
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018 545

Learning for Goal-Directed Actions Using RNNPB:
Developmental Change of “What to Imitate”

Jun-Cheol Park, Dae-Shik Kim, and Yukie Nagai

Abstract—“What to imitate” is one of the most important and
difficult issues in robot imitation learning. A possible solution
from an engineering approach involves focusing on the salient
properties of actions. We investigate the developmental change of
what to imitate in robot action learning in this paper. Our robot is
equipped with a recurrent neural network with parametric bias
(RNNPB), and learned to imitate multiple goal-directed actions
in two different environments (i.e., simulation and real humanoid
robot). Our close analysis of the error measures and the internal
representation of the RNNPB revealed that actions’ most salient
properties (i.e., reaching the desired end of motor trajectories)
were learned first, while the less salient properties (i.e., matching
the shape of motor trajectories) were learned later. Interestingly,
this result was analogous to the developmental process of human
infant’s action imitation. We discuss the importance of our results
in terms of understanding the underlying mechanisms of human
development.

Index Terms—Error-based learning, imitation learning,
predictive learning, recurrent neural network with parametric
bias (RNNPB), what to imitate.

I. INTRODUCTION

IMITATION learning is a promising approach through
which intelligent robots can learn complex and novel

behaviors from humans [1]. Moreover, computational models
for robot imitation learning could be used to understand how
humans, particularly infants, could learn motor skills [2]. This
theory has been suggested in the field of cognitive develop-
mental robotics. The two purposes of this research area are to
design an intelligent robot inspired by human development and
to understand human development through designing intelli-
gent robots [3], [4]. Regarding imitation learning, there are
specific key issues (e.g., correspondence problems, what to
imitate, when to imitate, whom to imitate, and so on) which
should be solved [1], [5]–[7].

Manuscript received November 28, 2016; revised January 24, 2017;
accepted March 1, 2017. Date of publication March 8, 2017; date of current
version September 7, 2018. This work was supported in part by MEXT/JSPS
KAKENHI under Research Project 24119003 and Research Project 24000012,
and in part by the Brain Research Program through the National Research
Foundation of Korea funded by the Ministry of Science, ICT and Future
Planing under Grant NRF-2010-0018837.

J.-C. Park and D.-S. Kim are with the School of Electrical Engineering,
Korea Advanced Institute of Science and Technology, Daejeon 34141,
South Korea (e-mail: pakjce@kaist.ac.kr; daeshik@kaist.ac.kr).

Y. Nagai is with the Department of Adaptive Machine Systems, Osaka
University, Osaka 565-0871, Japan (e-mail: yukie@ams.eng.osaka-u.ac.jp).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCDS.2017.2679765

Here, we focus on the issue of “what to imitate,” which
is concerned with which properties of demonstrated actions
should be copied by imitators [8], [9]. For instance, a robot
imitator could ignore a demonstrator’s superficial behavior and
reproduce only essential actions that are related to the goals of
the actions. Then, what are the essential properties of actions,
and what are superficial behaviors? In engineering approaches,
salient features from sensory data or salient properties of
actions in an action space can be selected as the essential prop-
erties of actions. For example, Mohammad and Nishdia [10]
proposed a method of combining salient feature detectors
and causality to enable a robot to decide which properties
of demonstrated actions to imitate. Lee et al. [11] sug-
gested a probabilistic approach in which reusable common
action components are extracted under noisy environmental
conditions (a hierarchical action learning and observation strat-
egy) [12]. A study based on an inverse reinforcement learning
framework [13] inferred goals by observing demonstrations.

How do humans solve this issue? Infant behavioral stud-
ies have shown that infants can understand the intended
goals of demonstration and grasp the salient properties of
actions via imitation [14]–[17]. Goal-directed behavior could
have multiple subgoals, which are often organized hierarchi-
cally [18], [19]. Therefore, the target of imitation (i.e., what
to imitate) would be chosen based on the hierarchy. Cognitive
neuroscience studies [20], [21] suggested that mirror neu-
rons play a major role in imitation behaviors, as they are not
only activated when generating motor actions but also when
observing others’ movements. Moreover, Kilner et al. [22]
suggested that the mirror neuron system uses a predictive
coding scheme to solve multiple goal problems in human imi-
tation. Nagai and Rohlfing [23] showed that caregivers tend
to emphasize the most valuable properties, which are usually
the goals at the top of the hierarchy, to bootstrap the learn-
ing of infants’ goal-directed behaviors. Behavioral studies of
infant imitation provide further insights into which aspects of
actions are more or less important. Bekkering et al. [24] and
Carpenter et al. [25] showed that young infants tend to ignore
the means and superficial behaviors of actions, which are less
salient, whereas adults and children can imitate entire actions.

The nonlinear improvement of infant abilities, as described
above, is not specially observed in goal-directed actions,
but rather commonly observed in infant development. The
U-shaped change [26]–[28] is a phenomenon in which infant’s
capabilities appear to diminish at first and then improve later.
It has been suggested that young infants’ limited memory and
perception capabilities might cause U-shaped changes [29]

2379-8920 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:pakjce@kaist.ac.kr
mailto:daeshik@kaist.ac.kr
mailto:yukie@ams.eng.osaka-u.ac.jp
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

546 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018

and such nonlinear changes appear as a result of interactions
between dynamical systems such as the neural mechanism,
the body, and the environment [30]. Nevertheless, a period
of decreased performance is believed necessary for infants to
better organize their acquired abilities.

Other important issues in robot imitation include how to
represent actions as sensorimotor information and how to
reproduce demonstrators’ actions. Calinon et al. [31] sug-
gested a robot experiment that utilizes hidden Markov models
(HMMs) [32] to imitate human actions by recognizing them
and thus generating sensorimotor actions. Studies of dynamic
movement primitive (DMP) [33] have adopted a dynami-
cal system approach. They could generate adaptive actions
(e.g., obstacle avoidance) because they implemented differen-
tial equations. In this scheme, Matsubara et al. [34] proposed
a stylistic DMP for robotic learning through demonstration
tasks. In addition, a predictive coding scheme with sensory-
motor associations was used for robotic imitation learning
tasks [35]. Yokoya et al. [37] utilized a recurrent neural net-
work with parametric bias (RNNPB) [36] to learn and generate
motor actions for robot imitation tasks. Commonly, computa-
tional models that are able to learn primitive motor actions as
a form of time-series such as HMM, DMP, and recurrent neu-
ral network (RNN) are needed to implement robot imitation
learning tasks.

RNNPB is one of the best options with which to model
imitation learning tasks because it has the ability to encode
multiple dynamic patterns into a static pattern of parametric
bias (PB) unit activations as a biologically inspired model. An
interesting feature of RNNPB models is the PB units’ self-
organization, through which multiple actions are coded in the
RNN. Moreover, the network can generate novel actions based
on previous ones due to the PB units generalization capabil-
ities [38]. Using this generalization capability as a starting
point, we utilize the RNNPB for the imitation learning tasks
of robotic arms and suggest that the PB units self-organization
process could solve the issue of what to imitate, which has not
yet been investigated in robot imitation learning. The main
contribution of this paper is the analysis of RNNPB during
learning for multiple goal-directed actions. It would demon-
strate how the issue of what to imitate could be explained by
the developmental dynamics of PB values. We will discuss
our experimental results with a focus on gaining new insights
about the development of human imitation.

In the following section, we first introduce our hypothe-
sis about goal-directed action imitation. The architecture and
learning procedure of an RNNPB model are described in
Section III. Next, the experimental setup and goal-directed
behaviors are explained in Section IV. The results of experi-
ments are then presented in Section V. Finally, we discuss our
results, conclude this paper, and present suggestions for future
work.

II. OUR GENERAL HYPOTHESIS

Our general hypothesis is that the learning process of RNNs
such as RNNPB might be similar to humans’ developmen-
tal changes regarding what to imitate. A back-propagation

Fig. 1. There are several means to reach the goal state from the initial state
in the action state space. Each action “a,” b, c, and “d” has the same goal
but different means.

through time (BPTT) algorithm [39] is usually used to train
RNNs as a supervised learning method that involves errors
between the desired and generated output of the networks
within the time frame. When multiple goal-directed motor
actions are learned with RNNs through BPTT, the network
parameters are organized to decrease the errors. The saliency
of actions naturally appears as the error value from these error
measures, where a larger error value indicates stronger saliency
and a smaller error value indicates weaker saliency. Hence, we
suggest that the salient properties of actions are extracted as
a natural aspect of models’ learning processes.

A goal-directed action could have multiple methods through
which to achieve a goal, as illustrated in Fig. 1. According
to studies of human imitation [24], [25], goal-directed actions
have two types of property: 1) the goal and 2) the means. “The
goal” indicates the main properties of the actions intended by
the demonstrator, while “the means” represents the properties
of actions that are not directly related to the demonstrator’s
intentions, such as surface behaviors (i.e., style or specific tra-
jectory of a movement). For example, when an agent tries to
make its arm reach a desired position, the arm could directly
reach for it or progress in a zigzag manner to avoid an obstacle.

Within the concept of a functional hierarchy of motor
actions, a higher-level action refers to a goal-intended behav-
ior with a long time scale, and a lower-level action refers to a
local or primitive behavior with a short time scale, as seen in a
study of real robot experiments with an RNN [40]. For exam-
ple, actions “b” and “c” in Fig. 1 have the same goal property
but different means. Additionally, action b moves slower than
action c. An interesting point here is that the saliency of
the goal and the means differ depending on the agents error
function. The goal, which is the difference between the ini-
tial and the final state, produces a larger error if it is not
yet achieved. In contrast, the means, which is the shape of
the trajectory from the initial to the final state, produces a
smaller error than the goal, because the intermediate states of
the means are located between the initial and the final states.
Therefore, investigating the developmental dynamics of errors
for both goal and means permits the observation of quantitative
measurements of a dynamical change of what to imitate.

III. RNNPB MODEL FOR LEARNING AGENT

The RNNPB model [36] can memorize and reproduce mul-
tiple dynamics of input-output relationships using the static
activations of PB units. PBs self-organize through learning

PARK et al.: LEARNING FOR GOAL-DIRECTED ACTIONS USING RNNPB: DEVELOPMENTAL CHANGE OF “WHAT TO IMITATE” 547

Fig. 2. Architecture of RNNPB model consisting of three layers: input layer,
hidden layer, and output layer. The input layer is divided into the input units
y, the PB units x, and the context units c. The output layer is divided into the
output and context units. There is recurrent feedback from the output layer
to the input layer in the context units, and the input and output layers are
connected to the hidden layer with the fully connected weights (W21 and
W32).

based on their experiences. Because of this advantage of the
RNNPB model, we modeled a learning agent using it to build
its internal memory for multiple goal-directed actions.

A. Architecture of the Model

As a modified version of Jordan-type RNNs [41], the
RNNPB consists of a three-layered structure (input, hidden,
and output layers) with recurrent feedback from the output
layer to the input layer. Hence, it has a network parameter
ψ that consists of two weight matrices and two bias vectors
ψ = {W21,W32,b1,b2}. In addition, it has PB units in the
input layer that allow the network to learn multiple actions (see
Fig. 2). The input and output units representing time series data
(e.g., motor action sequence in this paper) have nio elements,
and are denoted by y = [y1, y2, . . . , ynio]T . The context units
and the PB units encode the internal states of the time series
data. The number of elements of PB units was two because it
is easier to visualize and analyze them in a 2-D state space.
The number of context and hidden units was empirically set
to be able to represent all reference behaviors.

The primary role of the RNNPB network is generating
memorized actions as a form of time-series. Therefore, the PB
units have static values x as an input when generating actions,
whereas the values of the context units change for each time
step based on the recurrent connection from the context output
unit of the previous time step cn−1 to the context input unit
of the current time step cn. The hidden unit values at the nth
time step hn are produced with weight W21 and bias b1 from
the input unit values at the previous time step yn−1, the PB
values x, and the context unit values at the previous time step
cn−1. The output unit values yn and the context output values
cn at the nth time step are produced with weight W32 and bias
b2 from the hidden unit values

hn = sigmoid

⎛
⎝W21 ·

⎡
⎣

yn−1
x

cn−1

⎤
⎦ + b1

⎞
⎠ (1)

[
yn

cn

]
= sigmoid (W32 · hn + b2). (2)

B. Learning Procedure

When N desired motor actions A = {Y(1), . . . ,Y(N)} are
given, the learning procedures main objective is to find an
optimal network parameter ψ∗ and N corresponding PB values
X = {x(1) · · · , x(N)} to make the network generate the desired
action with low error [see Fig. 3(left)]

Eout
n = yref

n − ygen
n (3)

ψ∗,X∗ = argmin
ψ,X

N∑
a∈A

L∑
n=1

Eout
a,n. (4)

The BPTT algorithm [39] is applied to determine optimal
network parameters. Similar to the back-propagation algorithm
in feed-forward neural networks, the error Eout

n between a
generated motor action ygen

n and a given motor action yref
n at

the nth time step is back-propagated from the third layer to the
first layer. When the length of the desired time series is L, the
recurrent connections of the context units are unfolded through
time, and the unfolded network is then identical to a deep
feed-forward neural network that has 3L layers. The network
parameter ψ is updated iteratively through back-propagation
as follows:

�W32,ij = ε

L∑
n=1

hn,j

{
δout,n,i if i ∈ output unit

δcxt,n,i if i ∈ context unit
(5)

�b3,i = ε

L∑
n=1

{
δout,n,i if i ∈ output unit

δcxt,n,i if i ∈ context unit
(6)

�W21,ij = ε

L∑
n=1

δhid,n,i

⎧⎪⎨
⎪⎩

yn−1,j if j ∈ input unit

xn,j if j ∈ PB unit

cn−1,j if j ∈ context unit

(7)

�b2,i = ε

L∑
n=1

δhid,n,i (8)

�x = kbp

L∑
n=1

δPB,n. (9)

C. Action Recognition As Estimating PB Values

The trained RNNPB network generates different time-series
based on static PB unit values. Hence, it can generate simi-
lar actions when the correct PB values are given. However,
although we do not know the correct PB value in advance in
most imitation tasks, we will already know the desired actions
yref. In that case, the corresponding PB values xrecog could be
estimated via the BPTT process. The network parameter ψ is
fixed and only the PB value is updated in this procedure, as
illustrated in Fig. 3

xrecog = argmin
x

L∑
n=1

Eout
n |yref . (10)

D. Action Generation With the Given PB Values

Actions from the RNNPB model are generated through a
chain of forward activity calculations. When PB unit values are
given as x = [x1, x2]T , hidden unit values at the nth time step

548 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018

Fig. 3. Procedures for action learning, recognition, and generation. In the learning phase, differences between the desired output yref and generated output
ygen are back-propagated for whole time steps through the BPTT algorithm. Thus, the network parameter ψ and the corresponding PB value xref are calculated.
In the recognition phase, the PB values xrecog are estimated from the given motor action yref through the BPTT algorithm, but the network parameter ψ is
not updated. In the generation phase, the PB value x is set to a static value then the corresponding action y is generated.

Fig. 4. Timing of motor behaviors in our tasks; all behaviors consist of three
phases: 1) waiting in the initial position Tstart; 2) transition from the initial
position to the desired goal position Ttrans; and 3) waiting in the goal position
Tend.

hn are first produced with the motor actions at the previous
time step yn−1, the PB values x, and the context unit values
at the previous time step cn−1. The motor action yn and con-
text unit values cn at the nth time step are calculated from
the hidden unit values at nth. Consequently, a time series of
motor actions Y = [ŷ1, . . . , ŷL] with length L, is generated by
repeating this procedure. In that case, the initial values of the
context units are set to a constant value (0.5 is used in our
experiments).

IV. EXPERIMENTAL SETUP

Agents equipped with the RNNPB model can be trained
with a set of goal-directed actions that consist of two dif-
ferent goals with different movement styles through, for
example, kinesthetic teaching. When the agents experience
desired motor behaviors Yref, they first recognize the action
as estimating the corresponding PB value xrecog. After which
they regenerate the proposed action Ygen based on their
internal knowledge. These tasks are conducted under two dif-
ferent experimental conditions: 1) simulation and 2) real robot
environment.

A. Timing for the Motor Actions

All desired motor behaviors in this task consist of three
phases as illustrated in Fig. 4. In the first phase, the robot’s
arm waits at the initial position for Tstart time steps, and then
moves to one of the two different goal positions for Ttrans.
Upon reaching the goal state, it waits for Tend. Hence, the total
length of the reaching behavior is L = Tstart + Ttrans + Tend.

Fig. 5. Robotic arm moving from the initial position to one of two different
goal positions.

When generating actions in the RNNPB model, the context
unit values are initialized as static values, so several steps
are required for the agent to reach the initial position. The
mid-points of Tstart and Tend are, respectively, used for the
measurement points tstart and tend (see Fig. 4).

B. Virtual Two-Joint Robotic Arm

A virtual robotic arm that moves within a 2-D Euclidean
space is defined for the simulation task. As illustrated in Fig. 5,
the arm reaches from the initial position (marked as init) to
one of the two different goal positions (A or B). Each joint
(θ = [θ1, θ2]T) is able to move from 0 to 180◦. Hence, the
RNNPB models in this experiment have two input and output
units whose activations indicate normalized joint angle values
y = [y1, y2], and 60 hidden units and 40 context units.

As illustrated in Fig. 6, three different styles of movement
are defined for each goal position (A and B) for two different
cases. In case 1, the average of the three different types of
trajectory is biased as illustrated in Fig. 6(a), whereas there is
no bias for the three movement in the second case. Therefore,
the robotic arm is supposed to move with three different types
of trajectory like Fig. 6(b). Types 1 and 3 (A1, A3, B1, and B3)
are curved trajectories, whereas type 2 (A2 and B2) are hop-
ping movements. Hopping movements are defined by adding
sinusoidal perturbations with Tmeans period and α amplitude in
the transition phase. Curved trajectories have the same phases
but different amplitudes in the biased case (case 1), whereas

PARK et al.: LEARNING FOR GOAL-DIRECTED ACTIONS USING RNNPB: DEVELOPMENTAL CHANGE OF “WHAT TO IMITATE” 549

Fig. 6. (a) Three different types of trajectories from the initial position to
goal positions. An average of three trajectories is biased in case 1 and is not
biased in case 2. (b) Motor trajectories for the three different styles of the
two different cases in the 2-D workspace of the simulation environment.

they have the opposite direction but same amplitude in the
unbiased case (case 2).

In total, there are six motor behaviors for the robot to learn
in each case (four straight movements and two hopping move-
ments), denoted by Yref ∈ {

YA1 ,YA2 ,YA3 ,YB1 ,YB2 ,YB3

}
(see Fig. 7). When the virtual agents generate their motor
actions after experiencing motor behavior Yref, the output unit
values yn−1 at the (n − 1)th time step are fed into the input
unit values yn at the nth time step.

C. NAO Humanoid Robot

The right arm of an NAO humanoid robot (Aldebaran
Robotics, Paris, France) was used for the real robot task. Only
three joints (θ = [θ1, θ2, θ3]T) among the five joints of the
right arm were used to reduce complexity; the unused joints
were fixed at specific angles. Therefore, the RNNPB networks
of the agents had three input and output units as normalized
values of the selected joints y = [y1, y2, y3] with 40 hidden
units and 30 context units.

Similar to the previous task, the robotic arm moves from its
initial position to one of two different goal positions, respec-
tively, denoted by A and B (see Fig. 8). The arm moves
via two different means for each goal. The first is a basic
movement; the robot directly reaches its arm to either goal
A or B. These actions are denoted as A1 and B1, respec-
tively. The second is a hopping movement, which has a sine
wave trajectory and is denoted by either A2 or B2. Hence,
the desired motor behavior Yref is composed of four motor
patterns Yref ∈ {YA1 ,YA2 ,YB1 ,YB2}.

Fig. 7. Six desired movements of the robotic arm in the 2-D workspace
for two goal positions in two different cases. (a) Biased movements (case 1).
(b) Unbiased movements (case 2).

Fig. 8. Experimental setup for real robot configuration. From the initial
position, the robotic arm moves to the two different goal positions with the
two different means.

Unlike the simulation environment, the physical environ-
ment for a robotic experiment has unexpected factors such as
sensory noise and incomplete actuator responses. Moreover,
humanoid robots have more joints than the two-joint model of
the simulation environment. Fortunately, the RNNPB has noise
tolerance during its generation procedure. Hence, in the real
robot experiment, the generation procedure is designed slightly
differently to reflect unexpected factors. When the robot is
generating actions from the estimated PB values xrecog, the

550 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018

input of the networks y(net)
n at the nth time step is determined

by the weighted sum of the two values. One is produced by
the network y(net)

n−1 , and the other is sensed from the state of

the NAO robot y(robot)
n−1 . The weight factor a is set to 0.7 to

reflect the effects of any unexpected factors more strongly

y(net)
n = a · y(robot)

n−1 + (1 − a) · y(net)
n−1 . (11)

V. EXPERIMENTAL RESULTS

The agents trained with the RNNPB model to reproduce
the goal-directed actions for both virtual robotic arm and real
robot are described in Section IV.

A. Simulation Result

The learning performance of the simulation agent was
assessed in terms of two points. The first was whether the
agent successfully reached the desired goal posture from its
initial posture. The error Egoal was calculated by taking the
average of two error values at the initial posture Estart and
the end posture Eend. The two error values (Estart and Eend)
were calculated as the Euclidian distance between the desired
actions yref

t ∈ Yref and the generated actions ygen
t ∈ Ygen at

tstart and tend, respectively (see Fig. 4). The main reason for
measuring Estart is that the agent should be taught how to
remain in the initial position as untrained agents cannot do it

Estart =
∥∥∥yref

tstart
− ygen

tstart

∥∥∥
Eend =

∥∥∥yref
tend

− ygen
tend

∥∥∥
Egoal = Estart + Eend

2
. (12)

The second point is how well the agent traces the movement
style (i.e., the means of action). An error in the shape of the
trajectory Eshape was defined as the averaged error over Ttrans
time steps, where the Euclidian distance between the desired
actions yref

t and generated actions ygen
t was applied

Eshape = 1

Ttrans

∑
t∈Ttrans

∥∥∥yref
t − ygen

t

∥∥∥. (13)

Fig. 9 shows the transitions of Egoal and Eshape over
learning for the two difference cases. They are averages of
100 RNNPBs with different initial parameters ψ0. Overall,
the error values decreased as the learning progressed. The
error for the end point of the generated motor trajecto-
ries Egoal became smaller than the error of the trajectories’
shape Eshape when the agent had been sufficiently trained.
As the main objective of the task in our experiment was to
move the arm into the correct position, 36 of the 100 net-
works (case 1) and 31 of 100 networks (case 2) trained with
different initial network parameters were chosen as success-
fully trained networks for a threshold based on a goal error
Egoal < 0.05. All of the 36 (case 1) and 31 (case 2) suc-
cessfully trained networks showed similar characteristics that
sufficiently supported our hypothesis. Due to space limitations,

Fig. 9. Transition of errors concerning goal positions of trajectories Egoal
and shapes of trajectories Emeans. The two curves plot the average of 100
networks with different initial parameters for the two different cases.

one of the successfully trained networks was selected for
the two cases (cases 1 and 2) for further analysis and
visualization.

The errors in the shape of trajectories Eshape for all possi-
ble PB values were examined to investigate the PB space’s
developmental dynamics. Additionally, based on recognized
PB values xref for each reference action Yref, corresponding
actions Ygen were generated to examine the agent’s action
recognition abilities. Three iteration points (0, 8, and 200 k)
were chosen based on the dynamical self-organization of the
PB space.

Figs. 10 and 11 represent the result of the selected network
for each case. The direction and the color of the triangular
markers on the left of these figures indicate which type of
action Sx has a minimum error value for the corresponding
PB values. The size of the triangular markers is inversely pro-
portional to the error amount Eshape. Hence, a larger marker
implies that an agent could generate an action with a smaller
error by using the corresponding PB values at the marker
position

Sx = argmin
S∈{A1,...,B3}

{
Eshape

∣∣Yref=YS

}
. (14)

Recognized PB values for each reference behavior xrecog
are depicted as circles with triangular markers. When the agent
generates six desired motor behaviors based on the recognized
PB values xrecog, the trajectories of the robotic-arm and their
joint angles in the simulation environment are visualized in
Figs. 10(right) and 11(right).

The results show that the agent gradually improved its
ability to reproduce the reference actions as its experience
increased. Meanwhile, the PB space gradually became self-
organized to represent the actions. When the agent had no
experience of the reference behaviors (0 iterations), it did not
produce the desired actions due to the undifferentiated PB val-
ues [see Figs. 10(a) and 11(a)]. The agent did not reach the
initial position at that time.

When the agent was trained with 8000 iterations, it
moved toward the desired goal positions from the ini-
tial position, but errors still existed. The PB spaces

PARK et al.: LEARNING FOR GOAL-DIRECTED ACTIONS USING RNNPB: DEVELOPMENTAL CHANGE OF “WHAT TO IMITATE” 551

Fig. 10. (Case 1: biased) dynamics of a PB space and the results of action generation; the left side of the figure illustrates which reference actions (from
A1 to B3) have minimal error in the PB space. The direction and the color of the triangular markers, respectively, indicate the goal and style of movement.
The size of the markers is inversely proportional to the size of the error Eshape: the larger the marker, the smaller the error. Recognized PB values xrecog are
illustrated as circles with triangular markers inside. The right side of the figure represents the actions generated by the agent and its joint angles. The figures
of joint angles represent Ygen (thick lines) for all reference actions Yref (thin lines) in the time domain. The red and blue lines are, respectively, the first and
second joint angles.

were well separated by the two different goal positions
(A and B), but not for the shapes of the trajectories.
Thus, the shapes of the generated trajectories with same

goal positions were similar [see Figs. 10(b) and 11(b)].
When the agent was fully trained, it successfully gener-
ated six actions that fit both end points and shapes of

552 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018

Fig. 11. (Case 2: no bias) the dynamics of the PB space and results of action generation; the left side of the figure illustrates which reference actions
(from A1 to B3) have a minimal error in the PB space. The direction and the color of the triangular markers, respectively, indicate the goal and the style of
movement. The size of the markers is inversely proportional to the amount of error Eshape: the larger the marker, the smaller the error. Recognized PB values
xrecog are illustrated as circles with triangular markers inside. The right side of the figure represents the actions generated by the agent and its joint angles.
The figures of joint angles represent Ygen (thick lines) for all reference actions Yref (thin lines) in the time domain. The red and blue lines are, respectively,
the first and second joint angles.

the trajectories. The well-organized PB values enabled the
agent to discriminate actions [see Figs. 10(c) and 11(c)].
Consequently, a tendency toward phased learning (i.e., first

learning the goal of the actions and then the means) was
found through development with the results illustrated in
Figs. 10 and 11.

PARK et al.: LEARNING FOR GOAL-DIRECTED ACTIONS USING RNNPB: DEVELOPMENTAL CHANGE OF “WHAT TO IMITATE” 553

B. Result of the NAO Humanoid Robot

Egoal and Eshape were analyzed in a similar manner to the
simulation environment for the 100 networks trained with the
different initial conditions on the robotic environment. Three
iteration points (0, 3.5, and 200 k) were chosen to show the
developmental changes of action generations. Based on the
same error threshold Egoal < 0.05, six of 100 networks with
different initial conditions were selected as successfully trained
networks. All six successfully trained networks also showed
similar properties. A real NAO humanoid robot was used to
generate actions in real time for the three iteration points
of one of the six converged networks. Fig. 12 illustrates the
results of the NAO robot experiment with the three iteration
points. Fig. 12(left) indicates the results of PB space analy-
sis for one of the five successfully trained networks. Unlike
the previous task in the simulation environment, the color of
triangular markers indicates the goal of the motor behaviors.
Fig. 12(right) illustrates the trajectories of the NAO humanoid
robot’s right hand.

When the agent was not yet trained (i.e., 0 iterations), the
robot did not generate all four of the actions [see Fig. 12(a)].
Furthermore, it failed to move its arm into the initial position,
and the PB space was not yet organized. When the agent was
trained for 3500 iterations [see Fig. 12(b)], the PB space was
separated for the two different goals A and B. Even though
we see a separation in the shape of the trajectories in the
PB space, it was too small to differentiate the output. Hence,
the robot successfully reached its arm to the goal position,
even though its trajectories showed similar shapes. When the
agent was fully trained, the PB space [see Fig. 12(c)] was
well organized, and both goals and shape of trajectories were
separated. Hence, the robot successfully reproduced all actions
with respect to both goals and shape of trajectories as expected.
Thus, a staged development phenomenon, in which the goal
of actions is achieved before the means of actions was found,
despite the influence of environmental noise and the movement
complexity.

VI. DISCUSSION

We analyzed the developmental dynamics of the RNNPB
model with two robot imitation tasks of goal-directed motor
behaviors in this paper. The results illustrated in Fig. 9 indi-
cate that the overall training error decreased during training,
which means that the RNNPB models were trained well.
However, when a tight convergence condition (Egoal < 0.05)
was applied, only 36 of the 100 networks in case 1 and 31 of
the 100 networks in case 2 (in the case of the real robot task,
6 of the 100 networks) were selected. When we investigated
the networks that failed to converge in the simulation task,
most generated desired motor behaviors well except for one
or two actions. This phenomenon is related to an optimization
issue in the learning procedure. Local minima and overfitting
issues based on the initial condition might have affected the
learning procedure, because we used a naive BPTT method
with restricted network sizes, especially with regard to the
number of the PB units, to visualize the PB space on a 2-D
state space. Hence, the number of converged networks could

Fig. 12. Dynamics of the PB space and the results of action generation for
real robot tasks. The left side of the figure illustrates which reference actions
(from A1 to B2) have minimal error in the PB space. Unlike the previous
figure, the color of triangular markers indicates the goal, and the direction
implies the movement style. The size of the markers is inversely proportional
to the amount of error Eshape; the larger the marker, the smaller the error.
Recognized PB values xrecog are illustrated as circles with triangular markers
inside. The right side of the figure represents the generated motor actions of
the NAO humanoid robot. Actions of the agent trained for (a) 0 iterations,
(b) 3500 iterations, and (c) 200 000 iterations.

be increased if an advanced optimization technique was used
or if the number of the PB units was increased. Despite the
optimization issue, the results from the converged networks
are sufficient to support our hypothesis, because all converged
networks showed similar characteristics. Furthermore, almost
all of the trained networks that contained unconverged net-
works showed a staged separation of the PB space in the case
of the simulation task.

According to [38] on the PB units of the RNNPB model,
two behaviors with similar properties tended to appear closer
in the PB space. Moreover, the RNNPB model can generate
and recognize slightly different behaviors as well as trained
behaviors. Therefore, it could be expected that trained behav-
iors would appear as a grouped area of the PB space. Using
a novel visualization technique based on the generation error

554 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018

of trained behaviors, this continuity of the PB space could be
found in our result. The results with visualized PB spaces as
illustrated on the left side of Figs. 10–12 provide interesting
insights concerning the staged development of the PB space.
It was found that the error distribution and recognized PB val-
ues in the PB space were first separated for the goal property
of actions then separated for the means in both virtual robotic
arm and NAO robot task. Interestingly, this separation appears
abruptly during the learning iteration similar to the nonlin-
ear improvement of human learning. The main reason for
this phenomenon would be related to the error minimization
process.

The results concerning the generated actions from the vir-
tual robotic arm [see Figs. 10(right) and 11(right)] support this
finding. In the middle of learning, the trajectories generated by
agents were distinguishable in terms of the goal positions but
not the shape, and the generated trajectories were distinguish-
able for both goal and shape when the agent was sufficiently
trained. The results of the NAO robot [Fig. 12(right)] show
the robustness of our computational model. The numbers of
input and output units were also increased, whereas the num-
ber of PB units was fixed at 2. These increased complexities
and unexpected factors (e.g., sensory noise and incomplete
actuator responses) could have affected the task. Nevertheless,
the result showed a staged development similar to that of the
simulation task. Therefore, as we predicted in our hypoth-
esis, the results of our experiments demonstrate human-like
developmental processes for goal-directed behaviors.

Then, how did this human-like developmental process
appear in our computational model? We measured the error
of the generated trajectories’ goal positions Egoal from a com-
putational perspective as averaged errors at the beginning and
end of transitions, and errors in the shape of the trajectories
Eshape as errors during transitions. The RNNPB model was
learned by updating the network parameter ψ while minimiz-
ing errors by (3). Our results showed that (3) contained the
properties of Egoal and Eshape even though Egoal and Eshape
were not directly described in (3). The major action in the
given task is the transition of the body posture, which accom-
panies a relatively large change in joint angle compared to
the movement style. The behaviors generated from immature
agents are not suitable for either the initial posture or the goal
posture in the early stages of the learning process. In this case,
Egoal is relatively larger than Eshape. Egoal is already sufficiently
reduced in the middle of learning, and the network is updated
to allow the distinguishing of the different movement styles
by reducing Eshape afterwards. Thus, this relative aspect during
the error minimization process has been able to create a hier-
archy of goal-directed motor behaviors with multiple subgoal
attributes when the amount of motion required by the primary
goal is always greater than that of the secondary goal. In addi-
tion, this error minimization process could be used to explain
cognitive learning as a concept of predictive learning [42].

This hierarchy of goal-directed behaviors has also appeared
in empirical studies on infant development [24], [25], in which
younger infants tended to ignore less significant goals and
imitate a primary goal well. Meanwhile, adults and children
could achieve both primary goals and subgoals. This means

that the goals of an action are represented hierarchically in
infants, and infants selectively imitate them from one with
a higher priority to the other with a lower priority. Although
the internal mechanisms of such nonlinear staged development
called a U-shape change remain unknown, computational mod-
eling studies have been conducted to explain them [29], [30].
Moreover, we found that more goals are hierarchically repre-
sented even though we only defined two goals, and the time
scale seems to be a key feature in determining the hierarchy.
The two goals we defined as follows.

1) The end state of an action (higher priority).
2) The paths to reach the end state (lower priority). This

goal can be divided into two.
a) The average path required to achieve the end state

(large time scale).
b) The individual paths required to achieve the end

state (short time scale).
Thus, developmental learning was observed for 1) → a) →
b). We found that a) had a larger time scale than b), and
its time scale seems as large as that of 1). Additionally, this
means that if a demonstrator shows biased actions many times
to infants, the infants would be interested in both bias and
actions’ end state. Our robotic experiments provide additional
insights into this unknown internal mechanism based on an
error-based developmental process for goal-directed imitation.

However, our experiments were conducted under simple
experimental conditions due to optimization problems and net-
work capacity issues. Additionally, the number of PB units was
fixed to visualize developmental dynamics of the PB space in
2-D space. In this status, the timing condition of keeping the
robot at its initial and goal positions helped the networks learn
six desired goal-directed behaviors despite their limitations.
Moreover, this timing condition itself contained the hierarchi-
cal goal property. Remaining at the end position encouraged
the networks to learn the primary goal: reaching the arm to
the goal position. The trajectory shapes make the networks
learn the secondary goal: matching the trajectory shapes. This
goal property of the actions with timing condition restricts the
environment of our experiment, and that could be criticized.
Unfortunately, this issue could not be clearly solved due to
our model’s limitations. Nevertheless, our experiments in the
current conditions are still meaningful as they provide bet-
ter insights into infant development for goal-directed action
imitations.

Additionally, could the staged-developmental results in
which the actions’ goals were learned prior to the means
appear in more complex experimental conditions? For
instance, if there were an obstacle that the robot should avoid,
the trajectories of all of reaching behaviors would become
more complex and nonlinear. A new task might then have
three goals.

1) Reaching the arm to the correct target position.
2) Avoiding the obstacle.
3) Matching the trajectory shapes.

When a network is not sufficiently trained, an error on an
averaged line from the initial posture to the target posture will
dominantly appear, as in our simulation results for the biased
case (case 1). Hence, the agent may ignore an obstacle but

PARK et al.: LEARNING FOR GOAL-DIRECTED ACTIONS USING RNNPB: DEVELOPMENTAL CHANGE OF “WHAT TO IMITATE” 555

successfully reach its arm toward the goal position. After the
primary goal is learned, an error in the trajectory shape will
dominantly appear. However, an error in avoiding an obstacle
may not be distinguishable from the error on the trajectory
shape, because the error is only measured using propriocep-
tive information. Thus, a sufficiently trained agent will be able
to generate actions to achieve all three goals. However, the
agent is only controlled by joint posture without any sensory
feedback. Hence, the agent cannot adapt when obstacle con-
ditions change between demonstrations. An agent equipped
with a dynamic system that uses differential equations such as
DMP [33], [34] could resolve this issue more effectively.

However, the robotic agent in this paper only learns motor
actions and omits visual properties while assuming that the
correspondence problem [20], [21] is solved without the
agent. Hence, the target actions were demonstrated by learn-
ing by doing, such as by grabbing and moving the agent’s
arm. Even though the correspondence problems of visuomo-
tor coordination have not been dealt with in this paper, it is
possible to explain developmental changes of what to imi-
tate of the learning process of RNNPB based on our finding
that the remarkable aspects of motor actions were learned first.
Similarly, Castañeda et al. [43] and Rozo et al. [44] proposed a
robot imitation learning approach as solving the issue of what
to imitate with force-based manipulation without the visual
data.

A gap still exists between our experimental data and the
findings from developmental studies, because of our restricted
experimental conditions. The agent with the RNNPB in this
paper was trained with BPTT algorithm for 0 to 200k itera-
tions, whereas humans could imitate actions after fewer trials
of observation. However, the number of learning iterations in
computational modeling is related to learning methods and
hyperparameters such as the learning rate and optimization
algorithm. Therefore, the iteration number itself is not directly
mapped to human data, but the tendency or shape of the
curve might be related to human data. Additionally, biolog-
ical velocity profiles are an important factor when humans
imitate actions [45]. For example, biological motion changes
velocity smoothly when a peak velocity appears near in the
midpoint of a demonstration, whereas nonbiological motion
moves at constant velocity. However, the robot was only con-
trolled by posture without considering velocity in this paper,
and thus the velocity profile was not modeled. Another type
of computational model such as a continuous time RNN or
DMP that can model dynamics would be proper for mod-
eling biological velocity profiles in robot imitation learning
tasks.

VII. CONCLUSION

Robot experiments for imitating goal-directed motor behav-
iors were conducted in this paper. The developmental dynam-
ics of the RNNPB model were thoroughly analyzed with
a visualization technique for the PB space and the robots’
actions were generated via simulation and in a real-world
environment. The experimental results showed that the pri-
mary goal (i.e., reaching the arm to the correct position) was

learned in the middle of the learning procedure, and the means
(i.e., matching the trajectory shape) was achieved once the
agent was sufficiently trained. The main contribution of this
paper is that it provides novel insights into the relationship
between the nature of neural network models, which involves
a shift of what to imitate from a major to a minor property of
motor actions and the human cognitive developmental process.

Similar to the experimental setup of [14], additional sen-
sory information such as visual or auditory signals could be
considered to design new error measures. Such a case could
allow for the better representation of more complex behaviors
with multiple subgoals such as obstacle avoidance. Moreover,
additional interesting phenomena discovered in developmen-
tal studies such as the transition of the primary goal property
of goal-directed actions based on sensory signals could be
modeled in further research.

REFERENCES

[1] C. Breazeal and B. Scassellati, “Robots that imitate humans,” Trends
Cogn. Sci., vol. 6, no. 11, pp. 481–487, 2002.

[2] D. M. Wolpert, Z. Ghahramani, and J. R. Flanagan, “Perspectives
and problems in motor learning,” Trends Cogn. Sci., vol. 5, no. 11,
pp. 487–494, 2001.

[3] M. Asada, K. F. MacDorman, H. Ishiguro, and Y. Kuniyoshi, “Cognitive
developmental robotics as a new paradigm for the design of humanoid
robots,” Robot. Auton. Syst., vol. 37, nos. 2–3, pp. 185–193, 2001.

[4] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental
robotics: A survey,” Connection Sci., vol. 15, no. 4, pp. 151–190, 2003.

[5] P. Bakker and Y. Kuniyoshi, “Robot see, robot do: An overview of robot
imitation,” in Proc. Workshop Learn. Robots Animals AISB, Brighton,
U.K., 1996, pp. 3–11.

[6] C. Breazeal and B. Scassellati, “Challenges in building robots that imi-
tate people,” in Imitation in Animals and Artifacts. Cambridge, MA,
USA: MIT Press, 2002, pp. 363–390.

[7] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng, “Discovering
optimal imitation strategies,” Robot. Auton. Syst., vol. 47, nos. 2–3,
pp. 69–77, 2004.

[8] E. I. Barakova and D. Vanderelst, “From spreading of behavior to dyadic
interaction—A robot learns what to imitate,” Int. J. Intell. Syst., vol. 26,
no. 3, pp. 228–245, 2011.

[9] M. Carpenter and J. Call, The Question of ‘What to Imitate’: Inferring
Goals and Intentions From Demonstrations. New York, NY, USA:
Cambridge Univ. Press, 2007, pp. 135–151.

[10] Y. Mohammad and T. Nishdia, “Self-initiated imitation learning.
Discovering what to imitate,” in Proc. IEEE 12th Int. Conf. Control
Autom. Syst. (ICCAS), 2012, pp. 726–732.

[11] K. Lee, Y. Su, T.-K. Kim, and Y. Demiris, “A syntactic approach to
robot imitation learning using probabilistic activity grammars,” Robot.
Auton. Syst., vol. 61, no. 12, pp. 1323–1334, 2013.

[12] D. Ognibene, Y. Wu, K. Lee, and Y. Demiris, “Hierarchies for embod-
ied action perception,” in Computational and Robotic Models of the
Hierarchical Organization of Behavior, G. Baldassarre and M. Mirolli,
Eds. Heidelberg, Germany: Springer, 2013, pp. 81–98.

[13] B. Michini, M. Cutler, and J. P. How, “Scalable reward learning
from demonstration,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
Karlsruhe, Germany, 2013, pp. 303–308.

[14] M. Carpenter, N. Akhtar, and M. Tomasello, “Fourteen-through
18-month-old infants differentially imitate intentional and accidental
actions,” Infant Behav. Develop., vol. 21, no. 2, pp. 315–330, 1998.

[15] B. Elsner, “Infants’ imitation of goal-directed actions: The role of move-
ments and action effects,” Acta Psychol., vol. 124, no. 1, pp. 44–59,
2007.

[16] G. Gergely, “What should a robot learn from an infant? Mechanisms of
action interpretation and observational learning in infancy,” Connection
Sci., vol. 15, no. 4, pp. 191–209, 2003.

[17] A. N. Meltzoff, “Understanding the intentions of others: Re-enactment
of intended acts by 18-month-old children,” Develop. Psychol., vol. 31,
no. 5, pp. 838–850, 1995.

556 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2018

[18] A. Wohlschläger, M. Gattis, and H. Bekkering, “Action generation
and action perception in imitation: An instance of the ideomo-
tor principle,” Philosoph. Trans. Roy. Soc. London B Biol. Sci.,
vol. 358, no. 1431, pp. 501–515, Mar. 2003. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693138&
tool=pmcentrez&rendertype=abstract

[19] J. Loucks and A. N. Meltzoff, “Goals influence memory and imitation
for dynamic human action in 36-month-old children,” Scandinavian J.
Psychol., vol. 54, no. 1, pp. 41–50, 2013.

[20] M. Brass and C. Heyes, “Imitation: Is cognitive neuroscience solv-
ing the correspondence problem?” Trends Cogn. Sci., vol. 9, no. 10,
pp. 489–495, 2005.

[21] C. Heyes, “Evolution, development and intentional con-
trol of imitation,” Philosoph. Trans. Roy. Soc. B Biol. Sci.,
vol. 364, no. 1528, pp. 2293–2298, 2009. [Online]. Available:
http://rstb.royalsocietypublishing.org/content/364/1528/2293

[22] J. M. Kilner, K. J. Friston, and C. D. Frith, “The mirror-neuron system:
A Bayesian perspective,” Neuroreport, vol. 18, no. 6, pp. 619–623, 2007.

[23] Y. Nagai and K. J. Rohlfing, “Parental action modification highlighting
the goal versus the means,” in Proc. 7th IEEE Int. Conf. Develop. Learn.
(ICDL), Monterey, CA, USA, Aug. 2008, pp. 1–6.

[24] H. Bekkering, A. Wohlschläger, and M. Gattis, “Imitation of gestures
in children is goal-directed,” Quart. J. Exp. Psychol. A, vol. 53, no. 1,
pp. 153–164, 2000.

[25] M. Carpenter, J. Call, and M. Tomasello, “Twelve-and 18-month-olds
copy actions in terms of goals,” Develop. Sci., vol. 8, no. 1, pp. F13–F20,
2005.

[26] M. Bowerman, “Starting to talk worse: Clues to language acquisition
from children’s late speech errors,” in U Shaped Behavioral Growth.
New York, NY, USA: Academic Press, 1982, pp. 101–145.

[27] E. W. Bushnell, “The decline of visually guided reaching during
infancy,” Infant Behav. Develop., vol. 8, no. 2, pp. 139–155, 1985.

[28] N. A. Taatgen and J. R. Anderson, “Why do children learn to
say ‘broke’? A model of learning the past tense without feedback,”
Cognition, vol. 86, no. 2, pp. 123–155, 2002.

[29] L. Carlucci, J. Case, S. Jain, and F. Stephan, “Results on memory-limited
u-shaped learning,” Inf. Comput., vol. 205, no. 10, pp. 1551–1573, 2007.

[30] L. Gershkoff-Stowe and E. Thelen, “U-shaped changes in behavior:
A dynamic systems perspective,” J. Cogn. Develop., vol. 5, no. 1,
pp. 11–36, 2004.

[31] S. Calinon, F. Guenter, and A. Billard, “Goal-directed imitation in
a humanoid robot,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
Barcelona, Spain, Apr. 2005, pp. 299–304.

[32] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[33] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), Kobe, Japan, 2009, pp. 2587–2592.

[34] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning stylistic
dynamic movement primitives from multiple demonstrations,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Taipei, Taiwan, 2010,
pp. 1277–1283.

[35] J.-C. Park, J. H. Lim, H. Choi, and D.-S. Kim, “Predictive cod-
ing strategies for developmental neurorobotics,” Front. Psychol.,
vol. 3, no. 134, 2012. [Online]. Available: https://dx.doi.org/
10.3389%2Ffpsyg.2012.00134

[36] J. Tani, M. Ito, and Y. Sugita, “Self-organization of distributedly rep-
resented multiple behavior schemata in a mirror system: Reviews of
robot experiments using RNNPB,” Neural Netw., vol. 17, nos. 8–9,
pp. 1273–1289, 2004.

[37] R. Yokoya, T. Ogata, J. Tani, K. Komatani, and H. G. Okuno,
“Experience based imitation using RNNPB,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Beijing, China, Oct. 2006, pp. 3669–3674.

[38] M. Ito and J. Tani, “Generalization in learning multiple temporal patterns
using RNNPB,” in Proc. Neural Inf. Process. 11th Int. Conf. (ICONIP),
Calcutta, India, 2004, pp. 592–598.

[39] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[40] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in a mul-
tiple timescale neural network model: A humanoid robot experiment,”
PLoS Comput. Biol., vol. 4, no. 11, 2008, Art. no. e1000220.

[41] M. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential network,” in Proc. 8th Annu. Conf. Cogn. Sci. Soc., 1986,
pp. 531–546.

[42] Y. Nagai and M. Asada, “Predictive learning of sensorimotor
information as a key for cognitive development,” in Proc. IROS
Workshop Sensorimotor Contingencies Robot., Hamburg, Germany,
Oct. 2015.

[43] L. R. Castañeda, P. J. Schlegl, and C. Torras, “Sharpening haptic inputs
for teaching a manipulation skill to a robot,” in Proc. 1st IEEE Int. Conf.
Appl. Bionics Biomech., Venice, Italy, 2010, pp. 331–340.

[44] L. Rozo, P. Jiménez, and C. Torras, “A robot learning from demon-
stration framework to perform force-based manipulation tasks,” Intell.
Service Robot., vol. 6, no. 1, pp. 33–51, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11370-012-0128-9

[45] J. Kilner, A. F. D. C. Hamilton, and S.-J. Blakemore, “Interference effect
of observed human movement on action is due to velocity profile of
biological motion,” Soc. Neurosci., vol. 2, nos. 3–4, pp. 158–166, 2007.

Jun-Cheol Park is currently pursuing the Ph.D.
degree with the Brain Reverse Engineering and
Imaging Laboratory, Korea Advanced Institute of
Science and Technology, Daejeon, South Korea.

His current research interests include motor action
learning with artificial neural networks and human
action recognition with deep learning.

Dae-Shik Kim received the Ph.D. degree from the
Max-Planck-Institute for Brain Research, Frankfurt,
Germany, in 1992.

He is a tenured Full Professor with the
Department of Electrical Engineering, Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea, where he heads the Brain
Reverse Engineering and Imaging Laboratory. He
was a Post-Doctoral Research Fellow with the
Massachusetts Institute of Technology, Cambridge,
MA, USA, and a Frontier Researcher with RIKEN,

Tokyo, Japan, for two years. He was an Assistant Professor with the
University of Minnesota, Minneapolis, MN, USA, from 1999 to 2003. In
2003, he was appointed as an Associate Professor and the Director of the
Center for Biomedical Imaging, Boston University, Boston, MA, USA. His
current research interests include systems, developmental, and computational
neurosciences, functional and connectivity mapping of the human brain,
developmental robotics, and diffusion tensor imaging.

Yukie Nagai received the master’s degree from
Aoyama Gakuin University, Tokyo, Japan, in 1999,
and the Ph.D. degree from Osaka University, Osaka,
Japan, in 2004, both in engineering.

She was a Post-Doctoral Researcher with
the National Institute of Information and
Communications Technology, Kyoto, Japan, from
2004 to 2006, and Bielefeld University, Bielefeld,
Germany, from 2006 to 2009, where she was
also with the Research Institute for Cognition and
Robotics. She has then been a specially appointed

Associate Professor with Osaka University since 2009, and a Visiting
Professor with Bielefeld University since 2017. Since 2012, she has been the
Project Leader of MEXT Grant-in-Aid for Scientific Research on Innovative
Areas entitled Computational Modeling of Social Cognitive Development
and Design of Assistance Systems for Developmental Disorders. Since 2016,
she has also been the Project Leader of JST CREST entitled Cognitive
Mirroring: Assisting People With Developmental Disorders by Means of
Self-Understanding and Social Sharing of Cognitive Processes. Her current
research interests include computational modeling of human cognitive
functions such as self-other cognition, imitation, and joint attention, and
design of assistant systems for developmental disorders.

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693138&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1693138&tool=pmcentrez&rendertype=abstract
http://rstb.royalsocietypublishing.org/content/364/1528/2293
https://dx.doi.org/10.3389%2Ffpsyg.2012.00134
https://dx.doi.org/10.3389%2Ffpsyg.2012.00134
http://dx.doi.org/10.1007/s11370-012-0128-9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

