder and elbow angles, there was little
to no overlap among training sequences. This led to signif-
icant growth of the network with each iteration over unseen
sequences.

The parameters modulating the growth rate of each GWR
network are the activation threshold and the firing counter
threshold. The activation threshold aT establishes the maxi-
mum discrepancy between the input and the prototype neurons
in the network. The larger we set the value of this parame-
ter, the smaller is the discrepancy, i.e., the quantization error
of the network. The firing counter threshold fT is used to
ensure the training of recently added neurons before creat-
ing new ones. Thus, smaller thresholds lead to more training
of existing neurons and the slower creation of new ones, favor-
ing better network representations of the input. Intuitively, the
less discrepancy between the input and the network represen-
tations, the smaller the input reconstruction error during the
prediction phase. However, less discrepancy means also more
neurons. This proved to be not the main issue in our experi-
ments since the number of neurons did not affect significantly
the computational complexity of the predicted values.

A limitation of the sliding time-window technique for
the encoding of temporal sequences is the high computa-
tional cost it introduces due to data’s higher dimensionality.
However, in our case using angles as body pose features
leads to a low-dimensional input compared to, e.g., images.
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So, the training with long time windows does not pose a
computational challenge. Furthermore, it has been shown that
long-term predictions based on a sliding window are more
accurate than recurrent approaches [50].

The use of joint angles as visuomotor representations may
seem to be a limitation of the proposed architecture due to the
fact that it requires sensory input and robot actions to share
the same representational space. For instance, in an object
manipulation task, this requirement is not satisfied, since the
visual feedback would be the position given by the object
tracking algorithm. This issue can be addressed by includ-
ing both position information and corresponding robot joint
angles as input to our architecture. Due to the generative nature
of self-organizing networks and their capability to function
properly when receiving an incomplete input pattern, only the
prediction of the object movement patterns would trigger the
generation of corresponding patterns of the robot behavior.

C. Future Work

An interesting direction for future work is the extension of
the current implementation toward the autonomous generation
of robot movements that account for both delay compensation
as well as reaching a given action goal. For this purpose, the
implementation of bidirectional Hebbian connections would
have to be investigated in order to connect the last layer of
the proposed architecture with a symbolic layer containing
action labels [16], [51] and explore how such symbolic layer
can modulate the generation of the movement patterns when
diverging from the final goal.

Future studies with the real robot will address the intro-
duction of overall body configuration constraints for learning
the perceived motion. The visual body tracking framework
becomes unreliable in certain conditions, e.g., when the
demonstrator is sitting or is touching objects in the back-
ground. In these cases, the provided body configurations may
become unrealistic and cannot be mapped to the robot, or,
in the worst case, when mapped to the robot may lead to
hardware break. For this reason, outlier detection mechanisms
should be investigated in order to discard these unrealistic
body configurations during training.

The imitation scenario studied in this paper was carried out
offline, i.e., the synchronization was evaluated on an acquired
data set of motion patterns. Future experiments will comprise
and HRI user study in which participants will be able to teach
the motion patterns directly to the robot. Moreover, the cur-
rent results encourage further experiments toward learning by
demonstration scenarios, whereby demonstrated motion pat-
terns are stored and then recalled for the execution of different
tasks with a robotic platform.

REFERENCES

[1] J. Mainprice, M. Gharbi, T. Siméon, and R. Alami, “Sharing effort in
planning human-robot handover tasks,” in Proc. IEEE RO-MAN, 2012,
pp. 764–770.

[2] J. Zhong, C. Weber, and S. Wermter, “A predictive network architecture
for a robust and smooth robot docking behavior,” Paladyn, vol. 3, no. 4,
pp. 172–180, 2012.

[3] R. Saegusa, F. Nori, G. Sandini, G. Metta, and S. Sakka, “Sensory
prediction for autonomous robots,” in Proc. IEEE-RAS Humanoid
Robots, Pittsburgh, PA, USA, 2007, pp. 102–108.

[4] T. Lorenz, A. Mörtl, B. Vlaskamp, A. Schubö, and S. Hirche,
“Synchronization in a goal-directed task: Human movement coordina-
tion with each other and robotic partners,” in Proc. IEEE RO-MAN,
Atlanta, GA, USA, 2011, pp. 198–203.

[5] A. Bahill, “A simple adaptive Smith-predictor for controlling time-delay
systems: A tutorial,” IEEE Control Syst. Mag., vol. CSM-3, no. 2,
pp. 16–22, May 1983.

[6] A. Gloye et al., “Predicting away robot control latency,” Free Univ.
Berlin, Berlin, Germany, Rep. B-08-03, Jun. 2003.

[7] R. Nijhawan and S. Wu, “Compensating time delays with neural
predictions: Are predictions sensory or motor?” Philosoph. Trans. Royal
Soc. London A Math. Phy. Eng. Sci., vol. 367, no. 1891, pp. 1063–1078,
2009.

[8] R. C. Miall, D. J. Weir, D. M. Wolpert, and J. F. Stein, “Is the cerebellum
a Smith predictor?” J. Motor Behav., vol. 25, no. 3, pp. 203–216, 1993.

[9] D. Kerzel and K. R. Gegenfurtner, “Neuronal processing delays are com-
pensated in the sensorimotor branch of the visual system,” Current Biol.,
vol. 13, no. 22, pp. 1975–1978, 2003.

[10] M. Rohde, L. C. van Dam, and M. O. Ernst, “Predictability is necessary
for closed-loop visual feedback delay adaptation,” J. Vis., vol. 14, no. 3,
p. 4, 2014.

[11] C. de la Malla, J. López-Moliner, and E. Brenner, “Dealing with delays
does not transfer across sensorimotor tasks,” J. Vis., vol. 14, no. 12, p. 8,
2014.

[12] J. Mainprice and D. Berenson, “Human-robot collaborative manipulation
planning using early prediction of human motion,” in Proc. IEEE/RSJ
IROS, 2013, pp. 299–306.

[13] M. Ito and J. Tani, “On-line imitative interaction with a humanoid robot
using a mirror neuron model,” in Proc. IEEE ICRA, vol. 2. New Orleans,
LA, USA, 2004, pp. 1071–1076.

[14] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection,” in Proc. Int. Symp. Exp. Robot. (ISER), 2016, pp. 173–184.

[15] S. Marsland, J. Shapiro, and U. Nehmzow, “A self-organising
network that grows when required,” Neural Netw., vol. 15, nos. 8–9,
pp. 1041–1058, 2002.

[16] G. I. Parisi, J. Tani, C. Weber, and S. Wermter, “Emergence
of multimodal action representations from neural network self-
organization,” Cogn. Syst. Res., vol. 43, pp. 208–221, Jun. 2016.

[17] L. Mici, G. I. Parisi, and S. Wermter, “Recognition of transitive actions
with hierarchical neural network learning,” in Proc. ICANN, 2016,
pp. 472–479.

[18] D. Vasquez, T. Fraichard, O. Aycard, and C. Laugier, “Intentional motion
on-line learning and prediction,” Mach. Vis. Appl., vol. 19, nos. 5–6,
pp. 411–425, 2008.

[19] A. M. Schaefer, S. Udluft, and H.-G. Zimmermann, “Learning long-term
dependencies with recurrent neural networks,” Neurocomputing, vol. 71,
nos. 13–15, pp. 2481–2488, 2008.

[20] G. A. Barreto, “Time series prediction with the self-organizing map:
A review,” in Perspectives of Neural-Symbolic Integration. Berlin,
Germany: Springer-Verlag, 2007, pp. 135–158.

[21] T. Kohonen, Self-Organization and Associative Memory. Heidelberg,
Germany: Springer-Verlag, 1993.

[22] G. Simon, J. A. Lee, M. Cottrell, and M. Verleysen, “Forecasting
the CATS benchmark with the double vector quantization method,”
Neurocomputing, vol. 70, nos. 13–15, pp. 2400–2409, 2007.

[23] N. Johnson and D. Hogg, “Learning the distribution of object trajectories
for event recognition,” Image Vis. Comput., vol. 14, no. 8, pp. 609–615,
1996.

[24] N. Sumpter and A. Bulpitt, “Learning spatio-temporal patterns for
predicting object behaviour,” Image Vis. Comput., vol. 18, no. 9,
pp. 697–704, 2000.

[25] W. Hu, D. Xie, T. Tan, and S. Maybank, “Learning activity patterns
using fuzzy self-organizing neural network,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 34, no. 3, pp. 1618–1626, Jun. 2004.

[26] J. Walter, H. Riter, and K. Schulten, “Nonlinear prediction with self-
organizing maps,” in Proc. IEEE IJCNN, San Diego, CA, USA, 1990,
pp. 589–594.

[27] J. Vesanto, “Using the SOM and local models in time-series prediction,”
in Proc. Workshop Self Organizing Maps, 1997, pp. 209–214.

[28] G. Billard, S. Calinon, and R. Dillmann, “Learning from humans,” in
Handbook of Robotics, 2nd ed. Secaucus, NJ, USA: Springer, 2016,
pp. 1995–2014.



928 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 4, DECEMBER 2018
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