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Robots That Say “No” Affective Symbol Grounding
and the Case of Intent Interpretations

Frank Förster , Joe Saunders, and Chrystopher L. Nehaniv

Abstract—Modern theories on early child language acquisition
tend to focus on referential words, mostly nouns, labeling concrete
objects, or physical properties. In this experimental proof-of-
concept study, we show how nonreferential negation words,
typically belonging to a child’s first ten words, may be acquired.
A child-like humanoid robot is deployed in speech-wise uncon-
strained interaction with naïve human participants. In agreement
with psycholinguistic observations, we corroborate the hypoth-
esis that affect plays a pivotal role in the socially distributed
acquisition process where the adept conversation partner pro-
vides linguistic interpretations of the affective displays of the
less adept speaker. Negation words are prosodically salient within
intent interpretations that are triggered by the learner’s display
of affect. From there they can be picked up and used by the
budding language learner which may involve the grounding of
these words in the very affective states that triggered them in
the first place. The pragmatic analysis of the robot’s linguistic
performance indicates that the correct timing of negative utter-
ances is essential for the listener to infer the meaning of otherwise
ambiguous negative utterances. In order to assess the robot’s
performance thoroughly comparative data from psycholinguistic
studies of parent–child dyads is needed highlighting the need for
further interdisciplinary work.

Index Terms—Developmental robotics, human–robot
interaction, language acquisition, negation, pragmatics,
psycholinguistics, social robotics.

I. INTRODUCTION

EARLY productive vocabularies of infants are often said
to be dominated by nouns that refer to perceptible objects

such as toys, foods, or animals. Thus many of modern psy-
cholinguistic studies on early word acquisition focus on these
types of words (see [1]–[5]).

Usage-based theories of language development [6] empha-
size the importance of joint reference between caretaker and
child to external objects and processes, and detail the mecha-
nisms behind these triadic joint-attentional frames (caretaker-
child-object), which are cognitively more complex than direct
dyadic interaction (see also [7]).
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A similarly strong focus on words referring to concrete
physical objects, processes, actions, and object properties
such as color or size is prevalent in language-oriented
research in developmental robotics [8]–[25] and agent-based
approaches in evolutionary linguistics [26]–[29]. There, sym-
bol grounding [30], the linking of symbols with data or
concepts derived from the robot’s own embodiment, is
employed for robots to “make sense” of these linguistic enti-
ties. Words and simple grammatical constructions are linked
with the robot’s sensorimotor stream using various tech-
niques that range from neural networks [23] to logic-based
approaches [22].

However, the very earliest productive vocabularies of infants
at the onset of speech, the first ten words, are typically dom-
inated by nonreferential, social words such as “hi,” “bye,”
“yes,” and “no” [31]–[34]. Negation words are already used
at this stage for various communicative functions such as
rejection or nonexistence [35]–[37]. These words cannot be
linked to sensorimotor data in the same way as referential
words as they do not refer to perceptible entities outside the
speaker. In this paper, we describe and evaluate a dyadic
word acquisition mechanism involving so called intent inter-
pretations (see [38], [39], and below) which may explain
how children come to learn the meaning of the earliest
negation words, in English chiefly the word no. This mech-
anism may be best seen as complementing rather than as a
replacement for the dominant mechanism in the developmental
literature centered around triadic joint-attentional frames [6].
We hypothesize that the proposed dyadic behavioral mech-
anism may also explain children’s initial acquisition of the
meaning and use of other nonreferential terms such as emo-
tion and other mental state words such as “sad,” “happy,”
or “like.”

A. Negation, Affect, and Intent Interpretations

Research into the acquisition of early linguistic negation
emphasizes the importance of affect [38]. Yet neither the cog-
nitive requirements nor the learning mechanisms driving the
acquisition of negation are understood in sufficient detail for
roboticists to enable machines to engage in this aspect of
human speech.

In this paper, we describe one of the two related experiments
both of which operationalize the overarching hypothesis that
affect plays a pivotal role in the acquisition of early nega-
tion words. This serves as the dual-purpose of both improving
our understanding of potential acquisition mechanisms in the
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human language development as well as laying the ground-
work for a new generation of the symbol grounding systems
that go beyond the grounding of words and phrases with
external physical referents. We reimplemented a language
acquisition system very similar to another such system which
had been successfully employed for the acquisition of nouns,
adjectives, and two-word utterances [19]–[21]. This type of
acquisition system relies on a tight temporal coupling between
social mechanisms such as the establishment of joint attention
on one hand, and some form of embodied machine learning on
the other. In other words, these systems depend on statistical
regularities in the human conversational behavior. One such
regularity which was exploited in the aforementioned stud-
ies on noun acquisition is the circumstance that prosodically
salient object names and properties are generally produced
within a small time window around the moment when joint
attention on the respective referent between the two speakers
is established. The study presented within the present publica-
tion relies on a similar temporal regularity between affective
displays on part of the robot and the production of intent
interpretations on part of the participant qua teacher. Intent
interpretations seem to be particularly prevalent in the con-
text of conversationally asymmetric dyads: a conversationally
fluent or “strong” interaction partner and a conversationally
“inept” or “weak” speaker or learner. In the case of human–
human dyads this would typically be parent and infant, in our
case the dyad consists of a teacher-participant and a child-like
humanoid. In the more recent developmental literature, the
words and terms which we found to be prosodically empha-
sized within these interpretations such as “want,” like, or “feel
like,” are often referred to as mental state words. They are
often discussed in conjunction with developmental accounts
of theory of mind [40]–[45]. However, negation words are
typically not counted amongst mental state words.

Intent interpretations are rarely mentioned in the con-
temporary accounts of early language acquisition but have
been hypothesized some decades ago to play a vital role
for infants to learn how to express their intent [38], [39].
Intent interpretations are characterized by the conversation-
ally stronger partner providing the infant with words for their
emotions and intentions by the way of interpreting their bod-
ily displays linguistically. Building upon this more general
idea we hypothesized that in the case of negative emotional
or volitional displays, indicating states such as sadness or
unwillingness, these interpretations would frequently contain
negation words as in “no, you do not like that” or in a sim-
ple no. In order for our language acquisition system described
below to pick up on these negation words we have to make
one additional assumption: negation words are either marked
prosodically as salient within the respective utterance or the
utterance is a one-word utterance, i.e., it solely consists of a
negation word. The so called rejection experiment described
below was thus set up as an operationalization of the hypoth-
esis that negative intent interpretations (NIIs), performed
by the conversationally strong partner, constitute a major
source of negation words for the language learner, and these
can be grounded using affective in addition to sensorimotor
associations.

B. Overview of the Experiment

The rejection experiment was a single-blind study, the main
purpose of which was to test the impact of the robot’s moti-
vated behavior upon participants’ linguistic productions in
general and the elicitation of NIIs in particular. Moreover,
we were testing the suitability of these intent interpretations
for the purpose of learning symbol grounding via our lan-
guage acquisition system. The name of the experiment derives
from the observation that NIIs are oftentimes produced as a
response to rejective behavior on part of the conversationally
weak interactor.

Naïve participants were asked to teach the humanoid
iCub [46] words for objects that were located on a table
between them and the humanoid (Fig. 1). They were further
asked to talk to the robot as if it were a prelinguistic child and
told that it would express preferences for certain objects. The
participants’ instructions were largely identical to an earlier
experiment on noun acquisition executed in the same premises
and with the same robot which we will henceforth refer to as
Saunders et al.’s [21] experiment. This previous work did not
involve affective displays on part of the robot and focused
on symbol grounding via sensorimotor association. Data from
this experiment will be used for comparative purposes in the
later part of this paper.

Differing from Saunders et al.’s [21] experiment, the robot
in this paper is equipped with a motivation system which
triggers emotional facial expressions and matching body
behaviors. Simultaneously, it feeds its affective state into a
symbol grounding system. During each experimental session
all objects are assigned valences that trigger the robot’s moti-
vational state toward the object: positive, neutral, or negative.

All of the robot’s behaviors are object-directed and under-
lying it all is a gazing behavior where the robot’s gaze
switches between one or more objects and the participant’s
face. The particular gaze durations vary between behaviors
(see Section II). When presented with preferred objects the
robot smiles and holds out its hand toward them, palm facing
upward, such that participants can put objects into its hand
(reaching behavior).

Inspired by the infants’ reactions to being fed with dis-
liked food, the robot, when presented with unpreferred objects,
looks at these for a set short-time period, starts to frown,
and executes a combined head-eye avoidance movement if
the object is located within a center area of its visual field
(rejection behavior). If the object, after execution of the
avoidance movement, still resides within the center area of
the robot’s visual field another avoidance move is executed,
which may result in overall head movements that resemble
a head shake. If a participant presents the robot with an
object with neutral valence, it displays a neutral facial expres-
sion and alternates its gaze between the participant’s face and
object without approaching nor avoiding the latter (watching
behavior). At the very start of the experiment, before par-
ticipants select the first object, and between presentations of
particular objects, the robot has a neutral facial expression
and executes a looking around behavior: it switches its focus
between all objects located on the table and the participants’
face. Changes between behaviors are triggered by changes in
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Fig. 1. Experimental setup and depiction of the behaviors executed by the
iCub robot during the interaction sessions. Participants and robot face each
other with the objects that are to be taught being located between them on
a table. Top: looking around behavior, executed if no object is selected by
the participant. Middle: reaching behavior, executed if the robot perceives the
selection of an object with positive valence by the participant. Bottom: avoid-
ance behavior, executed if an object with negative valence is being perceived
as selected.

the robot’s motivation system which, in turn, are triggered by
the valences of objects picked up or put down by participants
in their attempts to teach the robot words for these objects.

The experiment was split into five sessions of five minutes in
length, as the word learning required some offline processing
which was performed in between sessions. Both participants’

speech as well as robot’s sensorimotor-motivational (smm)
data were recorded and timestamped during each session.
Upon termination of each session this data was processed in
a semiautomatic manner: first, the prosodically most salient
word is extracted from each utterance through acoustic anal-
ysis. Subsequently the smm data that was recorded during
the production of the respective utterance is associated with
each extracted word, and the salient words are henceforth
grounded in the robot’s own percepts and motivation. The
entirety of grounded words is finally added to the robot’s
embodied lexicon, where a separate lexicon is constructed for
each participant. Each embodied lexicon is initially empty
and gets populated exclusively with grounded words extracted
from the respective participant’s speech over the course of
the interactive sessions. No designer knowledge in terms of
a set of preselected words is incorporated, so the robot can
only acquire and express words which the participant has used
during previous sessions. Thus, the embodied lexicon takes a
different developmental trajectory with each teacher.

At the start of a follow-up session, this lexicon is loaded
into a memory-based learning system [47] and certain trigger
behaviors such as grasping for, rejecting, or simply watching
a presented object lead to the robot querying its embodied lex-
icon: it matches its current smm state against the lexicon and
retrieves the word which best matches this state. This process
is performed as often as complete smm vectors are received
from the perceptual and motivational systems, which operate at
about 30 Hz. A thresholding mechanism maintains a score for
each retrieved word: the score of the currently retrieved word
is increased whereas all other word scores are decreased. As
soon as the score of a word reaches a predefined threshold, this
word is sent to the speech synthesizer: the robot speaks. Upon
speaking, all scores are reset to 0 and the retrieval resumes
on a reduced lexicon where the just-synthesized word is tem-
porarily removed from the lexicon until either another word
reaches the speaking threshold or changes in the smm state
occur, thus potentially allowing multiword utterances (see also
Section II).

II. MATERIALS AND METHODS

A. Study Design

The experiment was split into five sessions per participant.
Each participant completed five sessions of approximately
5 min each with at least one day in between sessions. This time
gap was required in order to complete the post-processing of
the speech recordings. All participants were wearing headsets
during the interaction and their speech was recorded. We fur-
ther videotaped each session. Apart from the participant, one
to two more people were in the room: an operator, who started
up the robot and monitored it during the session, and a helper
who placed the boxes back on the table as Deechee, the robot,
was prone to drop them. In a few sessions, the helper was
absent and the operator took on both roles. Participants were
seated opposite the robot with a table separating the two. The
five objects, whose names were to be taught, were cardboard
boxes of approximately 10-cm side length, with black-and-
white shapes printed on each side of each box (see Fig. 1). For
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TABLE I
OBJECT-BOUND MOTIVATION VALUES PER SESSION

FOR REJECTION EXPERIMENT

TABLE II
CONSTANTS FOR HUMAN–ROBOT INTERACTION,

ALL VALUES IN SECONDS

any particular box, the shapes were identical on every side. The
shapes were a star, a heart, a square, a crescent moon, and a
triangle. After having read and signed the instructions and the
consent form, participants were seated in the room and asked
to count down in the following way: “three, two, one, start.”
They were told in advance, that “start” would constitute the
start time of the session and that the operator would signal
when the five minutes were over. Upon “start,” the operator
pressed a button, which subsequently produced a time stamp
within the body memory of the robot.

As mentioned above the setup was devised to test the
hypothesis whether intent interpretations might be sufficient
for the acquisition of early types of negation such as rejective
utterances or motivation-dependent denial. In order to estab-
lish the situational context in which NIIs would most likely
occur we ensured that participants could not avoid presenting
disliked objects to the robot. We made it impossible for partic-
ipants to initially know which objects the robot would like by
permuting the object-valence mapping for each session (see
Table I). The various time constants controlling the robot’s
gaze behavior were chosen as listed in Table II.

B. Recruiting and Distribution of Participants

We recruited ten participants, the majority British, with
one South-Asian, one U.S.-American, and one South-African
speaker, the latter having lived for several decades in the U.K.
The participants were balanced by gender. Most of the partici-
pants were recruited from the campus and were either students
or employees, only three of them had no affiliation with the
university. Of the ten participants, four had children, and two
other participants came from big families and were involved
in raising children. Yet another participant had worked as a
teacher for small children, and another one stated having had

reasonable exposure to children via friends. The two remain-
ing participants answered that they had no experience with
children.1

Participants were remunerated with £20 each after com-
pletion of all five sessions. This paper was approved by
the University of Hertfordshire Ethics Committee for Studies
Involving Human Participants for the ITALK project under
protocol number 0809/99 and with an extension granted under
protocol number 1112/42.

C. Instructions to Participants

The instructions given were very similar to the ones used
in Saunders et al.’s [21] experiment, namely that their task
was to teach Deechee about the available objects. Moreover,
participants were told to imagine Deechee to be a small child
of approximately two years and, further, that Deechee had
preferences for particular objects, that it may like, dislike, or
would feel neutral about. The first of these instructions was
given in order to increase the likelihood of participants assum-
ing a simplified speech register akin to child-directed speech
(CDS [48]–[50]). The second instruction about Deechee hav-
ing preferences, was given in order to prepare participants
for Deechee’s emotional displays. It is unclear whether this
instruction was necessary, and whether this prime had an
impact upon participants’ way of speaking. The fact that the
experiment was about the acquisition of linguistic negation
was not mentioned to the participants.

D. Behavioral Architecture

The behavioral architecture depicted in Fig. 2 generating
both humanoid’s bodily and linguistic behavior consists of the
following modules or components. Each module is executed
as a separate process and the modules are only loosely cou-
pled in that they communicate with each other asynchronously
via the exchange of so called bottles—a simple messaging
service provided by the YARP robot middleware [51]. Due
to space limitations each module is only sketched, for more
details see [52].

The perception system gathers and processes percepts of
all modalities. The visual processing is done via a modified
version of the system developed by Rüsch et al. [53]. For
the given experiments, this system was limited to face and
object detection. Furthermore, a custom detector was devel-
oped which signals when an object has been picked up from
or put down on the table.

The motivation system generates the robot’s motivational
state. This is done based on either predefined or randomly
chosen object valences and dependent upon the presence of
external pressure upon the robot’s arm (diminished agency). In
the rejection experiment discussed in the present publication,
no external pressure was employed and the object valences

1We did not ask participants explicitly whether they have had prior expe-
rience with robots or programming, but we expect programming knowledge
with four of them as they had been either Ph.D. students or researchers them-
selves at the time of the experiment. One other participant worked as an
actuary and had a strong mathematical background. Another two participants
had interacted with robots prior to the experiment within other experiments
of the research group.
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Fig. 2. Functional overview of robotic architecture for language acquisition. Solid lines indicate components that are active during experimental sessions
(“online”) and dotted lines indicate components that work offline.

were fixed in each session to the values shown in Table I.
The motivational state is modeled as scalar value between
−1 and 1, with −1 being negative, +1 being positive, and
a small band around 0 signifying neutral (see valence toward
perceived objects [54, Ch. 6]). We chose a model as simple as
possible for two reasons. First, we were reluctant to introduce
more complexity into the overall architecture if not absolutely
necessary. Second, it was unclear how a dimensional emotion
model [55] could be mapped in a principled manner to the
robot’s limited facial expressions and bodily behavior.

The body behavior system generates the humanoid’s bodily
behavior including its facial expressions (see Algorithm 1). It
receives input from both perception and motivation system.
The central design tenet was to make the robot act as believ-
ably as possible, as opposed to making its movements as
accurate as possible. A consequence of this tenet is that the
system always produces some kind of behavior. Toddlers do
not freeze and therefore neither should the robot. Five different
behaviors have been implemented: 1) idle; 2) looking around;
3) reaching for object; 4) rejecting; and 5) watching. Each
behavior has a unique behavior id which is broadcasted to the
other subsystems whenever a change of behavior occurs.

A change away from the robot’s “base behavior” (look-
ing around) is triggered first by the participant picking up an
object from the table, and, second, by the robot’s object-bound
valence toward the respective object. The valence modulates
the robot’s motivational state which in turn modulates its
behavior: the robot reaches for objects it likes, it displays
rejective behavior for those it “does not like,” and watches
objects it “feels neutral” about.

During the execution of any of its behaviors, the robot
switches its focus between objects and the participant’s face.
The duration of each such atomic gaze action is listed in
Table II.

The body memory saves high-level and low-level perceptual
data as well as behavior ids and the robot’s motivational state
to a file which is subsequently used for symbol grounding (see
lexical grounding system below).

Algorithm 1 Outline of the “Behavioral Loop” for the
Robot’s Body Behavior for Rejection Experiment. Notice That
“offer_detected()” Is Based on Information Broadcast by the
Perception System, and “valence()” is Based on Information
Pertaining to the Motivation System

1: while negation behavior module is running do
2: if ! headController→connected() then
3: behavior = IDLE
4: else
5: if ! offer_detected() then
6: behavior = LOOK_AROUND
7: else
8: getObjectID(oid)
9: if valence(oid) > neutralThreshold then

10: behavior = REACH_FOR_OBJECT(oid)
11: else if valence(oid) < -neutralThreshold then
12: REJECT(oid)
13: else
14: WATCH(oid)
15: end if
16: end if
17: end if
18: end while

The auditory system comprises all processes involved in the
extraction of words from the participants’ speech. The three
functional components may be distinguished: 1) speech recog-
nition and word alignment; 2) prosodic labeling; and 3) word
extraction. All of these were developed by Saunders et al. [19]
and used for this paper in the same manner as they were within
the studies described in [21].

Due to the low accuracy of standard speech recognition soft-
ware for the types of speech as they occur in our experiments,
a semiautomated system was employed which relies on the
manual transcription of the recorded speech. The output of
this system is a timed phonetic transcription.
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The latter is manually realigned relative to the original
speech recording before the prosodic labeling can be applied.
Utterance boundaries are determined as those pauses between
words which exceed the average pause duration between all
words. Additional utterance boundaries are introduced by a
subsequent additional segmentation based on word duration:
boundaries are set after words whose duration is larger than the
first standard deviation of all words in that utterance (see [19]
for details). The outcome of this process is a sequence of
utterances consisting of prosodically annotated words which
serves as basis for the word extraction. Within the presented
experiments exactly one word is extracted per utterance: the
prosodically most salient one. Prosodic salience is calculated
as f0 ∗ energy ∗ dw, with f0 being the maximum fundamental
frequency, energy the maximum energy, and dw the duration of
the word. All factors were normalized prior to the application
of this formula.

The lexical grounding system performs the grounding of the
lexical items produced by the auditory system. It is executed
offline, that is after each experimental session. This module
takes as input both smm file that had been recorded by the
body memory during that session, and salient word file gener-
ated by the auditory system after the same session. Both files
are subsequently merged into one file in which each salient
word is associated with the smm data that was recorded at
the time during which the corresponding utterance was pro-
duced. In the current implementation we made the decision
to eliminate duplicate entries, that originate from the same
utterance, in order to keep the lexicon at a manageable size.
The grounding process is depicted in Fig. 3. The resulting file,
the bottom file in Fig. 3, is merged with the embodied lex-
icon from previous sessions, if existent, to form an updated
embodied lexicon which is subsequently used in the followup
session of the respective participant by the languaging system.

The languaging system is responsible for the robot’s lin-
guistic productions. It reads on startup the embodied lexicon
which is generated offline by the lexical grounding system
and matches the current smm state of the robot against the
lexicon. The matching is done via a k-nearest-neighbor imple-
mentation, the Tilburg Memory-Based Learner [56], and with
k = 3. This choice was made due to its successful use in the
experiments of [19], but there is no reason why this particular
system could not be replaced with another associative learning
system. In order not to fall victim to the curse of dimensional-
ity [57], only high-level percepts and the robot’s motivational
state was used as basis for matching (Fig. 4). The matching is
performed whenever a complete new smm-vector is available,
which is approximately every 30 ms with the given architec-
ture and hardware. A thresholding mechanism is applied akin
to the one employed by Saunders et al. [19] which determines
which words are uttered at what time.

For each word that is returned by the matching process a
counter is maintained which is incremented for each match
and decreased for each nonmatch with a lower bound of 0
for all counters. If the same word is returned as best match
two or more times in direct succession an additional incre-
ment is added to its counter. Once a counter reaches a set
threshold its respective word is synthesized and uttered by

Fig. 3. Grounding of (salient) words. The grounding process associates
lexical entries, in our case prosodically salient words, with the concurrently
occurring smm data. In our system, the salient word is propagated across
the entire duration of the utterance such that the time stamps, visible in the
salient-words-file (top-left) mark the start and end of the respective utterance
within which the word was produced. Time stamps for utterance boundaries
are symbolized by “...” Also notice that we remove duplicates of grounded
words that would ensue from the same utterance. In the given example, this
means that due to the lack of change within the smm data during the production
of the utterance the potentially up to 23 ensuing identical grounded words are
collapsed into one (bottom).

the robot and the counter is reset to 0. The numerical value
of the threshold was chosen empirically such that the result-
ing speech frequency appeared neither too fast nor too slow.
However, in contrast to the single global threshold employed
by Saunders et al. [19] we adapted the threshold to the robot’s
motivational state. The robot is likely to speak most (low-
est threshold) when it likes an object, it speaks slightly less
(medium threshold) when it dislikes an object, and it speaks
the least frequently (highest threshold) when it does not care
about an object (motivation = 0). In order to avoid exces-
sive repetition of the same word during the duration of an
identical smm context we employed a so called differential
lexicon which suppresses the last uttered word in the lexicon
during constant smm context. As soon as some dimension of
the current smm vector changes, the full, unconstrained lexi-
con becomes active again. For further details of each of the
functional subcomponents of the languaging system (see [52]).

E. Taxonomy of Negation Types

On the pragmatic level we constructed two taxonomies of
negation types, one based on the robot’s speech, and another
one based on participants’ speech and subsequently classified
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Fig. 4. smm vector. Solid line indicates dimensions that were used within
experiments; bid: behavior id, oid: object id, faceDet: face detected, moti:
motivation value, resist: resistance detected, and encX: encoder reading #X.
Within the rejection experiment described in this paper the resistance value is
constantly 0 due to participants not physically manipulating the robot’s arm.

the negative utterances of both parties according to these tax-
onomies. We developed two instead of just a single taxonomy
in order to keep the robot’s taxonomy as close to Pea’s tax-
onomy of early negation as possible such that the analytical
results would be comparable (see [58]). Pea’s taxonomy only
covers children’s but not their parents’ productions and there-
fore is often times insufficient for classifying parental negative
expressions.

The first taxonomy to be constructed was the taxonomy for
robot utterances from an observer perspective and is based
on Pea’s taxonomy of early negation types [38] which origi-
nates in studies on the earliest forms of linguistic negation in
children’s speech. Subsequently the taxonomy for participants’
negation types was constructed. In both taxonomies conver-
sational adjacency constitutes the top-level criterion which
naturally affords the construction of conversationally paired
types (see [59]). Negative agreements on the part of the robot,
for example, are preceded by negative questions on the par-
ticipants’ part (conversational adjacency), and NIIs uttered by
participants are preceded by what is perceived as negative or
rejective behavioral displays on the robot’s side (behavioral
adjacency). Additional, that is, stand-alone types were intro-
duced where this was deemed necessary. All types may be
considered speech act theoretical [60], [61] and conversation
analytical [59], [62] hybrids in the sense that not only the
type of illocutionary force is taken as a distinguishing crite-
rion but also conversational adjacency. The taxonomies were
constructed based on a data set consisting of data from the
herein presented rejection experiment as well as the related
prohibition experiment not discussed in this publication.2 The
taxonomies therefore contain more negation types than those
relevant for the present publication. The complete taxonomies
are described in [52], but short descriptions and examples
of those negation types most frequently produced within the
rejection experiment are given below.

Upon construction of the taxonomies, the latter were applied
by the two coders to the negative utterances in the experiments
in order to determine their negation type. Prior to the coding
of the negative utterances for their type the coders were asked
to code the robot’s negative utterance set for felicity from the
observers’ perspective, i.e., they had to judge whether they,
as fluent English speakers, would rule a given robot utterance

2While it will be reported elsewhere, the prohibition experiment was
designed to test a further hypothesis on the developmental origin of linguistic
negation, namely that the first negation words to be uttered by a child can be
traced back to prohibitive utterances on part of the caretaker. This hypothe-
sis is complementary to the hypotheses of this paper. But in order to clarify
the relationship between the prohibition and rejection experiments, we would
like to point out that the experimental setup of the former was designed as an
extension of the present experiment in order to render the results comparable.

as adequate or apparently meaningful in the given conversa-
tional context (see notions of felicity in [60] and [63]). We
chose to code for felicity prior to coding for type in order to
prevent the criteria used when judging for type from influenc-
ing the intuitive judgment regarding felicity. The second coder
annotated about 20% of each the participants’ and robot’s neg-
ative utterances which had been randomly selected from the
full utterance set from both rejection and prohibition experi-
ment (see also the coding scheme printed in [52, Appendix]
for details). Participants’ utterances were coded only for type,
the robot’s utterances were additionally coded for felicity as
described. The second coder was employed in order to eval-
uate the goodness of the constructed taxonomies in terms of
intercoder agreement as well as the reliability of the felicity
judgments [64]. The intercoder agreements for robot nega-
tion type, robot negation felicity, and human negation type
in terms of κ values were 0.46, 0.41, and 0.74, respectively.
The former two are on the lower end of Rietveld and van
Hout’s scale [64], [65] for moderate agreement, but would be
considered too low on Krippendorff’s [66] scale. The κ-values
resulting from the coding of human negation types on the other
side indicate substantial agreement between the two coders.
We subsequently investigated ways to optimize the robot’s tax-
onomy such that one could reasonably expect a better κ-value
when using the optimized taxonomy. Prior to describing the
outcome of these attempts we need to introduce those nega-
tion types mentioned within this paper. These include the ones
most frequently produced during the experiments. In the fol-
lowing those types found in human participants’ speech are
qualified with “[H].” The types found in the robot’s speech
are marked “[R].” In the examples question marks indicate
the intonational contour of a question, full stops the contour
of an assertion.

NII [H] are linguistic interpretations produced by conver-
sationally stronger partners, in the case of children typically
mothers or fathers, referring to the emotional and/or volitional
states of the child or, in our case, the robot [38, p. 179]. In
other words, the conversationally strong partners produce neg-
ative expressions that fit the motivational or volitional state of
the conversationally weaker partner. Typically the semantics
of these expressions is negative as well, i.e., the participant
expresses that she thinks the robot does not want or not like
either a particular object or does not want or not like to
perform a particular action such as holding the box.

Examples would be utterances such as “no, you do not like
the circle” but also a simple “no?” when not a proper question,
i.e., if it appears that an answer is not expected.

Negative motivational questions (NMQs [H]) are questions
containing lexical or grammatical negatives which refer to the
motivational or emotional state of the addressee. They are
therefore similar to NIIs, the only difference being that they
are deemed to be proper questions, i.e., the speaker does expect
a response by the addressee. They may refer to the motiva-
tional state directly such as “are you not feeling well today?”
but may also refer to preferences or volitional stances such as
“you do not like the heart?” or “you do not want to play?”

Truth-functional denials (TFD [H]) are denials of a
truth-functional assertion, i.e., an assertion whose truth is
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independent of both speaker’s as well as addressee’s likes,
dislikes, capabilities, or perspectives. Examples would be “no,
it is not a heart” in reply to the assertion that something
was a heart, or a simple no in reply to a “it is raining out-
side.” We may expect this type of negation to be used in
abundance in a teaching scenario where factual knowledge
is what is being taught such as the scenario given in our
experiment.

Truth-functional negations (TFN [H]) in our taxonomy cap-
ture all kinds of TFN which are not TFDs. TFN is in this sense
a residual class that captures all nonadjacent truth-functional
utterances, be they negative assertions, suggestions, specula-
tions, or guesses about state of affairs, which are in essence
truth-functional. We also allotted negative normative asser-
tions about prevailing rules and norms to this category (second
example).

Examples: “It will not rain today” and “in England, you
must not drive on the right-hand side.”

Negative agreements (A [H+R]) are given if one of the
conversation partners produces a negative utterance of some
kind and the other agrees with it by uttering a negative as
well. Often but not always the latter negative is a repeti-
tion of the negative expression used by the first speaker. The
first speaker’s utterance can have an “assertional” intonation
contour or a question contour.

Examples: A: “do not you like carrots?” B: “no” and A:
“so you do not like carrots.” B: “no.”

Motivation-dependent Denials [R] are negative responses to
motivation-dependent questions or assertions. This means that
they depend on the current motivational state of the addressee,
her likes, dislikes or preferences.

Example: A asks B “do you want a beer?” B answers with
no, or with “no, I do not drink alcohol.”

Rejections (R) [R] are very similar to motivation-dependent
denials, the main difference being that an utterance of the lat-
ter type is adjacent to another utterance of the conversation
partner. Rejections on the other hand are reactions to nonlin-
guistic offers or proposals of some kind. Our “definition” of
linguistic rejection appears to be more narrow than the one
employed by Pea. Our definition was thought to sharpen the
distinction between the two types.

Example: A physically offers something to B (for example
by extending his hand toward B, palm facing upward con-
taining the object in question). B rejects it with a simple “no
thanks” or an even simpler no.

Negative tag question (NTQ [H]) are negative grammati-
cal constructions that are attached to the end of the utterance.
They consist of the negated auxiliary verb of the main clause,
if there is one, plus a personal pronoun. They appear to be at
the very fringe of “negative meanings” and may not be consid-
ered a proper negation type. Despite it being doubtful whether
they are semantic negatives, we included them nonetheless as
they occurred frequently and clearly contain a grammatical
negative.

Examples: “You do like it, do not you?” “You have been to
Paris, have not you?”

Two attempts to optimize the robot’s taxonomy of nega-
tion words were made, where the first involved a set of

automatic optimization attempts by way of merging nega-
tion types.3 This optimization attempt indicated that fusions
of TFD with rejection as well as negative agreement with
self-prohibition, a type only occurring in the prohibition exper-
iment, were necessary for us to reasonably expect a sufficient
intercoder agreement. The fusion of the former is highly
problematic from a developmental point of view as the two
types are firmly distinct in accounts of negation in early child
language [37], [38], [67]. Such a fusion would therefore ren-
der our taxonomy incomparable to taxonomies constructed to
delineate human language development. We therefore did not
fuse the indicated types and focused instead on the reasons
for the coders’ lack of more than moderate agreement in the
context of the robot’s linguistic negation. The second attempt
consisted of coder interviews designed to determine the rea-
sons for disagreement between the particularly disagreed upon
types (see [52, Secs. 5.3.6–5.3.8] for details). This means that
in the context of the robot’s negative utterances we have to
be careful when considering numerical results based on judg-
ments from only one coder. The good news in this context is
that there was no indication that any one of the two coders
would have judged the robot’s negative speech systematically
more felicitous as compared to the other.

F. Data Analysis

In total approximately 4 h of participants’ speech were
analyzed originating from 50 experimental sessions, five per
participant.4 The participants’ speech was analyzed on three
different levels while paying particular attention to negative
utterances, words or types: 1) utterance level; 2) word or cor-
pus level; and 3) pragmatic level. Additionally we applied the
utterance and corpus level analyses to the speech data gathered
in Saunders et al.’s [21] experiment for the purpose of com-
parison. The latter consists of approximately 1 h and 35 min
of speech originating from nine participants and five sessions
per participant. The shorter duration is due to each session
only being 2 to 3 min long compared to the approximately
5-min duration per session in our rejection experiment.

On the utterance-level we measured the mean length of
utterance, the speech frequency in utterances per minute
(u/min), and the number of distinct words. These measure-
ments form the basis of Fig. 5. The same utterance boundaries
were adopted as determined by the auditory system for the
purposes of word extraction. All of these measures were cal-
culated based on the full set of utterances of both experiments
as well as on the subset of negative utterances only.

Negative utterances within the speech recordings were
detected in the following manner. Based on the transcripts we
first printed a complete list of all distinct words in the com-
plete corpus of participants’ speech and manually selected all
negative words such as no, “do not,” “not,” etc. (see Table III

3The optimization algorithm performed all possible mergers and calculated
the to-be-expected κ value under the assumption that a coder who under the
initial taxonomy had decided that an utterance u would be of type t1, and
assuming t1 were to be merged with some other type t2 to a joint type t12,
the coder would then categorize u as being of the new type t12.

4The transcripts of participants’ speech are available at
http://uhra.herts.ac.uk/handle/2299/18196.
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TABLE III
LIST OF NEGATION WORDS USED FOR ANALYSES. ALL NEGATION

WORDS LISTED HERE WERE SELECTED FROM A COMPLETE LIST OF

WORDS OBTAINED BY ACCUMULATING THE WORDS FROM THE

TRANSCRIPTS OF THE EXPERIMENTS. A TRAILING “(2)” SIGNIFIES A

SECOND PHONETIC VARIANT OF THE SAME LEXICAL WORD

for the complete list). Based on this list of negative words all
negative utterances were extracted from the transcript by auto-
matic means, where negative utterances are those utterances
which contain at least one negative word. Subsequently addi-
tional steps were undertaken to temporally align the textual
artifacts with the video recordings for the pragmatic analysis.

On the corpus-level we constructed separate corpora
from participants’ speech transcripts for both our and
Saunders et al.’s [21] experiment yielding the rejection, and
Saunders et al.’s [21] corpora. Moreover separate corpora
for only those words marked as prosodically salient by the
auditory system were assembled resulting in the salient word
only subcorpora [see Fig. 5(c)]. Prosodically marked salient
words are particularly relevant to our robot’s language acqui-
sition process as only they become part of its embodied
lexicon and thus come to constitute its active vocabulary (see
also [20], [21]).

III. RESULTS

On the utterance level, we performed two-sample t-test
analyses comparing participants’ utterances per minute and
negative utterances per minute on a per-session basis. Whereas
there is no significant difference in the overall production rate
of the participants in the rejection as compared to those in
Saunders et al.’s [21] experiment [Fig. 5(a)], every 6–7 utter-
ances of their speech contain a negation word, a rise of 332%
compared to participants’ speech in Saunders et al.’s [21]
experiment [see Fig. 5(b)]. The preponderance of negative
utterances leads to a stark rise of negation words in the set
of prosodically salient words, the words that enter the robot’s
embodied lexicon. The quantitative rise of negation words
is amplified by the fact that no has a comparatively high
prosodic saliency rate in the negation experiments, both rel-
ative to Saunders et al.’s [21] experiment as well as relative
to the average word saliency within the rejection experiment
[Fig. 6(b)]. As a result no becomes the second most-frequent
salient word in the corpus of salient words of the rejection
experiment [Fig. 5(c)]. A pragmatic analysis of these nega-
tive utterances shows that NII are at 31%5 the most frequent
negation type, closely followed by the NMQs (30%), both of
which are directly linked to the robot’s affective displays. The
absolute production rate of TFDs ranks third (22%). Yet the
overall lower saliency marking rate of the latter type (29%)
as compared to the ones of the two motivational types (NII:
54% and NMQ: 49%) means that the vast majority of negation
words in the robot’s active vocabulary, in terms of exemplars

5This and all the following percentage values are rounded to the nearest
0.1%.

propagated into the data set of its memory-based learner, orig-
inate from the two motivational or affective types. Some intent
interpretations and motivational questions were performed in
non-negative ways. For example some participants at times
lexicalized the robot’s negative affective display with emo-
tion words such as sad as in “why are you sad?” instead of
the more common negative “you do not like it?” We can-
not provide the reader with a numerical value in terms of
the percentage of such positive intent interpretations as we
focused our pragmatic analysis on negative utterances only
but we find it important to point out that not all intent inter-
pretations which “describe” a negative motivational state are
necessarily negative.

In comparison no ranks at place 50 in Saunders et al.’s [21]
experiment and accounts for less than 0.5% of the corpus
[Fig. 5(c)]. The effect of the motivational displays of the
robot is thus a vastly higher production rate of negative utter-
ances as compared to the nearly identical experimental setup
of Saunders et al. [21] where the robot does not display an
affective or motivational stance.

Fig. 7(a) displays the mean of the robot’s vocabulary size
across the five sessions. Shown are both its total as well as its
active vocabulary size. With total vocabulary we refer here to
all grounded words contained in its languaging module which
are loaded during the start of each session and form the basis of
its speech. We counted only lexically unique words but point
out that its lexicon file will contain many duplicates with iden-
tical or differing smm associations. The lower plot shows its
active vocabulary as it was displayed by speech during the
respective session. As can be seen from the graphs, the robot
only ever uttered a fraction of the words in its vocabulary. This
could be caused by words that differ lexically but are identi-
cal in terms of their smm grounding, and where one of these
smm-identical words is numerically dominant. If this is the
case and robot finds itself in the respective smm context, the
numerically more strongly represented word will overshadow
the other words such that it is likely that only this word will be
uttered in the respective session. The robot’s average talkative-
ness within each session is more or less constant as can be seen
in Fig. 7(b) and will strongly depend on the chosen speaking
thresholds of the languaging module (see Section II.D).

The pragmatic analysis of the robot’s negative utterances
with regard to their felicity or adequacy, i.e., its “prag-
matic” learning success, yielded a success rate of 66.1% (see
[52, Tab. 5.51]). An additional temporal analysis correlating
instances of NIIs with the robot’s motivational state yielded
that in roughly two thirds of times (66.2%) the robot was
in a negative state when participants produced the respective
instance of a NII. Only in 8.9% of all cases was the NII uttered
when the robot was in a positive state and in the remain-
ing 24.9% of cases the NII co-occurred with the robot being
in a neutral state. The circumstance that in the majority of
times participants (co-)produced NII while the robot displayed
and was in a negative motivational state provides the potential
ground for an association between negative word and negative
motivation. For NMQs the temporal correlation between pro-
ductions of utterances of this type and negative state is weaker
and might explain the “pragmatic misfires” of the robot.
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(a)

(c)

(b)

Fig. 5. Impact of motivated behavior on linguistic production of participants—ten and nine participants in the rejection and Saunders et al.’s [21] experiment,
respectively. (a) General production rates in terms of utterances per minute between Saunders et al.’s [21] experiment (upper blue) and rejection experiment
(lower black) differ only marginally (mean ± SEM). (b) Yet the production rate of negative utterances per minute is significantly higher in the rejection
(middle black) as compared to Saunders et al.’s [21] experiment (lower blue). *P < 0.05, **P < 0.01 (two sample t-test). (c) Twenty most frequent words
plus negation words ordered by rank and based on combined word corpora of all participants’ speech. The relative abundance of negative utterances is
mirrored on this level: No belongs to the ten most frequent words in the rejection corpus, compared to its rank 50 in Saunders et al.’ [21] corpus. No ranks
even higher in the corpus of prosodically salient words due to its high saliency and the word therefore enters the robot’s vocabulary frequently. Arrows (↑)
indicate rank-equality between the stated and the next higher entry. Negation words are emphasized with gray background. The “+1” row contains the 20th
most-frequent words unless a different rank is specified in brackets. The superscript2 indicates a second phonetic variant of a lexically identical word.

In 40.1% of cases, the robot was in and displayed a negative
state, in 40.9% in a neutral state and in 19% in a positive state.
Thus, in terms of the potential for establishing a (statistical)
association between a negative motivational state and negation
word, NIIs appear to be clearly better suited as compared to
NMQs. Given that instances of both types are not mutually
exclusive but were produced in the same sessions, the poten-
tial for establishing such an association is still given. Yet due
to the prominent co-occurrence of neutral motivational states
and negative words in the case of NMQs, pragmatic misfires or
misuses of such words are to be expected as witnessed in our

experiments. This is particularly the case when the core word
learning mechanism is modeled as a mainly associative one
(with associative in the Hebbian sense). Unfortunately, due to
the absence of quantitative psycholinguistic data on the felic-
ity rates of infants’ use of negation words we cannot conclude
how good the robot’s felicity rates are in comparison. In other
words, we do not know how good our robot is in its use of no
and similar words as compared to children because we do not
know how good toddlers are at using them felicitously. We do
know that children in certain stages overgeneralize nouns [68]
or grammatical constructions [69], [70]. Yet no comparable,
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(a)

(b)

Fig. 6. (a) Frequency of human utterances classified as being of the stated negation types (pragmatic level) and percentage of utterances falling under the
respective type with salient negation word (only types with > 5% of total number of negative utterances). (b) Prosodic saliency rates of selected words and
word groups. No has a considerably higher rate for being prosodically marked as salient in the rejection experiment as compared to Saunders et al.’s [21]
experiment, RC: rejection corpus, and SC: Saunders et al.’s [21] corpus.

let alone quantitative data on the successful use of no and
other negation words exists.

IV. DISCUSSION

The observation that the majority of NII productions are
well-aligned to the interlocutor’s display of affect may not
be surprising to conversation analysts who observed humans
to be sensitive to differences of several hundred millisec-
onds [71] in the conversational moves of other speakers. Yet
such tight interactive couplings have only rarely been con-
sidered in robotic language acquisition. Symbol grounding
up to this point, if any human teacher was employed at all,
is in most cases a very carefully conducted process where

typically the constructor of the system or another trained
person acts as language teacher. In these cases, either due
to their privileged knowledge of the inner workings of the
system, or by mere training, these teachers utter the right
words, or at least the right kind of words, at the right time
(see [10], [23]). Roy and Pentland [16] provided a rare counter-
example where recorded unconstrained CDS is used to train
a symbol-grounding system. Nevertheless the vast majority of
symbol-grounding systems so far depended on these some-
what artificial ways of establishing linguistic or interactional
regularities for the learning to be successful. The presented
rejection experiment shows that certain aspects of human con-
versational behavior are regular enough to serve as learning
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(a) (b)

Fig. 7. Mean robot vocabulary size and number of robot utterances per minute in the rejection experiment. (a) Top black line displays the total vocabulary
size of the robot in terms of the number of lexically unique grounded words extracted from participants’ speech (mean ± SEM). This is the vocabulary which
is loaded into the robot’s languaging module at the beginning of the subsequent session and the sole basis of its speech. Note that the actual vocabulary
file may also contain lexical duplicates with differing smm data as well as potential real duplicates where both lexical words and the associated smm data
are identical. The bottom green line displays the number of unique words that the robot actually uttered in the respective session (mean ± SEM). (b) Mean
number of robot utterances/words per minute by session across all participants (mean ± SEM).

resource for some of children’s earliest words. In particular,
we demonstrated that the use of early negation words may
be learned by exploiting these conversational and pragmatic
regularities. The latter may be a symptom or side product
of what Levinson [72] has termed the “interaction engine,”
a set of cognitive abilities and behavioral dispositions unique
to our species which form a prerequisite to all language acqui-
sition. Intent interpretations, originally proposed by Pea [38]
Ryan [39] as source for the acquisition of volition words, have
indeed the potential to act as a central interactional resource
for learning how to negate.

Given that our knowledge of intent interpretations “in the
wild,” that is within parent–child dyads, are only anecdotal
rather than quantitative, only detailed psycholinguistic obser-
vations including recordings of their precise timing would
provide us with the means to properly evaluate and contrast
our observations.

Another source of insight into the adequacy of the robot’s
“negative” linguistic behavior is the analysis of the sources
of coder disagreement [52]. As mentioned in Section II, our
automatic optimization attempt yielded the developmentally
nonsensical suggestion to fuse rejection with TFD in order
to increase the intercoder agreement. The qualitative analysis
subsequently indicated that the main reason for disagreement
or uncertainty amongst coders as to which of these two types
an utterance belongs to was the following: both coders were
frequently uncertain when deciding whether a given negative
word, typically no, would constitute an “in game” move, in
which case it would most probably be classified as TFD, or
whether it constituted a “meta” move, which means that the
coder judged the robot unwilling to play the “naming game”
at all, a case of rejection. A contributing factor to this uncer-
tainty is the lack of natural timing of the robot’s utterances.
Rather than speaking within the hypothetically important time

frame of 1 s after an adjacent utterance or producing a commu-
nicatively equivalent behavioral move [71], the robot speaks
when it is “confident enough” that a given smm-word asso-
ciation holds. This apparent violation of conversational time
constraints thus impacts directly upon semantic or pragmatic
judgments with regards to the meaning of a given negative
utterance. We refer to [52] for a more elaborate discussion
of reasons for coders’ confusion, but would like to empha-
size the importance of timing upon the meaning of a word:
there are words, in this paper mainly no, whose meaning
for the addressee as well as for observers and coders of the
conversation changes or becomes ambiguous if certain time
thresholds are exceeded. Beyond it being a merely method-
ological issue this observation provides support for the view
that the meaning of no is pragmatic rather than strictly seman-
tic (see Montgomery’s [45] discussion of pragmatic ends as
source of word meaning for mental terms).

V. FUTURE WORK

Given the exploratory nature of this paper the architectural
choices were driven by a design variant of Occam’s razor:
we chose the simplest algorithms whenever given a seemingly
arbitrary choice. The rationale behind this strategy was to keep
the number of variables in the learning architecture as small
as possible in order not to confuse the eventual analysis with
a plethora of variables. The two areas where this choice may
have been too simplistic are the chosen 1-D model of affect
or motivation, and the choice of a mere association-style core
learning algorithm, k-nearest-neighbor, for grounding words in
smm data. This means that apart from participants’ prosodic
emphasis of important words, no social signals are evaluated,
nor could they, in principle, be incorporated into the learn-
ing algorithm in any straightforward manner. It is conceivable
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that the transition toward the more powerful class of reinforce-
ment learning algorithms would improve the robot’s learning
success. The introduction of such signals could render the
robot sensitive to socially derived reinforcement signals as
well as internal reinforcement signals potentially derived from
the robot’s successful use of words. The ability of assessing
one’s own success or felicity may also provide an indicator
as to when words can be “crystallized” or condensed into
“concepts”—the current choice of a lazy learner as core learn-
ing algorithm does not lend itself easily for the purpose of
concept formation. Moreover, a choice of reinforcement learn-
ing in this context appears to be more in line with established
psychological models of learning, where the term “associa-
tive learning,” in stark contrast to its use in computer science,
already implies the presence of reinforcement signals rather
than referring to the reinforcement-free style of algorithms
akin to Hebbian learning [73].

Another factor in the cases of unsuccessful language use
was that the robot, unbeknownst to participants, was real-time
deaf, i.e., it did not know when it was being spoken to. This
prevented it from replying in a timely manner other than by
chance. Our analysis of the reasons for coder’s uncertainty
underlines the importance of timing for speech production. The
particular meaning of no is dependent upon its type, conversa-
tional adjacency is an essential criterion in judgments for type,
and judgments about adjacency are time-sensitive. Therefore
observers’ as interlocutors’ inference of the meaning of no
is sensitive to the production timing of the utterance. In the
future, we intend to evaluate timing issues more generally by
conducting a formal conversation analysis of the conversations
recorded within the experiments.

In terms of future improvement of the learning archi-
tecture the indicated manifold degrees of freedom above
suggest that the most promising and effective approach may
be temporal high-density studies of interactions of parent–
child dyads. Apart from informing future design choices, such
studies, if conducted with sufficient temporal resolution, i.e.,
on the level of a few hundreds of milliseconds, could show
whether children’s emotional and volitional displays reliably
trigger parental intent interpretations, thereby either confirm-
ing or rebuffing our findings based on participant-robot dyads.
In terms of assessing the robot’s linguistic performance, a
comparative study is needed in order to assess children’s
performance when using negation words. Such a study should
start at the time of their onset of speech and continue for
several months charting their felicity in using no and other
similarly pragmatic words. To date no quantitative insight
about children’s (un-)felicitous use of such words exists akin
to the analysis which we performed on our data set. Most
helpful would be precise descriptions of the type and timing
of eventual pragmatic errors qua misfires, and their impact
upon the further course of the respective interaction. In par-
ticular parental reactions to such misfires, as well as eventual
real-world pragmatic results of the misfire would help in con-
straining speculations about the potential presence of social as
well as internal reinforcement signals.

Insights from such observations would greatly facilitate
future modeling efforts for word learning algorithms in that

they could narrow the search space of potential algorithmic
modifications to ecologically valid choices.

Another practical issue for improvement concerns the
speech recognition technology which we employed to extract
words from participants’ speech. Our experiments were ren-
dered rather time-consuming by the need to employ manual
transcriptions due the word recognition rate not being suf-
ficient otherwise. In this context recent improvements in
automatic speech recognition (ASR) and statistical language
modeling such as deep learning [74], [75], heuristic ASR
systems [76], [77], and ASR systems designed to cope with
certain noise levels [78] promise improvements for future
experiments in human–robot interaction learning systems.

VI. CONCLUSION

This paper provides support for the hypothesis that the earli-
est forms of linguistic negation, in English predominantly no,
may originate in parental NIIs. These intent interpretations
are typically triggered by bodily displays of negative affect or
volition, displays of “not liking” and “not wanting” something,
respectively, with these interpretations being temporally tightly
coupled with the triggering displays. Via the described imple-
mentation we gave an example that social mechanisms akin
to the ones encountered in CDS may be elicited and exploited
by an artificial embodied system for machine learning pur-
poses. These intent interpretations are a rarely documented
interactional phenomenon in the contemporary developmental
literature, yet in this paper we found them to be a potential
resource of meaning for grounding negative words such as no
in affect.

Our architecture is the first to extend symbol grounding
beyond the realm of sensorimotor-data to encompass affect.
Recent psychological studies indicate that affect may also play
an important role in the grounding of so called abstract con-
cepts other than negation [79]. Affective grounding thus may
help artificial agents to tackle concepts other than negation.
Although associative learning in the Hebbian sense combined
with certain social mechanisms may suffice to acquire a certain
linguistic skill level, more powerful learning algorithms such
as reinforcement learning might be needed in the long run,
for example to stabilize the robot’s active vocabulary. Yet in
order to answer the question which core learning mechanism
underlies children’s word learning in the one-word stage and
in the context of negation words, more detailed psycholinguis-
tic studies are needed with a particular focus on the precise
timing of both behavioral and linguistic conversational moves
between parent and child.
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