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Nonparametric Bayesian Double Articulation
Analyzer for Direct Language Acquisition From

Continuous Speech Signals
Tadahiro Taniguchi, Shogo Nagasaka, and Ryo Nakashima

Abstract—Human infants can discover words directly from
unsegmented speech signals without any explicitly labeled data.
Current machine learning methods cannot efficiently estimate
language model (LM) and acoustic model (AM) and discover
words directly from continuous human speech signals in an
unsupervised manner. To solve this problem, we propose an inte-
grative generative model that combines an LM and an AM into
a single generative model called the hierarchical Dirichlet pro-
cess hidden LM (HDP-HLM). The HDP-HLM is obtained by
extending the hierarchical Dirichlet process hidden semi-Markov
model (HDP-HSMM) proposed by Johnson et al. An inference
procedure for the HDP-HLM is derived using the blocked Gibbs
sampler originally proposed for the HDP-HSMM. This procedure
enables the simultaneous and direct inference of LM and AM
from continuous speech signals. Based on the HDP-HLM and
its inference procedure, we develop a novel machine learning
method called nonparametric Bayesian double articulation ana-
lyzer (NPB-DAA) that can directly acquire LM and AM from
observed continuous speech signals. By assuming HDP-HLM as
a generative model of observed time series data, and by infer-
ring latent variables of the model, the method can analyze latent
double articulation structure, i.e., hierarchically organized latent
words and phonemes, of the data in an unsupervised manner.
We also carried out two evaluation experiments using synthetic
data and actual human continuous speech signals representing
Japanese vowel sequences. In the word acquisition and phoneme
categorization tasks, the NPB-DAA outperformed a conventional
double articulation analyzer and baseline automatic speech recog-
nition system whose AM was trained in a supervised manner. The
main contributions of this paper are as follows: 1) we develop
a probabilistic generative model that integrates LM and AM,
i.e., HDP-HLM; 2) we derive an inference method for this, and
propose the NPB-DAA; and 3) we show that the NPB-DAA can
discover words directly from continuous human speech signals
in an unsupervised manner.

Index Terms—Bayesian nonparametrics, child development,
language acquisition, latent variable model.
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I. INTRODUCTION

INFANTS must solve the word segmentation problem in
order to acquire language from continuous speech signals

to which they are exposed. The word segmentation prob-
lem is that of identifying word boundaries in continuous
speech. If the speech signals are given to infants as isolated
words, the task is easy for them. However, it has been known
that a relatively small number of infant-directed utterances
consist of an isolated word [1]. If infants had knowledge
about words and phonemes innately, the problem could be
solved relatively easily. On the contrary, the fact that each
language has different lists of phonemes and words clearly
shows that infants have to acquire them through developmental
processes.

From the viewpoint of statistical learning, the learning prob-
lem, i.e., direct language acquisition from continuous speech
signals, is very difficult because infants do not have access to
the truth labels of speech recognition results. In other words,
the language acquisition process must be completely unsu-
pervised. The main problem of this paper is to develop a
computational model that can estimate language model (LM)
and acoustic model (AM), and discover words directly from
continuous human speech signals.

Most modern automatic speech recognition (ASR) sys-
tems have an LM that represents knowledge about words and
their distributional probabilities as well as an acoustic model
that represents knowledge about phonemes and their acoustic
features (see [2], [3]). Both are usually trained using large
transcribed speech datasets and linguistic corpora through
supervised learning. However, infants do not have access to
such explicitly labeled datasets. They have to acquire both LM
and AM from raw acoustic speech signals in an unsupervised
manner.

The question about what kind of cues human infants uti-
lize to discover words from continuous speech signals arises.
Saffran et al. [4] listed three types of cues for word segmen-
tation: 1) prosodic; 2) distributional; and 3) co-occurrence:

1) prosodic cues rely on acoustic information, such as post-
utterance pauses, stressed syllables, and acoustically
distinctive final syllables;

2) distributional cues represent the statistical relationships
between pairs of neighboring speech sounds;

3) co-occurrence cues are used by children to learn words
by detecting sounds that co-occur with certain entities
in the environment.
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Although many researchers had considered the distributional
cues to be too complex for infants to use, Saffran et al. [5]
reported that word segmentation from fluent speech can be
accomplished by eight-month-old infants based on solely on
distributional cues. It is also reported that the distributional
cues seem to be used by infants by the age of seven months,
which is earlier than most other cues [6]. These results imply
that infants have a fundamental mechanism that can esti-
mate word segments using distributional cues. In addition to
this fundamental segmentation mechanism using distributional
cues, the prosodic and co-occurrence cues are believed to help
the word segmentation task only as supplemental cues [4].
From the viewpoint of phonemic category acquisition, distri-
butional patterns of sounds have been considered to provide
infants with clues about the phonemic structure of a language
as well [7].

Based on these findings, in this paper, we focus on dis-
tributional cues. We explore the fundamental computational
mechanism that can discover words from speech signals using
only distributional cues, and develop an unsupervised machine
learning method which can discover phonemes and words
directly from unsegmented speech signals

In this paper, we propose an unsupervised learning method
called the nonparametric Bayesian double articulation ana-
lyzer (NPB-DAA) that can automatically estimate double artic-
ulation structures, i.e., hierarchically organized latent words
and phonemes, embedded in speech signals. We propose this
as a computationally valid explanation for the simultaneous
acquisition of LM and AM. To develop the NPB-DAA, we
introduce a probabilistic generative model called the hierar-
chical Dirichlet process hidden LM (HDP-HLM) as well as
its inference algorithm.

The remainder of this paper is organized as follows.
Section II describes the background of the proposed method.
Section III presents the HDP-HLM by extending hierarchical
Dirichlet process-hidden semi-Markov model (HDP-HSMM)
proposed by Johnson and Willsky [8]. The HDP-HLM is
an probabilistic generative model that integrates acoustic and
LMs for continuous speech signals. Section IV describes
the inference procedure of HDP-HLM, and our proposed
NPB-DAA. Sections V and VI evaluate the effectiveness of
the proposed method using synthetic data and actual sequential
vowel speech signals. Section VII concludes this paper.

II. BACKGROUND

A. Word Segmentation Using Distributional Cues in
Transcribed Data

With respect to statistical computational models, many kinds
of unsupervised machine learning methods for word segmen-
tation have been proposed in the last two decades [9]–[17].
Brent [9] proposed model-based dynamic programming 1
(MBDP-1) for recovering deleted word boundaries in a
natural-language text. The MBDP-1 presumes that there is
an information source generating the text explicitly and seg-
ments the target text so as to maximize the text’s proba-
bility. Venkataraman [10] proposed a statistical model for

segmentation and word discovery from phoneme sequences
by improving Brent’s [9] algorithm.

Recently, Bayesian nonparametrics, including the hierar-
chical Dirichlet process and hierarchical Pitman–Yor pro-
cess, have enabled more sophisticated methods for word
segmentation. These models have fully Bayesian generative
models and make it possible to calculate the appropriately
smoothed n-gram probability for a word that has a long
context. Theoretically, they can treat an infinite number of
possible words. Goldwater et al. [11], [12] proposed an HDP-
based word segmentation method and showed that taking
context into account is important for statistical word segmen-
tation. Mochihashi et al. [13] proposed a nested Pitman–Yor
LM (NPYLM), in which a letter n-gram model based on
a hierarchical Pitman–Yor LM is embedded in the word
n-gram model. They also developed the forward filtering back-
ward sampling procedure to achieve efficient blocked Gibbs
sampling and hence infer word boundaries.

However, all of the above mentioned word segmentation
methods presume that transcribed phoneme sequences or text
data without any recognition errors can be obtained by the
learning system. In practice, before acquiring an LM contain-
ing an inventory of words, a learning system, i.e., an infant,
has to recognize speech signals without any knowledge of
words, only with the knowledge of phonemes and/or syllables
in an AM. In such a recognition task, the phoneme recog-
nition error rate inevitably becomes high. To overcome this
problem, several researchers have proposed word discovery
methods utilizing co-occurrence cues.

B. Lexical Acquisition Using Co-Occurrence Cues

Roy and Pentland [18] ambitiously implemented a compu-
tational model that enables a robot to autonomously discover
words from raw multimodal sensory input. Their results were
imperfect compared with recent state-of-art results. However,
their results showed it was possible to develop cognitive mod-
els that can process raw sensor data and acquire a lexicon
without the need for human transcription or labeling.

Iwahashi [19] implemented an interactive learning method
for a robot to acquire spoken words through human–robot
interaction using audio-visual interfaces. Their learning pro-
cess was carried out on-line, incrementally, actively, and in an
unsupervised manner. Iwahashi [20] also proposed a method
that enables a robot to learn linguistic knowledge through
human–robot communication in an unsupervised manner. The
model combines speech, visual, and behavioral information in
a probabilistic framework. Though its performance was still
limited, the model is considered to be a more sophisticated
model than that proposed in Roy and Pentland’s [18] previ-
ous study from the viewpoint of statistical machine learning.
On the basis of this paper, Iwahashi et al. [21] developed an
integrated online machine learning system combining speech,
visual, and tactile information obtained through interaction.
It enabled robots to learn beliefs regarding speech units,
words, the concepts of objects, motions, grammar, and prag-
matic and communicative capabilities. They called the system
LCore.
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Araki et al. [22] built a robot that formed object cate-
gories and acquired their names by combining a multimodal
latent Dirichlet allocation (MLDA) and the NPYLM. They
showed that the iterative learning of MLDA and NPYLM
increases word segmentation performance by using distribu-
tional cues and co-occurrence cues simultaneously, but they
reported that the prediction accuracy decreases as the phoneme
recognition error rate increases. To overcome this problem,
Nakamura et al. [23] integrated statistical models for word seg-
mentation and multimodal categorization. They showed that a
robot can autonomously form object categories and related
words from continuous speech signals and continuous visual,
auditory, and haptic information by updating its language and
categorization models iteratively.

Not only object information, but also place information can
be used as co-occurrence cues. Taguchi et al. [24] proposed
a method for the unsupervised learning of place-names from
information pairs that consist of spoken utterances and the
mobile robot’s estimated current location without any prior
linguistic knowledge other than a phoneme AM. They opti-
mized a word list using a model selection method based on
description length criterion.

C. Word Segmentation Using Distributional
Cues in Noisy Input

As described above, it becomes clear that using co-
occurrence cues can mitigate the ill effects of phoneme
recognition errors in a word discovery task. However, whether
or not the word discovery task can be achieved solely from
raw speech signals is still an open question. Neubig et al. [25]
extended the unsupervised morphological analyzer proposed
by Mochihashi et al. [13] and enabled it to analyze phoneme
lattices. Heymann et al. [26] modified Neubig et al.’s [25]
algorithm and proposed a suboptimal two-stage algorithm.
Heymann et al. [26] reported that their proposed method out-
performed the original method in an experiment that used
lattice input generated artificially from text input. In addi-
tion, they used the discovered LM for phoneme recognition in
an iterative manner and reported that recognition performance
was improved [27]. Elsner et al. [28] proposed a computational
model that jointly performs word segmentation and learns an
explicit model of phonetic variation. However, they did not
start with acoustic sound, but with dictated noisy text, i.e.,
recognized phoneme sequences with errors. Their model does
not include AM learning.

They showed that the ill effect of phoneme recognition
errors can be mitigated to some extent by using distributional
information more appropriately. However, all of these meth-
ods, except for Iwahashi’s [19], used an AM previously trained
in a supervised manner. Therefore, these models are insuffi-
cient as a constructive model for language acquisition from
raw speech signals. Hence, the unsupervised learning of an
AM is also an important problem.

D. Unsupervised Learning of Acoustic Model

In contrast with the word segmentation task, the acquisi-
tion of an AM is basically a categorization task of the feature

vectors transformed from continuous speech signals. Mixture
models, including hidden Markov models (HMMs) and
Gaussian mixture models, have been used to model phoneme
category acquisition. For example, Lake et al. [29] used an
online mixture estimation model for vowel category learning.
The model was originally proposed by Vallabha et al. [30].
However, the phoneme acquisition has proven to be com-
plex categorization task in a feature space. The distribution of
the feature vectors of each phoneme overlap with each other,
and the actual sound of the phoneme depends on its context.
Feldman et al. [31] pointed out that feedback information from
segmented words is important for phonetic category acquisi-
tion. They demonstrated this effect through simulations using
Bayesian models.

Lee and Glass [32] proposed a hierarchical Bayesian model
that can discover a proper set of subword units and an acous-
tic model in an unsupervised manner. However, their model
did not estimate the LM. Lee et al. [33] also proposed a
hierarchical Bayesian model simultaneously discovering the
phonetic inventory and the letter-to-sound mapping rules on
the basis of transcribed data only. The method is not a com-
pletely unsupervised learning method from raw speech signals,
but does automatically determine relations between sounds and
transcribed alphabets and forms an AM in an unsupervised
manner.

There have been several studies about the simultaneous
unsupervised learning of acoustic and LMs. However, a very
small number of statistical learning methods that can simul-
taneously acquire integrated acoustic and LMs have been
proposed. Brandl et al. [34] attempted to develop an unsuper-
vised learning method that enables a robot to simultaneously
obtain phonemes, syllables, and words from acoustic speech.
They did not successfully build such a system, but reported
their preliminary results. Walter et al. [35] proposed a word
discovery method that uses an HMM-based method for find-
ing acoustic unit descriptors in parallel with a dynamic time
warping technique for finding word segments. However, their
model is still heuristic from the viewpoint of probabilis-
tic computational models. As Feldman et al. [31] pointed
out, word segmentation and phonetic category acquisition are
undoubtedly mutually dependent. Therefore, a theoretically
integrated probabilistic generative model for the simultane-
ous acquisition of LM and AM is desirable. Very recently,
Kamper et al. [36] and Lee et al. [37] proposed probabilis-
tic computational models that achieved unsupervised direct
word discovery from continuous speech signals. However,
they did not provide an explicit, integrated probabilistic gen-
erative model for unsupervised simultaneous learning of LM
and AM. To develop such an integrated theoretical model, the
authors introduced the general concept of double articulation
analysis.

E. Double Articulation Analysis

From a general point of view, unsupervised word discovery
from raw speech signals is regarded as a double articulation
analysis of the time series data representing a speech signal.
The double articulation structure is a well-known two-layer
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Fig. 1. Overview of unsupervised learning of LM and AM through human–robot interaction, and the generative process of speech signal assumed in the DAA.

hierarchical structure, i.e., a word sequence is generated from
an LM, a word is a sequence of phonemes, and each phoneme
outputs observation data during the period it persists. The
word discovery problem becomes a general problem about
analyzing the time series data that potentially have a double
articulation structure by estimating the latent AM as well as the
latent LM.

Taniguchi and Nagasaka [38] proposed a double articulation
analyzer (DAA) by combining the sticky HDP-HMM and the
NPYLM. The sticky HDP-HMM proposed by Fox et al. [39] is
an nonparametric Bayesian extension of HMM. They applied
the DAA to human motion data to extract unit motion from
unsegmented human motion data. However, they simply used
the two nonparametric Bayesian methods sequentially. They
did not integrate the two models into a single generative
model. Therefore, if there are many recognition or catego-
rization errors in the result of the first latent letter recognition
process, i.e., segmentation process by the sticky HDP-HMM,
the performance of the subsequent process, i.e., unsupervised
chunking by the NPYLM, deteriorates. In the terminology of
a DAA, a latent letter and a latent word basically correspond
to a phoneme and a word in speech signals, respectively.
In this paper, we call this method “conventional DAA” in
order to differentiate it from the DAA newly proposed in
this paper, i.e., NPB-DAA. Conventional DAA has been
successfully applied to human motion data and driving behav-
ior data, which were also considered to potentially have a
double articulation structure. Conventional DAA has been
used for various purposes, e.g., segmentation [40], predic-
tion [41], [42], data mining [43], topic modeling [44], [45],
and video summarization [46]. Conventional DAA owes its
successful result with respect to driving behavior data to
the fact that driving behavior data were continuous and

smooth compared with raw speech signals. For a driving let-
ter, which corresponds to a phoneme in continuous speech
signals, the recognition error rate was still low. However,
it is expected that a straightforward application of the con-
ventional DAA to raw speech signals will inevitably turn
out badly.

Therefore, based on the background mentioned above, in
this paper, we propose an integrated probabilistic generative
model, HDP-HLM, representing a latent double articulation
structure that contains both an LM and an AM. By assum-
ing HDP-HLM as a generative model of observed time series
data, and by inferring latent variables of the model, we can
analyze latent double articulation structure of the data in
an unsupervised manner. A novel DAA is developed on the
basis of the HDP-HLM and its inference algorithm. This
HDP-HLM-based double articulation analysis method is called
NPB-DAA.

III. GENERATIVE MODEL

In this section, we propose a novel generative model, the
HDP-HLM, for time series data that potentially has a dou-
ble articulation structure, by extending HDP-HSMM [8]. As
indicated in its name, HDP-HLM latently contains an LM.
In contrast with the conventional case where a latent state
transits to the next state on the basis of a Markov process
in the HDP-HMM, a latent word in the HDP-HLM transits
to the next latent word on the basis of an LM. An illustra-
tive overview of the proposed method and the target task are
shown in Fig. 1. We can naturally derive an inference proce-
dure for the HDP-HLM based on the blocked Gibbs sampler.
First, we briefly describe the HDP-HSMM. We then describe
the HDP-HLM.
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Fig. 2. Model of the HDP-HSMM [8].

A. HDP-HSMM

HDP-HSMM is a nonparametric Bayesian extension of the
conventional HSMM [8], [47]. Unlike HDP-HMM, which
is an nonparametric Bayesian extension of conventional
HMM [39], [48], the HDP-HSMM explicitly models the
duration time of a hidden state. A graphical model of the
HDP-HSMM is shown in Fig. 2. The generative process of
the HDP-HSMM is described as follows:

β ∼ GEM(γ ) (1)

πi ∼ DP(α, β) i = 1, 2, . . . ,∞ (2)

(θi, ωi) ∼ H × G i = 1, 2, . . . ,∞ (3)

zs ∼ πzs−1 s = 1, 2, . . . , S (4)

Ds ∼ g
(
ωzs

)
(5)

xt = zs t = t1s , t1s + 1, . . . , t2s (6)

yt = h
(
θxt

)
(7)

t1s =
∑

s′<s

Ds′ (8)

t2s = t1s + Ds − 1 (9)

where GEM and DP represent the stick breaking process and
Dirichlet process, respectively [48], [49]. The parameters γ

and α are hyperparameters of the DP, β is a global transition
probability that becomes the base measure of the transition
probability distributions, and πi is a transition probability dis-
tribution related to the ith super state. Variable zs is the sth
super state in the sequence of super states, Ds is the frame
duration of zs, and the variables xt and yt are a hidden state
and an observation at time frame t, respectively. Parameters
of an emission distribution and a duration distribution for the
ith super state are described as θi and ωi. Additionally, H and
G are base measures for emission distribution and duration
distribution. The functions h and g represent emission and
duration distributions, respectively. The time frames t1s and t2s
are frames corresponding to a start point and a end point of a
segment corresponding to zs.

In contrast with the case where HMM assumes that a
hidden state xt transits to the next hidden state xt+1 accord-
ing to a Markov process, the HSMM assumes that a hidden
super state zs transits to next hidden super state zs+1 after a
probabilistically determined duration time Ds, which is sam-
pled from a duration distribution g(ωzs). The super state zs

is sampled from a categorical distribution πzs−1 related to
the previous super state zs−1. When the super state zs and
duration time Ds are sampled, a sequence of hidden states
{xt | 1+∑s−1

s′=1 Ds′ ≤ t ≤∑s
s′=1 Ds′ } are determined to be zs.

An observation datum yt at time t is assumed to be drawn
from an emission distribution h whose parameter is θxt .
Observation data yt are generated by h(θxt) for Ds steps.

An efficient sampling inference procedure based on the
backward filtering forward sampling technique was proposed
for constructing a blocked Gibbs sampler [8]. A similar algo-
rithm was proposed for HDP-HMM by Fox et al. [39]. The
algorithm is derived from a weak-limit approximation of the
number of hidden super states. The computational cost of
the message passing algorithm can be reduced to O(TdmaxN2),
where T is the length of the observed data, N is the state car-
dinality, and dmax is the maximal duration of a super state for
truncation. The order is almost the same as that of the back-
ward filtering forward sampling algorithm for the HDP-HMM,
except for the constant factor dmax.

B. HDP-HLM

The generative model for time series data that potentially
have a double articulation structure can be obtained by extend-
ing the HDP-HSMM. A graphical model of the proposed
HDP-HLM is shown in Fig. 3. In the generative model of
HDP-HLM, the super state zs corresponds to a word in
spoken language, which is the fundamental idea of the exten-
sion. The ith super state zs = i has a phoneme sequence
wi = (wi1, . . . , wik, . . . , wiLi), where Li is the length of the ith
word wi. The generative process of the HDP-HLM is described
as follows:

βLM ∼ GEM
(
γ LM)

(10)

πLM
i ∼ DP

(
αLM, βLM)

i = 1, 2, . . . ,∞ (11)

βWM ∼ GEM
(
γ WM)

(12)

πWM
j ∼ DP

(
αWM, βWM)

j = 1, 2, . . . ,∞ (13)

wik ∼ πWM
wik−1

i = 1, 2, . . . ,∞, k = 1, 2, . . . , Li (14)
(
θj, ωj

) ∼ H × G j = 1, 2, . . . ,∞ (15)

zs ∼ πLM
zs−1

s = 1, 2, . . . , S (16)

lsk = wzsk s = 1, 2, . . . , S (17)

k = 1, 2, . . . , Lzs (18)

Dsk ∼ g
(
ωlsk

)
s = 1, 2, . . . , S (19)

k = 1, 2, . . . , Lzs (20)

xt = lsk t = t1sk, . . . , t2sk (21)

t1sk =
∑

s′<s

Ds′ +
∑

k′<k

Dsk′ + 1 (22)

t2sk = t1sk + Dsk − 1 (23)

yt = h
(
θxt

)
t = 1, 2, . . . , T (24)
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Fig. 3. Model of the proposed HDP-HLM.

where βWM is the base measure and αWM and γ WM are hyper-
parameters of a word model (WM), which generates words,
i.e., latent letter sequences. Furthermore, DP(αWM, βWM) out-
puts πWM

j , representing the transition probability from latent
letter j to the next latent letter. By contrast, βLM is the
base measure, αLM and γ LM are hyperparameters of the LM,
and DP(αLM, βLM) outputs πLM

i , representing the transition
probability from latent word i to the next latent word. The
superscripts LM and WM indicate language model or word
model, respectively. The latent letters contained in the ith latent
word wi are sequentially sampled from πWM

wik−1
. The kth latent

letter of the ith latent word is represented by wik. The emission
distribution h and the duration distribution g have parameters
θj and ωj for the jth latent letter, respectively. The base mea-
sures H and G generate θj and wj, respectively. Variable zs is
the sth latent word in the sequence of latent words, and cor-
responds to the super state in HDP-HSMM, Ds is the frame
duration of zs, lsk = wzsk is the kth latent letter of the sth
latent word, and Dsk is the frame duration of lsk. The vari-
able xt and yt are a hidden state and an observation at time
frame t, respectively. The time frames t1sk and t2sk are frames
corresponding to a start point and a end point of a segment
corresponding to lsk, respectively.

In contrast with HMMs, the duration distribution is explic-
itly determined for each latent letter lsk in the HDP-HLM. The
HDP-HLM inherits this property from the HDP-HSMM [8].
The duration time Dsk of latent letter lsk, which is the kth latent

letter of the sth latent word zs in a sampled word sequence,
is drawn from the duration distribution g(ωlsk), where ωlsk is
the duration parameter for latent letter lsk. The duration of
a latent word wzs becomes Ds = ∑Lzs

k=1 Dsk. If we assume
that g is a Poisson distribution, the duration distribution of a
latent word zs also follows a Poisson distribution. In this case,
the Poisson parameter of the duration distribution becomes∑Lzs

k=1 ωlsk . This relation owes to the reproductive property of
Poisson distributions.

In the HDP-HLM, latent word zs determines a latent let-
ter sequence lsk = wzsk (k = 1, 2, . . . , Lzs). Based on the
determined sequence wzs , duration Dsk of lsk is drawn, and
observations yt are drawn from an emission distribution h(θxt)

corresponding to xt = ls(t)k(t). The maps s(t) and k(t) represent
the indices of words and letters, respectively, in a latent word
sequence at time t. Using this generative model, a continu-
ous time series data with a latent double articulation structure
can be generated. In this paper, we assume that observed time
series data yt represents a feature vector of the speech signal at
time t and is generated in this way. Generally, the HDP-HLM
can be applied to any kind of time series data that has a double
articulation structure.

From the viewpoint of language acquisition, we review the
generative model. In the conventional DAA [38], a DAA is
composed of two separated machine learning methods, i.e.,
sticky HDP-HMM for encoding observation data to letter
sequences and NPYLM for chunking letter sequences into
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word sequences. On the one hand, the transition probabil-
ities πLM

i and πWM
i correspond to the word bigram and

letter bigram models in the NPYLM, respectively. Therefore,
(πLM, πWM) contains information regarding an LM. On the
other hand, {ωj, θj}j=1,2,...,∞ contains information regarding
an AM, which corresponds to a sticky HDP-HMM in conven-
tional DAA.

The HDP-HLM assumes that the LM consists of a word
bigram model. Mochihashi et al. [13] compared the bigram
and trigram LMs and showed that the trigram assumption
hardly improved the word segmentation performance although
computational cost and complexity increased. Therefore, the
bigram assumption must be appropriate for a word segmenta-
tion and word discovery task.

If we derive an efficient inference procedure for this two-
layer hierarchical generative model, the inference procedure
can infer the AM and LM simultaneously.

IV. INFERENCE ALGORITHM

In this section, we derive an approximated blocked Gibbs
sampler for the HDP-HLM. The sampler can simultane-
ously infer latent letters, latent words, an LM, and an AM.
Concurrently, the inference procedure can estimate the over-
all double articulation structure from continuous time series
data. Therefore, we propose the unsupervised machine learn-
ing method NPB-DAA. The overall inference procedure is
shown in Algorithm 1.

A. Inference of Latent Words: zs

In the HDP-HSMM, a backward filtering forward sampling
procedure is adopted instead of the direct assignment pro-
cedure. When each latent state strongly depends on other
neighboring latent states, the direct assignment procedure,
which is a naive implementation of the Gibbs sampler, results
in a poor mixing rate [8]. Johnson and Willsky [8] showed
that a blocked Gibbs sampler using a backward filtering
forward sampling procedure that can simultaneously sam-
ple all hidden states of an observed sequence outperforms a
direct-assignment Gibbs sampler. By extending the backward
filtering forward-sampling procedure and making it applica-
ble to HDP-HLM, we can obtain an inference procedure for
HDP-HLM.

The calculation of the backward messages for super states
i in HDP-HSMM is as follows:

Bt(i) = P
(

yt+1:T | zs(t) = i, Ft = 1
)

(25)

=
∑

j

B∗t ( j)P
(
zs(t+1) = j | zs(t) = i

)
(26)

B∗t (i) = P
(

yt+1:T | zs(t+1) = i, Ft = 1
)

(27)

=
T−t∑

d=1

Bt+d(i)P
(
Dt+1 = d | zs(t+1) = i

)

× P
(

yt+1:t+d | zs(t+1) = i, Dt+1 = d
)

(28)

BT(i) = 1 (29)

where Ft is a variable indicating that t is the boundary of the
super state. If Ft = 1, zs(t) �= zs(t+1). The variable Bt(i) in (25)

Algorithm 1 Blocked Gibbs Sampler for HDP-HLM
Initialize all parameters.
Observe M time series data {ym

1:Tm
}m∈{1,2,...,M}.

repeat
for m = 1 to M do

// Backward filtering procedure
For each i ∈ {1, 2, . . . , N}, initialize messages BT(i) =
1.
for t = T to 1 do

For each i ∈ {1, 2, . . . , N}, compute backward mes-
sages Bt−1(i) and B∗t−1(i) using (25)–(28).

end for
// Forward sampling procedure
Initialize s = 1 and Dsum

s = 0
while Dsums < Tm do

// Sampling a super state representing a latent word
zs ∼ p(zs | ym

1:Tm
, zs−1, FDsum

s
= 1)

// Sampling duration of the super state
Ds ∼ p(Ds|zs, FDsum

s
= 1)

Dsum
s+1 ← Dsum

s + Ds

s← s+ 1
end while
Sm ← s− 1
// Sampling a tentative latent letter sequences
for s = 1 to Sm do

w̄m
s ∼ P(w|ym

Dsum
s−1+1:Dsum

s
, {πWM

j , ωj, θj}j=1,2,...,J)

end for
end for
// Update model parameters
Sample acoustic model parameters {ωj, θj} on the basis
of tentatively sampled latent letter sequences {w̄m

s }.
Sample language model parameter {πLM

i }, βLM on the
basis of sampled super states, i.e., latent words.
Sample a word inventory {wi}i=1,2,...,N using SIR proce-
dure (see (37)).
Sample a word model {πWM

i }, βWM on the basis of
sampled word inventory {wi}i=1,2,...,N .

until a predetermined exit condition is satisfied.

represents the probability that the latent super state zs(t) = i
and that it transitions into a different super state at the next
time step. Probability Bt(i) is obtained by marginalizing over
all super states j at time step t + 1. Variable B∗t ( j) in (27)
represents the probability that the latent super state becomes
j from time step t + 1. This probability can be obtained by
marginalizing over the duration variable in (28). Probability
P( yt+1 : t+d | zs(t+1) = i, Dt+1 = d) in (28) shows the emis-
sion probability of observed data yt+1 : t+d given the condition
that the duration Dt+1 of zs(t+1) is d. In the HDP-HSMM, all
time steps with the same super state z share the same emis-
sion distribution. Therefore, the likelihood of a super state
zs(t+1), i.e., P( yt+1:t+d | zt+1, Dt+1 = d), can be calculated
easily.

Surprisingly, in HDP-HLM, the exact same procedure of
calculating backward messages as that of HDP-HSMM can be
used. We obtain a message passing algorithm for HDP-HLM
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by replacing a super state zs in HDP-HSMM with latent word
zs in HDP-HLM. Only the likelihood of the latent word ws,
i.e., P( yt+1:t+d | zs(t+1) = i, Dt+1 = d), is different between
the two message passing algorithms. The likelihood of the
occurrence of latent word zs(t+1) = i then becomes

P
(

yt+1:t+d
∣∣zs(t+1) = i, Dt+1 = d

)

=
∑

r∈R(Li,d)

Li∏

k=1

P
(
rk | ωwik

)

×
rk∏

m=1

P
(

yt+m+∑k−1
k′=1

rk′
∣∣θwik

)
(30)

R(Li,d) =
⎧
⎨

⎩
r | |r| = Li,

|r|∑

k=1

rk = d

⎫
⎬

⎭
(31)

where |x| indicates the number of elements in vector x, and
r = (ri, r2, . . . , rLi) is an Li-partition of duration d. By sub-
stituting (30) into (28), we can obtain a formula to calculate
the backward message of HDP-HLM.

The calculation of (30) looks complicated at first glance.
However, the value of (30) can be efficiently calculated using
dynamic programming. If we define forward message αt(k) as
the probability that the kth latent letter in the relevant latent
word wi transits to the next latent letter at time t after emit-
ting observations, forward message αt(k) can be recursively
calculated as follows:

αt(k) =
t−k+1∑

d′=1

αt−d′(k − 1)P
(
d′ | ωwik

) d′−1∏

t′=0

P
(

yt−t′ | θwik

)

(32)

α0(0) = 1. (33)

As a result, P( yt+1:t+d | zs(t+1) = i, Dt+1 = d) = αd(Li). By
applying the calculation formula shown above, backward mes-
sages Bt(i) and B∗t (i) can be calculated. Using the calculation
procedure for backward messages, the forward sampling pro-
cedure proposed in the HDP-HSMM can be employed. The
backward filtering forward sampling procedure enables the
blocked Gibbs sampler to directly sample latent words from
observation data without explicitly sampling latent letters in
HDP-HLM.

In the forward sampling procedure, super state zs and its
duration Ds are sampled iteratively using backward messages
as follows:

P
(
zs = i|y1:T , zs−1 = j, FDsum

s
= 1

)

= P(zs = i|zs−1 = j)BDsum
s

(i)P
(

yDsum
s
|zs = i

)
(34)

P
(
Ds = d|y1:T , zs = i, FDsum

s
= 1

) = P(Ds = d)

× P
(

yDsum
s +1:Dsum

s +d|Ds = d, zs = i, FDsum
s
= 1

)
BDsum

s +d(i)

B∗Dsum
s

(i)

(35)

where Dsum
s =∑

s′<s Ds′ . For further details, please refer to the
original paper, in which the HDP-HSMM was introduced [8].

B. Sampling Letter Sequence for Latent Word: wi

The sampled zs is only an index of a latent word. Concrete
letter sequences wi for each latent word i should be sampled
according to the correspondence of each subsequence of time
series data yk = ( yk

1, yk
2, . . . , yk

Tk) to each latent word. When
a latent word zs is given, the generative model of the obser-
vation in the range of a latent word zs can be regarded as an
HDP-HSMM whose super states correspond to latent letters.
Therefore, in the proposed model, each subsequence of obser-
vation data corresponding to a latent word can be considered
an observed sequence generated by an HDP-HSMM. If only
a single subsequence of observations corresponds to a latent
word, a latent letter sequence could be sampled using an ordi-
nal sampling procedure in the HDP-HSMM. However, obser-
vations containing the same latent word have to share the same
latent letter sequence w. Therefore, latent letter sequences for
observations with the same latent word are simultaneously
sampled, given that they have the same latent letter sequence.
We employ an approximate sampling procedure based on
sampling importance resampling (SIR) [50].

If we define the observations sharing the same latent word
as y1:k = {y1, y2, . . . , yk} and the shared latent letter sequence
as w, the posterior probability P(w | y1:k) becomes

P
(

w | y1:k
)
∝ P(w)P

(
y1:k | w

)
(36)

= P
(
w | yj)

︸ ︷︷ ︸
sampling

P
(
yj)

k∏

i �=j

P
(
yi | w)

︸ ︷︷ ︸
weight

(37)

where P(yj) in (37), representing the likelihood of the observa-
tion, can be calculated using the backward filtering procedure
in the HDP-HSMM. Probability P(yi|w) can also be calcu-
lated in the same way as (30) if w is given. The HDP-HSMM
also provides a sampling procedure for P(w|yj). Therefore,
if we consider P(w|yj) as the proposed distribution and
P(yj)

∏k
i �=j P(yi|w) as a weight, the SIR procedure can be

employed [50]. Specifically, after a set of w are sampled
from the proposed distribution P(w | yj) j = 1, 2, . . . , k, a final
sample is drawn from the set with a probability proportional
to each sample’s weight. Using this procedure, the proposed
model can approximately sample a latent letter sequence wi

for the ith latent word.

C. Sampling Model Parameters

After sampling latent words {zs} for each observation data
and sampling letter sequences for the latent words, other
parameters can be updated. Parameters of the LM, i.e., {πLM

i }
and βLM, can be updated on the basis of latent word sequences.
Parameters of the WM, i.e., {πWM

j } and βWM, can be updated
on the basis of sampled letter sequences for latent words.
Parameters for the AM, i.e., {ωj} and {θj}, can be updated if
each hidden state xt is determined for each yt. During the SIR
process for sampling a letter sequence, {w̄m

s } in Algorithm 1
are subsidiarily obtained. To accelerate the mixing rate, the
subsidiary sampling results {w̄m

s } obtained in the SIR are used
for updating the AM parameters. These parameters can be
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sampled in the same way as the HDP-HSMM. For more
details, we refer to the original paper in which the HDP-
HSMM were introduced [8]. Finally, the overall sampling
procedure is obtained, as described in Algorithm 1.

D. NPB-DAA

Based on the generative model, HDP-HLM, and its infer-
ence algorithm shown in Algorithm 1, the proposed NPB-DAA
is obtained, finally. By assuming HDP-HLM as a generative
model of observed time series data, and by inferring latent
variables of the model, we can analyze latent double articu-
lation structure, i.e., hierarchically organized latent words and
phonemes, of the data in an unsupervised manner. We call the
novel unsupervised DAA NPB-DAA.

V. EXPERIMENT 1: SYNTHETIC DATA

We conducted an experiment using a synthetic dataset that
explicitly has a double articulation structure to validate our
proposed method.

A. Conditions

To validate the ability of our proposed method to infer a
latent double articulation structure in time series data, we
applied the proposed NPB-DAA based on the HDP-HLM
to synthetic time series data. The conventional DAA was
employed as a comparative method. The time series data
are generated using five letters { j}j∈J = {1, 2, 3, 4, 5} and
four words {w}w∈W = {[1, 3, 5], [3, 2], [4, 1, 5, 2], [1, 5]}
where J is a set of letters and W is a set of words.
The four words were generated randomly. The sequence
wi = [wi1, wi2, . . . , wiLi ] represents a word that is generated
by combining {wi1, wi2, . . . , wiLi} sequentially where wik

denotes the kth letter of wi. The durations of the letters were
assumed to follow Poisson distributions and their parameters
were drawn from a Gamma distribution whose parameters
were α = 50 and β = 10. The emission distribution was
assumed to be a Gaussian distribution whose parameters were
μ = 5i, σ 2 ∈ {0.1, 0.5, 1.0}, where i represents the index of
latent letters. The variance of the emission distribution was
changed in stages, and the inference results were compared.
Forty time series data items were generated from 20 types
of latent word sequences. Sixteen of them were pairs of
words in W, e.g., ([1, 3, 5], [1, 5]) and ([3, 2], [3, 2]). Four of
them were three-word sentences, e.g., ([3, 2], [1, 3, 5], [1, 5]).
A sequence of latent words is represented by (w1, w2, . . . , wn).
Two observations were generated from each word
sequence.

We set the parameters of the NPB-DAA as follows: the
hyperparameters for the latent LM were γ LM = 10.0, αLM =
10.0, and the maximum number of words was six for weak-
limit approximation. The hyperparameters for the latent WM
were γ WM = 10.0, αWM = 10.0, and the maximum number
of letters was seven for weak-limit approximation. The hyper-
parameters of the duration distributions were set to α = 50
and β = 10, and those of the emission distributions were set

Fig. 4. Log-likelihood profile through Gibbs sampling (σ 2 = 1.0).

to μ0 = 0, σ 2
0 = 1.0, κ0 = 0.01, ν0 = 1. The Gibbs sampling

procedure was iterated 100 times.
For the conventional DAA, we set the hyperparameters of

the sticky HDP-HMM to be as similar to those of the NPB-
DAA as possible. In this condition, the latticelm software1

developed by Neubig et al. [25] was used for NPYLM. The
hyperparameters of the NPYLM used in the conventional DAA
were set to α = 0.1 and d = 0.1.

The hyperparameters in the NPB-DAA were heuristically
given in a top-down manner by referring to the size of the
state space and the approximate duration of a phoneme. Those
of the Pitman–Yor LM were set to the default values of the
software.

B. Results

The average log-likelihood is shown in Fig. 4, where error
bars represent the standard deviation of 30 trials. These results
show that the proposed inference procedure worked appropri-
ately, gradually sampling more probable latent variables as the
iterations increased.

In contrast with ordinal speech recognition tasks, the target
task (language acquisition and double articulation analysis) is
an unsupervised learning task. Specifically, it is a clustering
task. Therefore, it is difficult to evaluate the methods’ perfor-
mance from the viewpoint of precision and recall because the
estimated index of a cluster and the label corresponding to
the ground truth data are usually different. We evaluated the
obtained result using the adjusted rand index (ARI), which
quantifies the performance of a clustering task [51]. If all data
items are clustered randomly or only to one cluster, the ARI
becomes 0. By contrast, if the results of clustering are the
same as those of the ground truth data, the ARI becomes 1.

Table I shows the ARI for the estimated latent letters. The
ARI for estimated latent letters shows how accurately each
method estimated latent letters, which correspond to phonemes
in speech signals. Table II shows the ARI for estimated latent

1latticelm: http://www.phontron.com/latticelm/index.html.

http://www.phontron.com/latticelm/index.html
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TABLE I
ARI FOR ESTIMATED LATENT LETTERS

TABLE II
ARI FOR ESTIMATED LATENT WORDS

words. The ARI for estimated latent words shows how accu-
rately each method estimated latent letters, which correspond
to words in speech signals. In both tables, each column shows
ARIs for different σ 2. A higher ARI implies more accurate
estimation of the latent variables.

Although the ARI for the latent letters obtained by conven-
tional DAA decreases when the variance σ 2 increases, that of
NPB-DAA did not decrease as much. As the ARIs for latent
words show, the performance of word segmentation by con-
ventional DAA was poor, even when the ARI for latent letters
was larger than 0.8. In contrast, the ARI for latent words esti-
mated by NPB-DAA was over 0.5 in all conditions. This shows
that the NPB-DAA can mitigate the ill effects of phoneme
recognition errors in the word segmentation task, and obtained
knowledge about words can improve phoneme recognition per-
formance by using contextual information. Fig. 5 shows the
change in ARI through iterations in the case of σ 2 = 1.0. This
shows that the ARI also increased gradually while log like-
lihood increases, as in Fig. 4. These results suggest that the
NPB-DAA is an appropriate generative model because bet-
ter word segmentation performance corresponded to higher
likelihood of the model.

To check the effects of the limit on weak-limit approxi-
mation, we ran an experiment where the maximum number
of letters was 20 for weak-limit approximation. The ARI for
the estimated latent words were {0.682, 0.650, 0.604}, those
for estimated latent letters were {0.967, 0.899, 0.878}, and the
estimated number of latent letters were {5.6, 6.3, 6.6} on aver-
age for σ 2 = {0.1, 0.5, 1.0}. This result shows that our model
can work appropriately to estimate the number of latent states
owing to the nature of Bayesian nonparametrics when the limit
is sufficiently large.

An example of estimated latent variables is shown in Fig. 6,
which shows the results for time series data generated from
the latent word sequence ([3, 2], [1, 3, 5], [1, 5]). The input
time series data is shown at the very top of the figure. The
top of each panel shows the true latent letters or latent words,
whereas the panel beneath shows the inferred results. The ver-
tical axes represent the iteration of the Gibbs sampling. In
Fig. 6, the figure in the middle shows a latent word sequence
estimated using the proposed method, and the figure at the
bottom shows the estimated boundaries of the latent words.
These results show that the inference procedure works con-
sistently and can estimate an adequate boundary for the latent
words given the data.

Fig. 5. ARI profile through Gibbs sampling (σ 2 = 1.0).

These results show that the proposed method is a more
effective machine learning method for estimating a latent
double articulation structure embedded in time series data.

VI. EXPERIMENT 2: CONTINUOUS JAPANESE

VOWEL SPEECH SIGNAL

In the second experiment, we evaluated our proposed
method using Japanese vowel speech signals to test the appli-
cability of the proposed method to actual human continuous
speech signal.

A. Conditions

We prepared four datasets. Each dataset corresponds to a
speaker, and consisted of 60 audio data items. We asked two
male and two female Japanese speakers to read 30 artificial
sentences aloud two times at a natural speed, and recorded
his/her voice. The 30 sentences were prepared using five words
{aioi, aue, ao, ie, uo}, which consisted of five Japanese vowels
{a, i, u, e, o} representing {ä, i, WB, efl, ofl} in phonetic symbols,
respectively. By reordering the five words, we prepared 25
two-word sentences, e.g., “ao aioi,” “uo aue,” and “aioi aioi,”
and five three-word sentences, i.e., “uo aue ie,” “ie ie uo,”
“aue ao ie,” “ao ie ao,” and “aioi uo ie.” The set of two-word
sentences consisted of all types of word pairs (5 × 5 = 25).
The set of three-word sentences were generated randomly. A
separate model was trained on each dataset corresponding to
each speaker, and evaluated.

The recorded data were encoded into 13-D mel-frequency
cepstrum coefficient (MFCC) time series data using the HMM
Toolkit.2 The frame size and shift were set to 25 and 10 ms,
respectively. Twelve-dimensional MFCC data was obtained as
input data by eliminating power information from the original
13-D MFCC data. As a result, 12-D time series data at a frame
rate of 100 Hz were obtained.

The hyperparameters for the latent LM were set to γ LM =
10.0 and αLM = 10.0, and the maximum number of words was
set to seven for weak-limit approximation. The hyperparame-
ters for the latent WM were γ WM = 10.0 and αWM = 10.0,
and the maximum number of letters was seven for weak-limit

2HMM Toolkit: http://htk.eng.cam.ac.uk/.

http://htk.eng.cam.ac.uk/
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Fig. 6. Example of inference results for sample data ([3, 2], [1, 3, 5], [1, 5])
and σ 2 = 1.0: (top) observation data, (upper middle) latent letters, (lower
middle) latent words, and (bottom) the boundaries of latent words. Different
colors denote different states.

approximation. The hyperparameters of the duration distribu-
tions were set to α = 200 and β = 10, and those of the
emission distributions were set to μ0 = 0, σ 2

0 = 1.0, κ0 =
0.01, and ν0 = 17 = (dimension+5).

For the conventional DAA, we set the hyperparameters of
the sticky HDP-HMM to be as similar to those of the NPB-
DAA as possible. The hyperparameters for the NPYLM used

in the conventional DAA were set to α = 0.1 and d = 0.1.
The Gibbs sampling procedure was iterated 100 times. With
different random number seeds, 20 trials were performed.

The parameters in the NPB-DAA were given in a top-down
manner heuristically by referring to the size of the state space
and the approximate duration of a phoneme. Those of the
Pitman–Yor LM were set to the default values of the software.

As a baseline method, we employed an open-source contin-
uous speech recognition engine, Julius,3 which is widely used
in Japanese speech recognition tasks. Julius’s AM is trained
by using a large number of speech data in a supervised man-
ner. We prepared four conditions for Julius. The first one was
called “Julius (phoneme + NPYLM).” In this condition, we
used Julius as a phoneme recognition system by preparing a
phoneme dictionary containing five Japanese vowels {a, i, u,
e, o}. Moreover, Julius’s dictionary also contains silB and silE
to represent silence due to system requirements. After encod-
ing continuous speech signals into phoneme sequences using
Julius as a phoneme recognizer, unsupervised morphological
analysis based on the NPYLM was conducted to discover
words and an LM. The second condition was called “Julius
(phoneme + latticelm).” In this condition, we also used lat-
ticelm, which is an unsupervised morphological analyzer for
lattice output from an ASR system. The method was proposed
by Neubig et al. [25] as an extension of Mochihashi’s [13]
NPYLM. In this condition, the latticelm software was used
too.

In the third and fourth conditions, called “Julius (mono-
phone + word dictionary)” and “Julius (triphone + word
dictionary),” respectively, we prepared a complete word dic-
tionary that contained all of the words that appeared in the
target speech signal, i.e., {aioi, aue, ao, ie, uo}, for Julius.
This condition provides almost an upper bound for the per-
formance of our task. Except for in Julius (triphone + word
dictionary), Julius uses a monophone-based AM contained in
the dictation kit. The AM is trained in a supervised manner
using a large number of labeled speech data. Julius (triphone
+ word dictionary) used a triphone-based acoustic model for
comparison.

B. Results

We provided word and letter ground truth labels to all
frames of the speech signal data and evaluated the relationship
between the truth labels and estimated latent letter and word
indices.

The results are shown in Table III. Check marks in the
AM and LM columns indicate that the method used a pre-
trained AM and the given true LM, respectively. Letter ARI
shows the ARI of phoneme clustering. A high letter ARI
means more accurate phoneme acquisition and recognition.
Word ARI shows the ARI of word clustering. A higher word
ARI means more accurate word discovery and recognition.

3Open-Source Large Vocabulary CSR Engine Julius:
http://julius.sourceforge.jp/. The Linux binary dictation-kit-v4.3.1-linux.tgz
was used in this experiment. The software encodes the recorded data into
36-D MFCC data including dynamic features and uses them for speech
recognition.

http://julius.sourceforge.jp/
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TABLE III
ARI FOR ESTIMATED LATENT LETTERS AND WORDS

Each row corresponds to each method explained in the con-
ditions. A separate model was trained on the data from each
speaker, i.e., each model was trained to be a speaker-dependent
model. We compute the averages of the results across the
four speakers, and show them in Table III. The results of
“NPB-DAA” and conventional DAA show the ARI averaged
over 20 trials. In contrast, “NPB-DAA [maximum a posteriori
probability (MAP)]” obtained the MAP of the 20 trials. An
advantage of the NPB-DAA is that the method can calculate
the posterior probability of a given dataset after the learn-
ing phase because the NPB-DAA is derived from a generative
model, i.e., HDP-HLM, which integrates the LM and AM.
In contrast with the conventional DAA and similar methods
that do not have appropriate generative models, the NPB-DAA
can obtain an appropriate learning result by referring to the
probability. The rows with MAP in Table III show that this
probability is an adequate criterion for selecting a learning
result.

The results show that the NPB-DAA (MAP) outperformed
not only the conventional DAA but also Julius-based word
discovery systems whose AMs were trained in supervised
manner. One reason is that the AMs of the DAAs were trained
only from one participant’s speech signals, in contrast, Julius’s
AM was trained by the speech signals of many speakers. In
other words, NPB-DAA acquired speaker-dependent AM in
contrast with that Julius used speaker-independent AM. This
adaptation of AM to the speaker must have increased the
NPB-DAA’s performance.

The results show that a naive application of the NPYLM to
recognized phoneme sequences results in poor word acquisi-
tion performance, especially in conventional DAA. Because
the theory of the NPYLM does not presume that letter
sequences have recognition errors, the existence of phoneme
recognition error deteriorates word segmentation performance.
The methods that simply apply an NPYLM to obtained
phoneme sequences, i.e., the conventional DAA and Julius
(phoneme dictionary + NPYLM), output bad results in the
word ARI compared with those of the letter ARI. However,
latticelm, which presumes phoneme recognition errors to some
extent, could not dramatically improve the performance of
word acquisition in our experimental setting.

In contrast, Julius (triphone + word dictionary) improved
its word ARI performance with respect to letter ARI perfor-
mance. Julius (monophone + word dictionary) also kept its

performance high with respect to the word recognition task
compared with the phoneme recognition task. We note that
the word error rate was 32.8% and the phoneme error rate
was 28.1% in Julius (monophone + word dictionary).

In the research field of ASR, it is widely known that a
good LM improves word and phoneme recognition perfor-
mance. The NPB-DAA could not improve the performance of
word ARI with respect to letter ARI performance. However,
it obtained an adequate LM and prevented the score of the
word ARI from becoming far worse than that of the letter
ARI. To achieve such an error-proof word acquisition, the
direct inference of latent words are important in NPB-DAA. In
the inference procedure described in Section III, latent words
are sampled directly without sampling latent letters while
marginalizing all possible latent letter sequences. This achieves
an effect similar to that of a given LM in the inference process

Typical examples of the estimation results are shown in
Table IV for NPB-DAA and conventional DAA. Each num-
ber in parentheses represents an estimated phoneme label,
each space represents a phoneme boundary, each number in
bold style represents a sampled index of a word, and “/”
represents a boundary between successive words. For exam-
ple, “ao ie” was divided into two words, i.e., “5 0 1” and
“6 3 4 6,” in the NPB-DAA results, and their word indices
were 3 and 4. In Table IV, the sampled letters correspond-
ing to the word “ie” are underlined. Although conventional
DAA could not estimate ie as a single word, the NPB-DAA
could estimate ie to be a single word: “4.” In the conven-
tional DAA results, several phoneme recognition errors can be
found. The errors completely deteriorated the following chunk-
ing process, i.e., unsupervised morphological analysis using
an NPYLM, as past research has frequently pointed out. As
shown in Table IV, NPB-DAA had some phoneme recognition
errors. However, in the NPB-DAA, latent words are sampled
on the basis of the marginalized phoneme distribution before
sampling concrete phoneme sequences. This property of the
sampling procedure seemed to improve the performance of
NPB-DAA.

An example of the estimated latent variables is shown in
Fig. 7, which shows the results for time series data correspond-
ing to a vowel sequence, ao ie ao. The input time series data,
i.e., 12-D MFCC time series data, are shown at the top of the
figures. The middle and the bottom figures show the inference
process. The top of each figure shows the true latent letters
or latent words, whereas the bottom shows the inferred result.
The vertical axes represent the number of Gibbs sampling iter-
ations. This shows that the inference procedure worked for
human vowel sequence data, and could estimate an adequate
unit for each word.

Let us further examine the characteristics of the segmenta-
tion results of the NPB-DAA. Table IV shows that some of the
estimated latent words have a latent letter “6” at their head or
tail. The latent letter 6 represents silence observed during the
transition from one vowel to another. Silence in speech signals
and the transitional sounds observed between two phonemes
were treated in the same manner as other uttered sounds in our
model. The question of whether such signals should be treated
in the same way as other sounds in a generative model calls
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TABLE IV
EXAMPLE WORD DISCOVERY RESULTS

Fig. 7. Example of inference results for ao ie ao. MFCC feature vectors are
plotted in the top panel. The middle and bottom panels show the inference
results of latent letters and latent words, respectively. Different colors denote
different states.

for further investigation. In our model, a phoneme is simply
represented by a single Gaussian distribution, although many
past speech recognition systems assign a richer structure to a
phoneme, e.g., a three-state left-to-right HMM with Gaussian
mixture model emission distributions. There is room for inves-
tigating whether a phoneme model, i.e., a latent letter, should

itself have a more complex structure, or if a double articula-
tion hierarchy is sufficient from the viewpoint of unsupervised
word discovery tasks.

An interesting result that represents a characteristic of the
NPB-DAA is the latent word “4 (6 3 4 6)” estimated at the
end of “ie aioi.” The speech signals corresponding to this “4”
were a kind of transitional sound observed following “aioi.”
The NPB-DAA directly inferred the latent word by marginal-
izing latent letters. In this case, it seems that “4” was more
likely than other latent words, and the NPB-DAA hence gen-
erated this result. This can be regarded as a side effect of our
approach, i.e., the marginalization of latent letter sequences
in a latent word. We are confident that the marginalization of
latent letters and the direct inference of word sequences are
important to improving the performance of the unsupervised
word segmentation of continuous speech signals, but there is
room to consider this side effect.

Note that the NPB-DAA performed unsupervised word dis-
covery under the condition that the training data consisted of
speech signals uttered by one speaker, in contrast with Julius,
whose AM was trained using many speakers’ speech signals.
Speaker-independent, unsupervised word discovery from con-
tinuous speech signals remains a challenging problem because
the acoustic features of phonemes heavily depend on the
speaker. When we gave four speakers’ speech signals to the
NPB-DAA at the same time, the letter ARI and the word ARI
decreased to 0.297 and 0.104, respectively. By contrast, those
produced by Julius with a triphone AM and a true word dic-
tionary were 0.552 and 0.599, respectively. In the experiment,
120 audio data items that were recorded by asking two male
and two female Japanese speakers to read 30 artificial sen-
tences were used, i.e., a half of the data items used in the main
experiment due to computational cost. It was observed that
speaker “dependent” phoneme models were obtained by the
NPB-DAA, i.e., speech signals representing the same phoneme
uttered by deferent persons tended to be clustered to differ-
ent latent letters. To develop a machine learning method that
enables a robot to obtain LM and AM independent of speak-
ers, or automatically adapting to different speakers is one of
our future challenges.

VII. CONCLUSION

In this paper, we proposed NPB-DAA for direct and simulta-
neous acquisition of LM and AM from continuous speech sig-
nals in an unsupervised manner. For this purpose, we proposed
an integrative generative model called the HDP-HLM by
extending HDP-HSMM. Based on the generative model, we
derived an inference procedure by extending the blocked Gibbs
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sampler originally proposed for HDP-HSMM. The method is
expected to enable a developmental robot to simultaneously
obtain LM and AM directly from continuous speech signals.
To evaluate the performance of the proposed method, two
experiments were performed. In the first experiment, the pro-
posed method was applied to synthetic data, and it was shown
that the method can successfully infer latent words embedded
in time series data in an unsupervised manner. In the second
experiment, we applied the proposed method to actual human
Japanese vowel sequences. The result showed that the pro-
posed method outperformed a conventional two-stage sequen-
tial method, conventional DAA, and a baseline ASR method.

One of the most important challenges in our future work is
to achieve complete human language acquisition from speech
signals. We did not achieve complete language acquisition
from speech signals that includes consonants as well as vowels
in this paper. Language acquisition from more natural speech
signals like child-directed speech by human parents are also
part of our future work. To achieve these aims, we still have
two main problems: feature extraction and computational cost.

To address these problems, more sophisticated feature
extraction methods are needed. Deep learning has gained
attention recently because of its impressive feature extrac-
tion performance. Integrating a deep learning method into the
NPB-DAA should improve its performance.

Computational cost is another problem. Even though the
size of the dataset used in experiment 2 was very small,
it took approximately 240 min for 100 iterations using an
Intel Xeon CPU E5-2650 v2 2.60 GHz, 8 cores × 16 CPU.
In particular, the computational cost of the blocked Gibbs
sampler was O(TLmaxd3

maxN2
max), where Lmax is the maximum

number of latent letters for a word, dmax is the maximum dura-
tion of a word, and Nmax is the maximum number of words.
To apply the proposed method to a larger dataset, improving
its computational cost will be necessary.

Currently, the accuracy of the language acquisition is still
limited, as shown in Table III. In this paper, we focused on
a language acquisition method based on distributional cues
and proposed a mathematical model for language acquisi-
tion. Obviously, distributional cues are not enough for more
accurate language acquisition. As suggested by several com-
putational and robotic studies, making use of co-occurrence
cues improves the accuracy of language acquisition [23], [24].
The proposed HDP-HLM is a fully probabilistic generative
model. Therefore, introducing other factors into consider-
ation is relatively easier than for other heuristic models.
This is also advantage of our approach. Combining prosodic
and co-occurrence cues into the NPB-DAA, and obtaining a
more accurate and more plausible constructive developmen-
tal language acquisition model is also a direction for future
research.
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