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Abstract—A human being’s cognitive system can be simulated
by artificial intelligent systems. Machines and robots equipped
with cognitive capability can automatically recognize a humans
mental state through their gestures and facial expressions. In
this paper, an artificial intelligent system is proposed to mon-
itor depression. It can predict the scales of Beck depression
inventory II (BDI-II) from vocal and visual expressions. First,
different visual features are extracted from facial expression
images. Deep learning method is utilized to extract key visual
features from the facial expression frames. Second, spectral low-
level descriptors and mel-frequency cepstral coefficients features
are extracted from short audio segments to capture the vocal
expressions. Third, feature dynamic history histogram (FDHH)
is proposed to capture the temporal movement on the feature
space. Finally, these FDHH and audio features are fused using
regression techniques for the prediction of the BDI-II scales. The
proposed method has been tested on the public Audio/Visual
Emotion Challenges 2014 dataset as it is tuned to be more focused
on the study of depression. The results outperform all the other
existing methods on the same dataset.

Index Terms—Artificial system, Beck depression inventory
(BDI), deep learning, depression, facial expression, regression,
vocal expression.

I. INTRODUCTION

MENTAL health issues such as depression have been
linked to deficits of cognitive control. It affects one

in four citizens of working age, which can cause significant
losses and burdens to the economic, social, educational, as
well as justice systems [1], [2]. Depression is defined as “a
common mental disorder that presents with depressed mood,
loss of interest or pleasure, decreased energy, feelings of
guilt or low self-worth, disturbed sleep or appetite, and poor
concentration” [3].
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Among all psychiatric disorders, major depressive disorder
(MDD) commonly occurs and heavily threatens the mental
health of human beings. 7.5% of all people with disabilities
suffer from depression, making it the largest contributor [4],
exceeding 300M people. Recent study [5] indicates that having
a low income shows an increased chance of having MDDs.
It can also affect the major stages in life such as educa-
tional attainment and the timing of marriage. According to [6],
majority of the people that obtain treatment for depression do
not recover from it. The illness still remains with the per-
son. This may be in the form of insomnia, excessive sleeping,
fatigue, loss of energy, or digestive problems.

Artificial intelligence and mathematical modeling tech-
niques are being progressively introduced in mental health
research to try and solve this matter. The mental health area
can benefit from these techniques, as they understand the
importance of obtaining detailed information to characterize
the different psychiatric disorders [7]. Emotion analysis has
shown to been an effective research approach for modeling
depressive states. Recent artificial modeling and methods of
automatic emotion analysis for depression related issues are
extensive [8]–[11]. They demonstrate that depression analy-
sis is a task that can be tackled in the computer vision field,
with machine-based automatic early detection and recognition
of depression is expected to advance clinical care quality and
fundamentally reduce its potential harm in real life.

The face can effectively communicate emotions to other
people through the use of facial expressions. Psychologists
have modeled these expressions in detail creating a dictionary
called the facial action coding system (FACS). It contains the
combination of facial muscles for each expression [12], and
can be used as a tool to detect the emotional state of a per-
son through their face. Another approach to classify emotion
through facial expressions is using local and holistic feature
descriptors, such as in [13]. Unlike FACS, these techniques
treat the whole face the same and look for patterns through-
out, and not just for certain muscles. However, the depression
disorder is not limited to be expressed by the face. The percep-
tion of emotional body movements and gestures has shown it
can be observed through a series of controlled experiments
using patients with and without MDD [14]. Furthermore,
electroencephalogram (EEG) signals and brain activity using
magnetic resonance imaging, are modalities recent to computer
vision [15], [16]. Electrocardiogram (ECG) and electro-dermal
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activity are also considered for depression analysis alongside
the audio-visual modality [17].

All of this research is evidenced by the series of
International Audio/Visual Emotion Recognition Challenges
(AVEC2013 [1], AVEC2014 [18], and most recently
AVEC2016 [17]). Each challenge provides a dataset that has
rich video content containing subjects that suffer from depres-
sion. Samples consist of visual and vocal data, where the facial
expressions and emotions through the voice have been cap-
tured carefully from the cognitive perspective. The objective
is to communicate and interpret emotions through expres-
sions using multiple modalities. Various methods have been
proposed for depression analysis [11], [19], [20], including
most recent works from AVEC2016 [21]–[23].

In order to create a practical and efficient artificial system
for depression recognition, visual and vocal data are key as
they are easily obtainable for a system using a camera and
microphone. This is a convenient data collection approach
when compared to data collection approaches that requires
sensors to be physically attached to the subject, such as EEG
and ECG data. For machines and systems in a noncontrolled
environment, obtaining EEG and ECG can therefore be diffi-
cult to obtain. The depression data from the AVEC2013 and
AVEC2014 datasets provide both visual and vocal raw data.
However, AVEC2016 provides the raw vocal data but no raw
visual data, for ethical reasons. Instead is provided a set of
different features obtained from the visual data by the host.
For this reason, the AVEC2014 dataset has been chosen in
order to run experiments using raw visual and vocal data.

Deep learning is also a research topic that has been adopted
toward visual modality, especially in the form of a convolu-
tional neural network (CNN). It has significantly taken off
from its first big discovery for hand digit recognition [24].
Recently, the effectiveness of deep networks have been por-
trayed in different tasks such as face identification [25], image
detection, segmentation and classification [26], [27], and many
other tasks. The majority of these applications have only
become achievable due to the processing movement from
CPU to GPU. The GPU is able to provide a significantly
higher amount of computational resources versus a CPU, to
handle multiple complex tasks in a shorter amount of time.
Deep networks can become very large and contain millions of
parameters, which was a major setback in the past. Now there
are a variety of deep networks available such as AlexNet [28]
and the VGG networks [29]. These networks have been trained
with millions of images based on their applications, and are
widely used today as pretrained networks.

Pretrained CNNs can be exploited for artificial image
processing on depression analysis, mainly using the visual
modality. However, the pretrained CNN models such as VGG-
Face provide good features at the frame level of videos, as they
are designed for still images. In order to adapt this across tem-
poral data, a novel technique called feature dynamic history
histogram (FDHH) is proposed to capture the dynamic tem-
poral movement on the deep feature space. Then partial least
square (PLS) and linear regression (LR) algorithms are used to
model the mapping between dynamic features and the depres-
sion scales. Finally, predictions from both video and audio

modalities are combined at the prediction level. Experimental
results achieved on the AVEC2014 dataset illustrates the
effectiveness of the proposed method.

The aim of this paper is to build an artificial intelligent
system that can automatically predict the depression level from
a user’s visual and vocal expression. The system is understood
to apply some basic concepts of how parts of the human brain
works. This can be applied in robots or machines to provide
human cognitive like capabilities, making intelligent human–
machine applications.

The main contribution of the proposed framework are as
follows:

1) a framework architecture is proposed for automatic
depression scale prediction that includes frame/segment
level feature extraction, dynamic feature generation,
feature dimension reduction, and regression;

2) various features, including deep features, are extracted
on the frame-level that captured the better facial expres-
sion information;

3) a new feature (FDHH) is generated by observing
dynamic variation patterns across the frame-level fea-
tures;

4) advanced regressive techniques are used for regression.
The rest of this paper is organized as follows. Section II

briefly reviews related work in this area. Section III pro-
vides a detailed description of the proposed method, and
Section IV displays and discusses the experimental results on
the AVEC2014 dataset [18]. Section V concludes this paper.

II. RELATED WORKS

Recent years have witnessed an increase of research for clin-
ical and mental health analysis from facial and vocal expres-
sions [30]–[33]. There is a significant progress on emotion
recognition from facial expressions. Wang et al. [30] proposed
a computational approach to create probabilistic facial expres-
sion profiles for video data. To help automatically quantify
emotional expression differences between patients with psy-
chiatric disorders, (e.g., Schizophrenia) and healthy controls.

In depression analysis, Cohn et al. [34], who is a pio-
neer in the affective computing area, performed an experiment
where he fused both visual and audio modality together in an
attempt to incorporate behavioral observations, from which are
strongly related to psychological disorders. Their findings sug-
gest that building an automatic depression recognition system
is possible, which will benefit clinical theory and practice.
Yang et al. [31] explored variations in the vocal prosody of
participants, and found moderate predictability of the depres-
sion scores based on a combination of F0 and switching
pauses. Girard et al. [33] analyzed both manual and automatic
facial expressions during semistructured clinical interviews of
clinically depressed patients. They concluded that participants
with high symptom severity tend to express more emotions
associated with contempt, and smile less. Yammine et al. [35]
examined the effects caused by depression to younger patients
of both genders. The samples (n = 153) completed the Beck
depression inventory II (BDI-II) questionnaire which indi-
cated that the mean BDI-II score of 20.7 (borderline clinically
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Fig. 1. Overview of the proposed automatic depression scale recognition system from facial expressions. The video data is broken down into visual frames.
If deep learning is utilized, then deep features are extracted from the frames, otherwise a set of hand-crafted features are extracted. This is followed by FDHH
to produce a dynamic descriptor. The dimensionality is reduced and a fusion of PLS and LR is used to predict the depression scale.

depressed), from the patients that were feeling depressed in the
prior year. Scherer et al. [32] studied the correlation between
the properties of gaze, head pose, and smile of three men-
tal disorders (i.e., depression, post-traumatic stress disorder,
and anxiety). They discovered that there was a distinct differ-
ence between the highest and lowest distressed participants,
in terms of automatically detected behaviors.

The depression recognition subchallenge of AVEC2013 [1]
and AVEC2014 [18]; had proposed some good methods which
achieved good results [10], [11], [19], [36]–[44]. From this,
Williamson et al. [19], [20] were the winner of the depres-
sion subchallenge (DSC) for the AVEC2013 and AVEC2014
competitions. In 2013, they exploited the effects that reflected
changes in coordination of vocal tract motion associated with
MDD. Specifically, they investigated changes in correlation
that occur at different time scales across dormant frequencies
and also across channels of the delta-mel-cepstrum [19]. In
2014, they looked at the change in motor control that can
effect the mechanisms for controlling speech production and
facial expression. They derived a multiscale correlation struc-
ture and timing feature from vocal data. Based on these
two feature sets, they designed a novel Gaussian mixture
model-based multivariate regression scheme. They referred
this as a Gaussian staircase regression, that provided very good
prediction on the standard Beck depression rating scale.

Meng et al. [11] modeled the visual and vocal cues for
depression analysis. Motion history histogram (MHH) is used
to capture dynamics across the visual data, which is then
fused with audio features. PLS regression utilizes these fea-
tures to predict the scales of depression. Gupta et al. [42] had
adopted multiple modalities to predict affect and depression
recognition. They fused together various features such as local
binary pattern (LBP) and head motion from the visual modal-
ity, spectral shape, and mel-frequency cepstral coefficients
(MFCCs) from the audio modality and generating lexicon
from the linguistics modality. They also included the baseline
features local Gabor binary patterns—three orthogonal planes
(LGBP-TOP) [18] provided by the hosts. They then apply a
selective feature extraction approach and train a support vector
regression machine to predict the depression scales.

Kaya et al. [41] used LGBP-TOP on separate facial
regions with local phase quantization (LPQ) on the inner-face.
Correlated component analysis and Moore–Penrose generalized
inverse were utilized for regression in a multimodal framework.
Jain et al. [44] proposed using Fisher vector to encode the
LBP-TOP and dense trajectories visual features, and low-level
descriptor (LLD) audio features. Pérez Espinosa et al. [39]
claimed; after observing the video samples; that subjects
with higher BDI-II showed slower movements. They used a
multimodal approach to seek motion and velocity information
that occurs on the facial region, as well as 12 attributes obtained
from the audio data such as “number of silence intervals greater
than 10 s and less than 20 s” and “percentage of total voice
time classified as happiness.”

The above methods have achieved good performance.
However, for the visual feature extraction, they used methods
that only consider the texture, surface, and edge informa-
tion. Recently, deep learning techniques have made significant
progress on visual object recognition, using deep neural
networks that simulate the humans vision-processing proce-
dure that occurs in the mind. These neural networks can
provide global visual features that describe the content of the
facial expression. Recently, Chao et al. [43] proposed using
multitask learning based on audio and visual data. They used
long short-term memory modules with features extracted from
a pretrained CNN, where the CNN was trained on a small
facial expression dataset FER2013 by Kaggle. This dataset
contained a total of 35 886 48 × 48 grayscale images. The
performance they achieved is better than most other com-
petitors from the AVEC2014 competition, however, it is still
far away from the state-of-the-art. A few drawbacks of their
approach are the image size they adopted is very small, which
would result in downsizing the AVEC images and reducing
a significant amount of spatial information. This can have a
negative impact as the expressions they wish to seek are very
subtle, small and slow. They also reduce the color channels to
grayscale, further removing useful information.

In this paper, we are targeting an artificial intelligent system
that can achieve the best performance on depression level
prediction, in comparison with all the existing methods on
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Fig. 2. Overview of the proposed automatic depression scale recognition system from vocal expressions. The speech audio is extracted from the video data,
where short segments are produced. Then a bunch of audio features are extracted from each segment and averaged. These are reduced in dimensionality and
a fusion of PLS and LR is used to predict the depression scale.

the AVEC2014 dataset. Improvement will be made on the
previous work from feature extraction by using deep learning,
regression with fusion, and build a complete system for auto-
matic depression level prediction from both vocal and visual
expressions.

III. FRAMEWORK

Human facial expressions and voices in depression are the-
oretically different from those under normal mental states. An
attempt to find a solution for depression scale prediction is
achieved by combining dynamic descriptions within naturalis-
tic facial and vocal expressions. A novel method is developed
that comprehensively models the variations in visual and vocal
cues, to automatically predict the BDI-II scale of depres-
sion. The proposed framework is an extension of the previous
method [10] by replacing the hand-crafted techniques with
deep face representations as a base feature to the system.

A. System Overview

Fig. 1 illustrates the process of how the features are
extracted from the visual data using either deep learning or a
group of hand-crafted techniques. Dynamic pattern variations
are captured across the feature vector, which is reduced in
dimensionality and used with regression techniques for depres-
sion analysis. Fig. 2 follows a similar architecture as Fig. 1,
but is based on audio data. The audio is split into segments
and two sets of features are extracted from these segments.
Then one of these sets are reduced in dimensionality and used
with regression techniques to predict the depression scale.

For the deep feature process, the temporal data for each
sample is broken down into static image frames which are
preprocessed by scaling and subtracting the given mean image.
These are propagated forward into the deep network for high
level feature extraction. Once the deep features are extracted
for a video sample, it is rank normalized between 0 and 1
before the FDHH algorithm is applied across each set of fea-
tures per video. The output is transformed into a single row
vector, which will represent the temporal feature of one video.

Both frameworks are unimodal approaches. The efforts are
combined at feature level by concatenating the features pro-
duced by each framework just before principal component

analysis (PCA) is applied. This gives a bimodal feature vector,
which is reduced in dimensionality using PCA and is rank nor-
malized again between 0 and 1. It is applied with a weighted
sum rule fusion of regression techniques at prediction level,
to give the BDI-II prediction.

B. Visual Feature Extraction

This section looks at the different techniques and algorithms
used to extract visual features from the data.

1) Hand-Crafted Image Feature Extraction:
Previously [10], the approach was based on investing in hand-
crafted techniques to represent the base features. These were
applied on each frame, similar to the deep face representa-
tion, with three different texture features LBP; edge orientation
histogram (EOH) and LPQ.

LBP looks for patterns of every pixel compared to its
surrounding 8 pixels [45]. This has been a robust and
effective method used in many applications including face
recognition [46]. EOH is a technique similar to histogram
of oriented gradients [47], using edge detection to capture
the shape information of an image. Applications include
hand gesture recognition [48], object tracking [49], and facial
expression recognition [50]. LPQ investigates the frequency
domain, where an image is divided into blocks where discrete
Fourier transform is applied on top to extract local phase infor-
mation. This technique has been applied for face and texture
classification [51].

2) Architectures for Deep Face Representation: In this sec-
tion, different pretrained CNN models are introduced, detailing
the architectures and its designated application. Two mod-
els are then selected to be testing within the system for the
experiments.

3) VGG-Face: Visual Geometry Group have created a few
pretrained deep models, including their very deep networks.
These networks are VGG-S, VGG-F, and VGG-M [52]
networks which represent slow, fast, and medium, respectively.
VGG-D and VGG-E are their very deep networks, VGG-D
containing 16 convolutional layers and VGG-E containing
19 [29]. These networks are pretrained based on the ImageNet
dataset for the object classification task [53]. VGG-Face is a
network which they train on 2.6M facial images for the appli-
cation of face recognition [25]. This network is more suited
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Fig. 3. VGG-Face architecture visualizing low to high-level features captured as a facial expression is propagated through-out the network, stating the
dimensions produced by each layer.

for the depression analysis task as it is trained mainly on facial
images, as opposed to objects from the ImageNet dataset.

The VGG-Face [25] pretrained CNN contains a total of 36
layers, where 16 are convolution layers and 3 are fully con-
nected layers. The filters have a fixed kernel size of 3×3
and as the layers increase, so does the filter depth which
varies from 64 to 512. The fully connected layers are of 1×1
kernel and have a depth of 4096 dimensions, with the last
layer having 2622. The remaining 20 are a mixture of rec-
tified linear activation layers and max pooling layers, with a
softmax layer at the end for probabilistic prediction. The full
architecture is shown in Fig. 3, along with how the high and
low level features look like throughout the network. It can
be seen how certain filter responses are activated to produce
edges and blobs that over the network they combine to remake
the image.

This network is designed to recognize a given face between
2622 learned faces, hence the 2622 filter responses in the soft-
max layer. However, the task is more to observe the facial
features that are learned by the convolutional layers. The
early to later convolution layers (Conv1–Conv5) contain spa-
tial features from edges and blobs, to textures and facial parts,
respectively. Their filter responses can be too big to be used
directly as a feature vector to represent faces. Therefore, the
fully connected layers are looked upon to obtain a plausi-
ble feature vector to describe the whole input facial image.
In these experiments, the feature at the three fully connected
layers FC1–FC3 were acquired and used.

4) AlexNet: AlexNet, created by Krizhevsky et al. [28], is
another popular network, which was one of the first success-
ful deep networks used in the ImageNet challenge [53]. This
pretrained CNN contains 21 layers in total. The architecture
of AlexNet varies from the VGG-Face network in terms of
the depth of the network and the convolution filter sizes. The
targeted layers for this experiment are 16 and 18, which are
represented as FC1 and FC2, respectively. This network is
designed for recognizing up to 1000 various objects, which
may result in unsuitable features when applied with facial
images. However, it will be interesting to see how it performs
against VGG-Face, a network designed specifically for faces.

C. Audio Feature Extraction

For audio features, the descriptors are derived from the
set provided by the host of the AVEC2014 challenge. They
include spectral LLDs and MFCCs 11–16. There are a total of
2268 features, with more details in [18]. These features are fur-
ther investigated to select the most dominant set by comparing
the performance with the provided audio baseline result. The
process includes testing each individual feature vector with the
development dataset, where the top eight performing descrip-
tors are kept. Then, each descriptor is paired with every other
in a thorough test to find the best combination. This showed
Flatness, Band1000, PSY Sharpness, POV, Shimmer, and ZCR
to be the best combination, with MFCC being the best indi-
vidual descriptor. Fig. 2 shows the full architecture using the
selected audio features, where two paths are available, either
selecting the MFCC feature or the combined features.

D. Feature Dynamic History Histogram

MHH is a descriptive temporal template of motion for visual
motion recognition. It was originally proposed and applied
for human action recognition [54]. The detailed information
can be found in [55] and [56]. It records the grayscale value
changes for each pixel in the video. In comparison with
other well-known motion features, such as motion history
image [57], it contains more dynamic information of the pixels
and provides better performance in human action recogni-
tion [55]. MHH not only provides rich motion information,
but also remains computationally inexpensive [56].

MHH normally consists of capturing motion data of each
pixel from a string of 2-D images. Here, a technique is
proposed to capture dynamic variation that occurs within
mathematical representations of a visual sequence. Hand-
crafted descriptors such as EOH, LBP, and LPQ model the
mathematical representations from the still images, which
can be interpreted as a better representation of the image.
Furthermore, fusion of these technical features can provide a
combination of several mathematical representations, improv-
ing the feature as demonstrated in [13]. Several techniques



JAN et al.: ARTIFICIAL INTELLIGENT SYSTEM FOR AUTOMATIC DEPRESSION LEVEL ANALYSIS 673

Fig. 4. Visual process of computing FDHH on the sequence of feature vectors. The first step is to obtain a new binary vector representation based on the
absolute difference between each time sample. From this, binary patterns Pm are observed throughout each components of the binary vector and a histogram
is produced for each pattern.

have been proposed to move these descriptors into the tempo-
ral domain in [58]–[61]. They simply apply the hand-crafted
descriptors in three spatial directions, as they are specifically
designed for spatial tasks. This ideally extends the techniques
spatially in different directions rather than dynamically taking
the time domain into account.

A solution was proposed to obtain the benefits of using
hand-crafted techniques on the spatial images, along with
applying the principals of temporal-based motion techniques.
This was achieved by capturing the motion patterns in terms
of dynamic variations across the feature space. This involves
extracting the changes on each component in a feature vec-
tor sequence (instead of one pixel from an image sequence),
so the dynamic of facial/object movements are replaced by
the feature movements. Pattern occurrences are observed in
these variations, from which histograms are created. Fig. 4
shows the process of computing FDHH on the sequence of
feature vector, the algorithm for FDHH can be implemented
as follows.

Let {V(c, n), c = 1, . . . , C, n = 1, . . . , N} be a feature vec-
tor with C components and N frames, and a binary sequence
{D(c, n), c = 1, . . . , C, n = 1, . . . , N − 1} of feature compo-
nent c is generated by comprising and thresholding the abso-
lute difference between consecutive frames as shown in (1). T
is the threshold value determining if dynamic variation occurs
within the feature vector. Given the parameter M = 5, we can
define the pattern sequences PM as Pm(1 ≤ m ≤ M), where
m represents how many consecutive “1”s are needed to create
the pattern, as shown in Fig. 4. The final dynamic feature can
be represented as {FDHH(c, m), c = 1, . . . , C, m = 1, . . . , M}

D(c, n) =
{

1, if {|V(c, n + 1) − V(c, n)| ≥ T}
0, otherwise.

(1)

Equation (1) shows the calculation for the binary sequence
D(c, n). The absolute difference is taken between the sample
n+1 and n, which is then compared with a threshold to deter-
mine if the sequence should be a 1 or “0.” A counter is then
initialized to CT = 0, which is used to search for patterns of

1s in a sequence D(1 : C, 1 : N − 2)

CT =
{

CT + +, if {D(c, n + 1) = 1}
0, a pattern P1:M found, reset CT

(2)

FDHH(c, m) =
{

FDHH(c, m) + 1, if {Pm is found}
FDHH(c, m), otherwise.

(3)

When observing a component from a sequence D(c, 1 : N), a
pattern of Pm(1 ≤ m ≤ M) is detected by counting the number
of consecutive 1s, where CT is updated as shown in (2). This
continues to increment for every consecutive 1 until a 0 occurs
within the sequence, and for this case the histogram FDHH is
updated as shown in (3), followed by the counter CT being
reset to 0.

Equation (3) shows the FDHH of pattern m is increased
when a pattern Pm is found. This is repeated throughout the
sequence for each component until all the FDHH histograms
are created for the desired patterns 1 : M. There are two special
cases that have been dealt with. These are the case where
CT = 0 (consecutive 0s), none of the histograms are updated
and where CT > M, the histogram for PM is incremented. The
full algorithm can be seen in Fig. 5.

E. Feature Combination and Fusion

Once the deep features are extracted, FDHH is applied on
top to create M feature variation patterns for each deep feature
sequence. The resulting histograms provide a feature vector
that contains the information of the dynamic variations that
occur throughout the features. The audio features are then
fused with the dynamic deep features by concatenating them
together, producing one joint representational vector per sam-
ple, which is normalized between [0, 1]. For testing purposes,
the normalization is based on the training set. Equation (4)
shows how the features are ranked within the range of the
training data

X̂i = Xi − αmin

αmax − αmin
(4)
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Fig. 5. FDHH algorithm.

where Xi is the training feature component, αmin and αmax are
the training minimum and maximum feature vector values,
and X̂i is the normalized training feature component. PCA is
performed on the fused feature vector to reduce the dimen-
sionality and decorrelate the features. Doing this reduces the
computational time and memory for some regression tech-
niques such as LR. The variance within the data is kept high
to about 94% by retaining dimensions L = 49. After PCA is
applied, the feature is once again normalized between [0, 1]
using the training data.

F. Alternate Feature Extraction Approach

For comparison purposes, another approach (APP2) is
undergone to apply the original MHH [54] on the visual
sequences, that was used similarly in the previous AVEC2013
competition by Meng et al. [11]. Their approach has been
extended here by using deep features. MHH is directly
applied on the visual sequences to obtain M motion pat-
terns MHH(u, v, m) and {u = 1, . . . , U, v = 1, . . . , V, m =
1, . . . , M}, where {u, v} are the frames for 1 : M motion pat-
terns. The frames are treated as individual image inputs for
the deep CNNs and are forward propagated until the softmax
layer. This approach closely resembles the main approach to
allow for fair testing when evaluating and comparing them
together.

The 4096-dimensional features are extracted from similar
layers to the main approach, resulting in a deep feature vector
of M × 4096 per video sample. These features are then trans-
formed to a single vector row from which it is fused with the
same audio features used in the main approach. They are then
rank normalized between [0, 1] using the training data range
before the dimensionality is reduced using PCA to L = 49,
and finally the reduced feature vector is rank normalized again
between [0, 1] using the training data range.

G. Regression

There are two techniques adopted for regression. PLSs
regression [62] is a statistical algorithm which constructs
predictive models that generalize and manipulates features into
a low-dimensional space. This is based on the analysis of rela-
tionship between observations and response variables. In its
simplest form, a linear model specifies the linear relationship
between a dependent (response) variable, and a set of predictor
variables.

This method reduces the predictors to a smaller set of
uncorrelated components and performs least squares regres-
sion on these components, instead of on the original data.
PLS regression is especially useful when the predictors are
highly collinear, or when there are more predictors than obser-
vations and ordinary least-squares regression either produces
coefficients with high standard errors or fails completely. PLS
regression fits multiple response variables in a single model.
PLS regression models the response variables in a multivariate
way. This can produce results that can differ significantly from
those calculated for the response variables individually. The
best practice is to model multiple responses in a single PLS
regression model only when they are correlated. The correla-
tion between feature vector and depression labels is computed
in the training set, with the model of PLS as

S = KGK + E

W = UHK + F (5)

where S is an a × b matrix of predictors and W is an a × g
matrix of responses. K and U are two n × l matrices that are,
projections of S (scores, components or the factor matrix) and
projections of W (scores); G, H are, respectively, b × l and
g×l orthogonal loading matrices; and matrices E and F are the
error terms, assumed to be independent and identical normal
distribution. Decompositions of S and W are made so as to
maximize the covariance of K and U.

LR is another approach for modeling the relationship
between a scalar dependent variable and one or more explana-
tory variables in statistics. It was also used in the system along
with PLS regression for decision fusion. The prediction level
fusion stage aims to combine multiple decisions into a single
and consensus one [63]. The predictions from PLS and LR are
combined using prediction level fusion based on the weighted
sum rule.

IV. EXPERIMENTAL RESULTS

A. AVEC2014 Dataset

The proposed approaches are evaluated on the AVEC2014
dataset [18], a subset of the audio-visual depressive language
corpus. This dataset was chosen over the AVEC2013 dataset as
it is a more focused study of affect on depression, using only 2
of the 14 related tasks from AVEC2013. The dataset contains
300 video clips with each person performing the two human–
computer interaction tasks separately whilst being recorded
by a web-cam and microphone in a number of quiet set-
tings. Some subjects feature in more than one clip. All the
participants are recorded between one and four times, with a
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period of two weeks between each recording. Eighteen sub-
jects appear in three recordings, 31 in 2, and 34 in only one
recording. The length of these clips are between 6 s to 4 min
and 8 s. The mean age of subjects is 31.5 years, with a stan-
dard deviation of 12.3 years and a range of 18–63 years. The
range of the BDI-II depression scale is [0, 63], where 0–10
is considered normal, as ups and downs; 11–16 is mild mood
disturbance; 17–20 is borderline clinical depression; 21–30 is
moderate depression; 31-40 is severe depression; and over 40
is extreme depression. The highest recorded score within the
AVEC14 dataset is 45, which indicates there are subjects with
extreme depression included.

B. Experimental Setting

The experimental setup has been followed by the
AVEC2014 guidelines which can be found in [18]. The instruc-
tions are followed as mentioned in the DSC, which is to predict
the level of self-reported depression; as indicated by the BDI-II
that ranges of from 0 to 63. This concludes to one continuous
value for each video file. The results for each test are evaluated
by its the mean absolute error (MAE) and root mean squared
error (RMSE) against the ground-truth labels. There are three
partitions to the dataset, these are training, development, and
testing. Each partition contains 100 video clips, these are split
50 for “Northwind” and 50 for “Freeform.” However, for the
experiments the Northwind and Freeform videos count as a
single sample, as each subject produces both videos with what
should be the same depression level.

The MatConvNet [64] toolbox has been used to extract the
deep features. This tool has been opted for the experiments
as it allows full control over deep networks with access to
data across any layer along with easy visualization. They also
provide both AlexNet and VGG-FACE pretrained networks.

1) Data Preprocessing: In order to obtain the optimal fea-
tures from the pretrained networks, a set of data preprocessing
steps were followed, as applied by both Parkhi et al. [25]
and Krizhevsky et al. [28] on their data. For each video,
each frame was processed individually to extract its deep fea-
tures. Using the meta information, the frames were resized to
227×227×3 representing the image height, width, and color
channels. AlexNet has the same requirement of 227×227×3
image as an input to the network. The images were also con-
verted into single precision as required by the MatConvNet
toolbox, followed by subtracting the mean image provided by
each network. The next stage was to propagate each prepro-
cessed frame through the networks and obtain the features
produced by the filter responses at the desired layers.

2) Feature Extraction: For each video clip, the spatial
domain is used as the workspace for both approaches. With
AlexNet, the 4096-dimensional feature vector is retained from
the 16th and 18th fully connected layers. The decision to take
the features at the 16th layer is in order to observe if the first
4096 dimension fully connected layer produces better features
than the second (layer 18). For the VGG-Face network, the
4096-dimensional feature vectors are extracted at the 35th,
34th, and 32nd layers. The 34th layer is the output directly
from the fully connected layer, the 35th is the output from the

following rectified linear unit (ReLU) activation function layer
and the 32nd layer is the output from the first fully connected
layer.

The initial convolution layers are bypassed as the parame-
ter and memory count would have been drastically higher if
they were to be used as individual features. After observing
the dimensions for AlexNet, there were around 70K versus
4096 when comparing the initial convolution layer versus the
fully connected layers, and a staggering 802K versus 4096
for VGG-Face. The connectivity between filter responses are
responsible for the dramatic decrease in dimensions at the
fully connected layers. The fully connected layer is observed
using (6), where yj is the output feature by taking the function
f (x) of the given input xi from the previous layer. The func-
tion calculates the sum over all inputs xi multiplied by each
individual weight (j = 1 : 4096) of the fully connected layer
plus the bias bj

yj = f

(
m∑

i=1

xi · wi,j +bj

)
. (6)

The role of a ReLU layer can be described with (7), where
xi is the input filter response and y(xi) is the output

yj = max(0, xi). (7)

For testing purposes, the decision to investigate the effects
of a feature vector before and after a ReLU activation layer
(layers 34 and 35) had been taken into account. As the acti-
vation function kills filter responses that are below 0, it was
assumed that the resulting feature vector will become sparse
with loss of information.

When extracting the dynamic variations across the deep
features, the parameter M is set to M = 5, capturing five
binary patterns across the feature space. Based on a sample
feature visualization of the binary pattern histograms, M = 5
was chosen as beyond this results to histograms with a low
count. Given that the deep feature data ranges from [0, 1],
the optimized threshold value for FDHH has been set to
1/255 = 0.00392, after optimization on the training and devel-
opment partitions. This will produce five resulting features
with 4096 components each, making a total of feature dimen-
sion count of 5 × 4096 = 20 480 per video sample. As there
are two recordings per ground truth label, (Northwind and
Freeform), the 20 480 features are extracted from both record-
ings and concatenated together to make a final visual feature
vector of 40 960 dimensions.

The features that are extracted using AlexNet and FDHH
are denoted as A16_FD and A18_FD, representing the deep
features extracted from the 16th and 18th layer, respec-
tively. For VGG-Face, the feature vectors are denoted as
V32_FD, V34_FD, and V35_FD, representing the deep fea-
tures extracted from the 32nd, 34th, and 35th layer, respec-
tively.

Due to the nature of feature extractors used, it is diffi-
cult to pinpoint which parts of the face contributes the most.
The movement of these facial parts play a big role in the
system, and the FDHH algorithm is designed to pick up these
facial movements that occur within the mathematical represen-
tations. This approach has been denoted as APP1. The whole
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system was tested on a Windows machine using MATLAB
2017a with an i7-6700K processor @ 4.3 GHz, and a Titan X
(Pascal) GPU. For 6-s video clip, it will take less than 3.3 s to
process.

3) Alternate Approaches for Feature Extraction: An
Alternate approach, denoted as APP2, started by extract-
ing MHH of each visual sequence, for both Northwind and
Freeform. The parameter M is set to M = 6 to capture
low to high movement across the face, this results in six
motion pattern frames. Each of these frames are then prop-
agated through AlexNet and VGG-Face, however, as there
are no color channel for the pattern frames, each frame is
duplicated twice making three channels in total to imitate
the color channels. The output of the CNNs will produce
6 × 4096 features, which is transformed into a single row
to make 24 576 features, and 49 152 features when both
Northwind and Freeform are concatenated. These features
will be denoted as MH_A16, MH_A18, MH_V32, MH_V34,
and MH_V35.

Previous research [10] worked in the spatial domain to
produce local features using EOH, LBP and LPQ. These fea-
tures are extracted frame by frame to produce 384-, 944-,
and 256-dimensional histograms, respectively, for each frame.
FDHH was used to capture the dynamic variations across
the features to produce M = 3 vectors of temporal pat-
terns. The features are denoted as EOH_FD, LBP_FD, and
LPQ_FD and are reshaped producing 1152, 2835, and 768
components, respectively, which were concatenated to pro-
duce a vector of 4755 components. These components are
produced for both Northwind and Freeform videos and were
also concatenated together producing a total of 9510 com-
ponents per video sample, which is denoted as (MIX_FD).
The experiments were run on the concatenated features
MIX_FD, as well as their individual feature performance. The
vectors EOH_FD, LBP_FD, and LPQ_FD had been tested
with the development set before they were concatenated,
to provide a comparison from its individual and combined
benefits.

Furthermore, modeling the temporal features of facial
expressions in the dynamic feature space was explored, simi-
lar to [11]. First, MHH was applied on the video to produce
five (M = 5) frames. Then, the local features (EOH, LBP,
and LPQ) was extracted from each motion histogram frame.
Finally, all the feature vectors were concatenated and denoted
as (MH_MIX).

The baseline audio features (2268) are provided by the
dataset. The short audio segments (short) were used, which
were a set of descriptors that extracted features every 3 s
of audio samples. The mean of the segments were taken to
provide a single vector of 1 × 2268 per sample and it was
denoted it (audio). The combined audio features of Flatness,
Band1000, POV, PSY Sharpness, Shimmer, and ZCR were
used, containing 285 of the 2268 features and was denoted as
(Comb). MFCC was also investigated as a sole feature vector,
and was denoted as (MFCC). For all the dynamic features from
visual and vocal modalities, the dimensionality was reduced
with PCA to L = 49 components, and the depression analyzed
by the PLS and LR.

TABLE I
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING THE

DYNAMIC VISUAL FEATURE FDHH (FD) MEASURED

BOTH IN MAE AND RMSE AVERAGED OVER ALL

SEQUENCES IN THE DEVELOPMENT SET

TABLE II
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING FDHH (FD)

AFTER MIX (EOH, LBP, LPQ, AND DEEP) VISUAL FEATURES ARE

SHOWN UNDER APP1 AND MHH (MH) BEFORE MIX (EOH, LBP,
LPQ, AND DEEP) VISUAL FEATURES ARE SHOWN IN APP2,

MEASURED BOTH IN MAE AND RMSE AVERAGED OVER

ALL SEQUENCES IN THE DEVELOPMENT SET

C. Performance Comparison

Starting with the hand-crafted features LBP, LPQ, and EOH,
Table I demonstrates the individual performance of the three
hand-crafted feature extraction methods that are combined
with FDHH. The depression scales were predicted using the
two regression techniques separately and fused. It is clear
that using PLS for regression was better than LR in all tests.
However, when they were fused with a weighting more toward
PLS, the results were improved further. LBP was shown to be
the weakest amongst the three and LPQ the strongest.

Table II contains results of both approaches, with APP1
combining the efforts of the individual hand-crafted features,
and demonstrates the effectiveness of the deep features using
the FDHH algorithm. APP2 applies MHH before the hand-
crafted and deep features. Three of the best results from each
part have been highlighted in bold. MIX_FD has shown a
significant improvement over the individual performances in
Table I. However, it is clear from this that the deep features
perform consistently better than the individual and combined
hand-crafted features. The AlexNet deep features with FDHH
(A16_FD) have shown a good performance on the develop-
ment subset, closely followed by VGG-Face deep features
with FDHH (V32_FD). The overall performance of APP2 can
be viewed as inferior when compared to our main approach
APP1, with all performances projecting a worse result than
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TABLE III
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING COMPLETE

AUDIO, COMB FEATURES, AND MFCC. MEASURED BOTH IN MAE
AND RMSE AVERAGED OVER ALL SEQUENCES IN THE

DEVELOPMENT AND TEST SUBSETS

TABLE IV
PERFORMANCE OF DEPRESSION SCALE PREDICTION USING FDHH ON

VARIOUS SPATIAL FEATURES. MEASURED BOTH IN MAE AND

RMSE AVERAGED OVER ALL SEQUENCES IN THE

DEVELOPMENT AND TEST SUBSETS

its respective main approach feature, e.g., MH_V34_PLS ver-
sus V34_FD_PLS. Second, we can see that the deep learning
approaches have performed better than hand-crafted features
using both approaches.

A subexperiment was to investigate the features before and
after a ReLU layer. This would supposedly introduce sparsity
by removing negative magnitude features, which would result
in a bad feature. This was tested by observing the features
at the 34th and 35th layer of the VGG-Face network. From
the individual performance evaluation on both approaches, it
is clear that there is a higher RMSE and MAE for V35 using
either regression techniques.

In Table III, the audio features for short segments were
tested. From the 2268 audio features (audio), the combined
features (Comb) and MFCC features have been taken out to
be tested separately. The individual tests show the audio and
MFCC features performing well on the development subset,
with MFCC showing great performance on the test subset.
When compared to visual features, they fall behind against
most of them.

Features from both audio and visual modalities were com-
bined as proposed in the approach, to produce bimodal
performances that can be found in Table IV. This table demon-
strates that the fusion of the two modalities boosts the overall
performance further, especially on the test subset. VGG deep
features have once again dominated the test subset, with
AlexNet performing better on the development subset. A final
test has been on fusing the performances of the regression

TABLE V
SYSTEM PERFORMANCE USING WEIGHTED FUSION OF REGRESSION

TECHNIQUES, PLS AND LR, ON SELECTED FEATURES FOR THE

DEVELOPMENT AND TEST SUBSETS

Fig. 6. Predicted and actual depression scales of the test subset of the
AVEC2014 dataset based on audio and video features with regression fusion.

TABLE VI
PERFORMANCE COMPARISON AGAINST OTHER APPROACHES ON THE

TEST PARTITION, MEASURED IN RMSE AND MAE. MODALITY FOR

EACH IS MENTIONED AND GROUPED FOR COMPARISON

(A = AUDIO AND V = VISUAL)

techniques using the best features observed in Table IV. This
involved using a weighted fusion technique on the PLS and
LR predictions, the performance are detailed in Table V.

The best performing unimodal feature based on the test sub-
set has been V32_FD, producing 6.68 for MAE and 8.04
for RMSE. Both achieving the state-of-the-art when com-
pared against other unimodal techniques. The best overall
feature uses the fusion of the audio and visual modalities,
along with the weighted fusion of the regression techniques
(V32_FD+MFCC)_(PLS+LR). This feature produced 6.14
for MAE and 7.43 for RMSE, beating the previous state-
of-the-art produced by Williamson et al. [19], [20] who
achieved 6.31 and 8.12, respectively. The predicted values
of (V32_FD+MFCC)_(PLS+LR) and actual depression scale
values on the test subset are shown in Fig. 6. Performance
comparisons against other techniques including the baseline
can be seen in Table VI.
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V. CONCLUSION

In this paper, an artificial intelligent system was proposed
for automatic depression scale prediction. This is based on
facial and vocal expression in naturalistic video recordings.
Deep learning techniques are used for visual feature extraction
on facial expression faces. Based on the idea of MHH for 2-D
video motion feature, we proposed FDHH that can be applied
to feature vector sequences to provide a dynamic feature
(e.g., EOH_FD, LBP_FD, LPQ_FD, deep feature V32_FD,
etc.) for the video. This dynamic feature is better than the
alternate approach of MHH_EOH that was used in previous
research [11], because it is based on mathematical feature vec-
tors instead of raw images. Finally, PLS regression and LR are
adopted to capture the correlation between the feature space
and depression scales.

The experimental results indicate that the proposed method
achieved good state-of-the-art results on the AVEC2014
dataset. Table IV demonstrates the proposed dynamic deep
feature is better than MH_EOH that was used in previous
research [11]. When comparing the hand-crafted versus deep
features shown in Table II, deep features taken from the cor-
rect layer shows significant improvement over hand-crafted.
With regards to selecting the correct layer, it seems that fea-
tures should be extracted directly from the convolution filters
responses. Generally the earliest fully connected layer will per-
form be the best, although the performances are fairly close to
call. Audio fusion contributed in getting state-of-the-art results
using only the MFCC feature, demonstrating that a multimodal
approach can be beneficial.

There are three main contributions from this paper. First
is the general framework that can be used for automatically
predicting depression scales from facial and vocal expressions.
The second contribution is the FDHH dynamic feature, that
uses the idea of MHH on the deep learning image feature
and hand-crafted feature space. The third one is the fea-
ture fusion of different descriptors from facial images. The
overall results on the testing partition are better than the base-
line results, and the previous state-of-the-art result set by
Williamson et al. [19], [20]. FDHH has proven it can work as a
method to represent mathematical features, from deep features
to common hand-crafted features, across a temporal domain.
The proposed system has achieved remarkable performance on
an application that has very subtle and slow changing facial
expressions by focusing on the small changes of pattern within
the deep/hand-crafted descriptors. In the case that a sample
contains other parts of the body; has lengthier episodes; or
reactions to stimuli, face detection and video segmentation
can adapt the sample to be used in our system.

There are limitations within the experiment that can affect
the system performance. The BDI-II measurement is assessed
on the response of questions asked to the patients. The scale
of depression can be limited by the questions asked, as the
responses may not portray their true depression level. The
dataset contains patients only of German ethnicity; who are
all Caucasian race. Their identical ethnicity may affect the
robustness of a system when validated against other ethnici-
ties. Another limitation can be the highest BDI-II recording
within the dataset, which is 44 and 45 for the development

and testing partitions, respectively. All these things can be
considered for further improvement of the system.

Further ideas can be investigated to improve the system
performance. The performance may improve if additional
facial expression images are added into the training process
of the VGG-Face deep network. The raw data itself can be
used to retrain a pretrained network, which can be trained as
a regression model. For the vocal features, a combination of
descriptors have been tested. However, other vocal descriptors
should also be considered to be integrated in the system, or
even adapting a separate deep network that can learn from
the vocal data. Other fusion techniques can also be consid-
ered at feature and prediction level that would improve the
performance further.
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