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Abstract— Despite sometimes noisy evidence (e.g., perceptual 

processing errors), young children are capable of predicting and 

evaluating events based on complex causal representations. 

Children rapidly revise their beliefs and learn scientific concepts - 

sometimes without prior knowledge of an underlying causal 

system. What might we need in our computational models of belief 

revision to similarly simulate children’s behaviors when learning 

such causal systems? Building from experimental data of 

elementary school children’s intuitive beliefs and predictions of 

water displacement, we propose three aspects of human inference 

and belief revision that warrant attention within the subfield of 

computational cognition.  Each aspect is described by identifying 

the gaps between empirical findings and current computational 

implementations. Then, specific implementations of these aspects 

are built using models of Theory-based Bayesian inference. First, 

we construct children’s prior beliefs at the individual level based 

on their prior behavior. Second, we approximate children’s 

learning using an “optimal” Bayesian model, revealing the 

dynamics of belief revision trial-by-trial. Third, we investigate the 

role prediction may have in facilitating learning. By performing 

these key computational steps, we find support for contemporary 

claims that children may be approximately “Bayesian” learners 

and increase awareness of the importance of generating 

predictions in active learning.  

Index Terms— cognitive system and development, prediction, 

belief revision, Bayesian inference, computational modeling, 

science learning, perceptual processes 

I. INTRODUCTION 

ndeavors in robotics and machine learning that focus on 

associative, reinforcement, and model-free learning enjoy 

the flexibility of statistical learning without constraints. 

However, these “bottom-up” learning models typically struggle 

to construct the theories that support causal reasoning on their 

own, and they may not capture the human ability to construct 

and revise causal beliefs in a rapid fashion [1]. Yet, theory 

construction and revision are critical components of human 
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learning. Abstract causal theories of the world are a foundation 

of human intelligence, supporting inference, prediction, 

counterfactual reasoning, explanation, and action planning 

already present in young children [2-4]. Children’s causal 

beliefs flexibly change in the face of new, even ambiguous 

evidence [5]. Beliefs about the world begin to be revised as 

early as infancy, as seen in studies showing that infants begin 

enriching “core” concepts about object solidity, continuity, 

persistence, and causality over the first few years of life (e.g. 

[6-9]).  

How might belief construction and revision take place in 

human learners? Intuitive theories — such as children’s 

theories about the relationship between mass and balance [10-

12], biology and vitalism [2, 13], the principles of magnetism 

[14], buoyancy [15,16], or about solids and liquids [17] — can 

take the form of a weighted space of prior causal beliefs, 

helping to explain how a learner could draw rich inferences 

quickly from limited, ambiguous data [18,19]. These intuitive 

theories may also include misconceptions – possibly due to 

their ability to explain a limited range of specific, observed 

phenomena [20] and due to misconceptions’ ability to coexist 

with other beliefs [21,22], sometimes even after learning the 

correct scientific concept [23]. Thus, beliefs may be captured as 

a space of multiple, competing prior beliefs, sometimes 

imposing constraints on the kinds of hypotheses a learner 

considers in the first place and offering another means to faster 

learning [24,25]. 

Computational models of belief revision help to precisely 

characterize the process by which belief construction and 

revision are possible, despite correct beliefs competing with the 

influence of misconceptions. However, even models of human 

cognition that consider top-down, theory-based constraints to 

predict the learning behavior of groups, on average, may take 

for granted that learners (and in particular children) have 

tremendous variability in their starting states (e.g., [26]). The 

impact of individual differences may be most apparent if 
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learning is assessed trial-by-trial, in a “mini-microgenetic” 

experiment [27]. If prior beliefs play an important role in human 

and machine learning, then models must consider how 

differences in these initial starting states influence learning at 

the individual level. Thus, the first two goals of this paper are 

to capture the individual starting states of the learner’s prior 

beliefs and predict learning trial-by-trial. 

Simply capturing these prior beliefs and assuming all learners 

deploy them approximately-rationally is likely not sufficient to 

capture the nuance of individual differences in learning. To 

steer learning, these prior beliefs have to be activated and 

leveraged [28]. In line with this claim, a wealth of research has 

found that conflicting evidence alone is not sufficient for 

successful theory revision [29]. Specifically, successful belief 

revision may require acknowledging the strength of their prior 

beliefs relative to the conflicting evidence – with findings that 

show that children who already have an initial belief about a 

topic may only revise it if an expectancy violation cannot be 

“explained away” by their current beliefs [30,31]. Thus, instead 

of only passively observing evidence that may be conflicting 

with one’s beliefs, recent  experiments find that asking learners 

to actively generate an explicit prediction has been shown to 

increase the perceived conflict between the learner’s theory and 

unexpected evidence, and it may facilitate theory revision [32-

34]. Thus, making a prediction may be a key process by which 

humans actively leverage their prior beliefs [28]. The degree-

to-which prediction-based learning engages theory-based 

“optimal” belief updating remains open.  

Thus, we raise and attempt to answer three critical questions.  

First, how can we best understand the initial models that young 

learners start with and leverage throughout learning? Second, 

how does this learning process unfold over time, as new 

observations are acquired trial-by-trial? Third, in what 

circumstances do learners engage their models of the world to 

support learning in a top-down fashion? If we are to reverse 

engineer the human learner, then we must understand the role 

of the starting state of the causal-explanatory representations, 

how they change in response to evidence, and the contexts that 

engage model-based learning. In what follows, we will provide 

a brief background on the role of prior knowledge and 

prediction in learning, our theory-based Bayesian model 

approach, and results modeling empirical data from prior 

developmental research [35] towards answering these 

questions.  

A. Prior knowledge in learning and development  

Incorporating structured prior beliefs into models is 

necessary to capture the speed of learning characteristic of 

humans but has often been undervalued in past approaches. 

Bayesian inference models have gained traction, highlighting 

the importance of considering multiple competing hypotheses 

and intuitively performing live updates to the strength of belief 

in each of those theories. While associative models may capture 

how learners can update the relative strengths between cause 

and effect in a linear causal relationship, Bayesian models allow 

for inference of different types of causal relationships and 

whether different theories of various causal relationships are 

even being considered [15,36]. Thus, as interest has grown in 

modeling more complex cognitive processes - such as causal 

reasoning and theory revision - Bayesian inference has become 

quite prevalent despite being computationally costly. This is 

likely due to the parsimony of its probabilistic principles while 

still maintaining the ability to describe complexities.  

A growing field of theory-based Bayesian modeling has 

begun to address the problem of complexity and search over 

large spaces, acknowledging the role of prior intuitive theories 

[37-39]. But to capture the intricacies of human learning, these 

approaches must also attend to how beliefs are constructed at 

the individual level, with careful attention to the individual 

differences that characterize the variability of prior beliefs in 

early development. For example, past research [10] measured 

children’s intuitive beliefs of balance before giving children the 

chance to explore further and explain the observation. The 

observed evidence was not sufficient to predict how children 

would behave. Instead, it was the interaction of the children’s 

prior beliefs of balance and the evidence that predicted 

children’s behavior - with children exploring and explaining 

events that conflicted with their individual prior beliefs. Such 

results highlight the need to measure and model differences in 

prior beliefs at the individual level. 

B. Bayesian Models of Learning 

Given the power of Bayesian inference to formally model the 

role of individual difference in prior beliefs and the step-by-step 

learning process during theory revision, we apply this approach 

to our analysis. In Bayesian inference, operations can be 

performed sequentially with prior theories influencing behavior 

before each new observation occurs. Priors are revised and 

updated at each step - generating posteriors that are now used 

as the priors from a subsequent event similar to the first one. 

Typically, this is formalized computationally using Bayes Rule:  

𝑝(ℎ|𝑑1, . . . , 𝑑𝑛+1) =  
𝑝(𝑑𝑛+1|ℎ)𝑝(ℎ|𝑑1, . . . , 𝑑𝑛)

∑ 𝑝(ℎ𝑖|𝑑1, . . . , 𝑑𝑛)ℎ𝑖 ∈ 𝐻

 

where we calculate the updated posterior (p(h|d1,. . .,dn+1)) of 

some hypothesis (h) after some number (n) of data observations 

(d1,. . .,dn+1), given a prior probability of said theory (p(h|d1,. . 

.,dn)).  

Bayesian models thus account for prior beliefs through 

updating the valuation and relevance of said priors trial-by-trial 

as individual observations are experienced continuously. While 

there is a long history of investigation of children’s early causal 

reasoning and intuitive scientific theories [2,10,40-42], studies 

tend to present all available data at once and determine whether 

children can successfully parse this influx of information to 

successfully converge onto the correct theory being 

investigated. While this past work provides important insights 

into children’s development of inference skills, it lacks in its 

ability to track the theory revision process in a continuous way. 

Thus, a recent method in cognitive science - a “mini-

microgenetic” method [14,27] where evidence is provided trial-

by-trial and prior beliefs are investigated on each trial - is being 

used to understand concept learning both quantitatively and 

qualitatively using Bayesian modeling. With Bayesian 

modeling methods, it becomes possible to analyze behavior in 

a continuous way, providing opportunities for the discovery of 

the types of transitions humans may make when shifting the 

strengths of their theories in an approximately Bayesian way.  
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C. Engaging model-based learning through prediction 

In supporting meaningful advances in studies of both human 

and machine learning, investigating the role of prediction in 

learning scenarios may be vital for understanding theory 

revision during science learning. Research on science education 

highlights the importance of having learners engage with their 

prior beliefs, as doing so may highlight inconsistencies between 

the learners’ beliefs and the conflicting evidence that they must 

now accommodate to satisfy their desire to learn [43]. For 

example, recent work points to a beneficial role of asking 

learners to generate a prediction before presenting them with 

new information that conflicts with their intuitions [32,44]. The 

act of predicting is thought to increase the subjective value of 

the outcome, which—if the outcome is different than 

expected—increases the perceived expectancy-violation, 

resulting in enhanced attention and learning [45]. Here we take 

up the focus of investigating the role of prediction 

computationally.  

We aim to investigate the role of prediction using Bayesian 

models of theory change. In what follows, we compare this 

“optimal” learning model’s performance to experimental data 

on children’s behavior in a water displacement task [35]. 

Importantly, this entails comparing the expectations of our 

optimal model between two closely matched scenarios centered 

on the role of prediction- one scenario where children are 

predicting, and perhaps performing active engagement with 

their prior theories, and another where children are performing 

post hoc evaluations.  

D. Theory Change & the Domain of Water Displacement 

The domain of water displacement was chosen for this 

investigation as it is suitable for use in answering our three main 

questions. First, past research has found notable individual 

differences in children’s prior theories about water 

displacement. Children tend to have different beliefs about the 

principles of water displacement [46-49]. This allows for 

investigation of the variability across individual children’s 

beliefs, as well as their impact on subsequent learning.  

Second, to learn the principles of water displacement, 

learners can be presented with a series of similar trials and 

receive immediate feedback on their answers. This allows for 

the implementation of the continuous, trial-by-trial revision of 

children’s prior theories in our computational models that 

involves the discrimination of perceptually distinct - but 

possibly noisy - representations. Third, for our modeling, we 

used data from an experimental study that manipulated 

children’s level of engagement with the task [35]. To increase 

engagement, half of the children in the sample were asked to 

generate predictions about which of two balls displaces more 

water before the correct answer was revealed (“Prediction 

condition”). The other half of the sample was first presented 

with the correct answer and only then stated which outcome 

they would have predicted (“Postdiction condition”). Thus, we 

may investigate whether this difference in engagement (either 

generating a-priori predictions or post-hoc evaluations) affects 

the learning process. More specifically, we tested whether 

children in the prediction condition performed more similarly 

to an optimal theory-based Bayesian learner as compared to 

 
1  As this is not the focus of the current manuscript, it is not discussed further. 

children in the postdiction condition. In what follows, we 

describe the aforementioned dataset and how it was generated, 

followed by the computational implementation of our Bayesian 

Learning model and subsequent results per this model’s 

predictions. 

II. EMPIRICAL METHODOLOGY AND BEHAVIORAL DATA 

For the present study, we used data from an experiment that 

investigated elementary school children’s theories of water 

displacement (experimental procedure, data, and empirical 

results are those found in [35]). Children’s causal beliefs of 

water displacement were chosen as children frequently have the 

misconception that water displacement depends on the weight 

of an object or a combination of weight and size rather than on 

its size only (see e.g., [47]), providing an appropriate domain 

for the investigation of variability across individual children’s 

beliefs, as well as their impact on children’s subsequent 

learning. 

Ninety-four six- to nine-year-old children participated in the 

experiment. Children first viewed a clip of an experimenter 

demonstrating how water gets displaced by pressing a sphere 

underwater - where, importantly, the experimenter stressed that 

the spheres were held underwater to avoid the chance that 

children evaluate buoyancy instead of water displacement. 

Importantly, while this was the only instance of children seeing 

actual water displacement during the entire experiment, no 

concerns were raised regarding the quality of the computerized 

stimuli throughout the task. This is because previous literature 

(originating with [47], but noted by work following it) 

demonstrates that not even hands-on experimentation (where 

children could raise and lower the compared objects in two 

separate containers of water) seemed to be what engaged 

students enough to reconsider their models of displacement. 

Instead, work related to water displacement and revision of 

related beliefs supports the notion that it is instead instances of 

contradictory information that might be eliciting learning. 

Following this familiarization clip, children completed a 

pretest, learning phase, posttest, and transfer test (in this order). 

Here, we will focus on data from the pretest to model children’s 

prior theories, and on data from the learning phase to model 

children’s learning over time. The data from the posttest and 

transfer test were not modeled. 

All of the trials during each phase of the main experiment 

were similar to one another. However, the pretest was 

completed using paper and pencil. Meanwhile, the learning 

phase was completed with a computerized version of the task 

and additionally included feedback for children’s responses and 

usage of eye tracking apparatus for collecting an additional 

measure, pupil dilation.1 During each trial, children were 

presented with pairs of spheres that varied in size (small, 

medium, large) as well as in material (polystyrene, wood, lead), 

and therefore also varied by weight (assumed via a combination 

of the object’s size and material). For each trial, children 

indicated which of two spheres they think displaces more water 

with a confidence scale from one to five (1 = certainly the left 

sphere, 2 = maybe the left sphere, 3 = equal amounts of water 
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for both, 4 = maybe the right sphere, 5 = certainly the right 

sphere; see Figure 1 for a trial example).  

The pretest contained 8 trials as described above, asking 

children to evaluate which of two spheres displaced the most 

water with some confidence (per the described scale, from 1 to 

5). After responding on each trial, the next trial of the pretest 

phase began. Critically, during this pretest phase, children did 

not receive feedback on the accuracy of their responses. This 

allows us to derive representations of children’s prior theories 

on water displacement without the risk of evidence-based 

revision occurring part-way through these trials.  

After the pretest, children completed a learning phase 

consisting of 34 trials that were similar to the pretest trials. The 

critical difference between the learning and pretest phase was 

that learners received feedback (“+” under the correct response) 

on their answers. The learning phase thus measured children’s 

responses on each trial and provided feedback on the correct 

outcomes, providing the evidence needed for children to learn 

the correct theory of water displacement (that the size of the 

objects determines how much water it displaces). This allowed 

us to model the process by which children may be learning the 

true concept of water displacement as they incorporate the 

continuously incoming evidence trial-by-trial. 

For the experimental manipulation, children were randomly 

assigned to either a Prediction (n = 48) or Postdiction (n = 46) 

condition that differed only in the learning phase trials on the 

computer. For all trials, feedback on the outcomes of each trial 

were presented to children by highlighting the correct option on 

the computer screen (a “+” would appear under the ball that 

would displace the most water). However, the timing at which 

children received feedback differed between conditions. In the 

Prediction condition, children predicted the outcome of a trial 

before receiving feedback. In contrast, the children in the 

Postdiction condition saw this feedback of the trial’s correct 

outcome before responding. This experimental manipulation 

served to influence children’s engagement with the task.  

 Here, we predicted that children in the Prediction condition 

would engage more in the task as they had to actively choose 

and commit to an option [28], while children in the Postdiction 

condition would engage less because they only made post-hoc 

evaluations after they already knew the correct outcome. Our 

goal was to gain insight into differences in the dynamics of 

learning processes in theory revision that may vary by the level 

of engagement that children have with their prior intuitive 

theories. For this purpose, we will compare model predictions 

to children’s performance between these two conditions. 

III. BAYESIAN LEARNING MODEL OF WATER DISPLACEMENT 

Here, we discuss the design and implementation of a 

computational endeavor that involves three main modeling 

stages. The first modeling stage entails capturing different 

representations of children’s possible prior beliefs. Then, the 

second modeling stage aims to capture the process by which 

they evolve throughout learning. Finally, the third modeling 

stage entails a comparison of learning outcomes under different 

contexts of task engagement. In what follows, we outline the 

computational methods implemented for these three stages, 

followed by results that relate the predictions made by our 

Fig.1.  Schematic overview of how the experimental data being modeled was acquired from the original experimental manipulation (Theobald & Brod, 

2021). The learning phase consisted of 34 trials that were presented to children that were randomly assigned to one of two experimental conditions 
(between-subjects): the Prediction or Postdiction condition. The figure shows an example trial that is shown to children in both conditions, but with 

emphasis on differences in the timing of children’s response and the timing of related feedback. Specifically, children in the Prediction condition would first 

provide a response – stating their expectation about which sphere displaces more  water before the results of the event and related feedback were presented 
to them. In contrast, children in the Postdiction condition first saw the results of the presented trial, then stated their expectations by providing an evaluation 

of the event observed. 
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computational model to children’s actual behavior during the 

described experiment.2 

A. Capturing a space of prior models of water displacement 

The first goal of our model is to capture how children’s prior 

beliefs (at the individual level) might motivate their predictions 

during the water displacement task. Here, we consider a 

hypothesis space distribution of four different, competing 

theories based on object-feature variance that prior literature 

has typically identified children maintaining in the early 

elementary school years (e.g., [46,47]). Critically, this past 

research highlights that while children’s theories of scientific 

concepts (such as water displacement) are complex, they 

construct them based on their observations and the specific 

information that they can parse from them. Specifically, when 

children complete water displacement tasks, they typically 

make decisions or include descriptions of their naive theories 

by emphasizing the importance of object weight (e.g., its 

“Mass”) or density (e.g., its “Material) as the determining factor 

for how much water is displaced, before eventually learning 

that the object’s volume (“Size”) is the correct feature to 

investigate.  

Per these prior findings, object discrimination within our 

model relies on balancing three competing theories that may 

determine how much water an object displaces: a Size theory, a 

Material theory, and a Mass theory. We also include a fourth 

comparison to a Random Guessing model that captures a phase 

in which children might have no intuitions about the correct 

outcome and so respond randomly.  

The first three theory-based models generate responses based 

on their respective feature values, such that objects with the 

“higher” value within the respective feature will “win” and 

displace more water (e.g., the correct Size theory will almost 

always predict that the larger object will displace more water). 

The Random guessing theory generates predictions from a 

uniform distribution, placing equal weight on each of the five 

potential outcomes of each trial.   

Operationally, our model starts by assigning feature weights 

for objects that are being judged based on their feature variance. 

Specifically, for any given trial, two balls are compared to one 

another in terms of how much water they may displace. Here, 

we consider variations of three key features of the balls: their 

Size, Material, and Weight. A ball’s Size (Small, Medium, and 

Large) and Material (Polystyrene (Styrofoam), Wood, Metal) 

are assigned possible feature values from 1 to 3 based on their 

relative feature (e.g., a Medium-sized Metal ball has a Size of 2 

and Material of 3). A ball’s Weight is assigned a value based on 

the product of its Size and Material values. For example, a 

Medium-sized (2) Metal ball (3) will have a Weight of  

2 × 3 = 6. 

Critically, our models also account for perceptual noise when 

discriminating between objects. The models incorporate 

Weber’s Law [50] as a cause of perceptual discrimination noise 

between two objects on any given trial. Noise was added to the 

perceptual task by multiplying the feature values being 

 
2 The source code of each modeling component is freely available at  

https://osf.io/3k68n/?view_only=3b444e83f86a490e9fc4e18eb2556b

51. 
 

compared (e.g.,  a  “Size” of 1 versus a “Size” of 2) by 0.22, 

motivated by past research on the Weber’s ratio for children in 

this data’s collected age range [51]. Importantly, recent 

research has found that perception as affected by Weber’s Law 

tends to be similar across features and modalities (e.g., time, 

space, quantity; [52]). Thus, the model of each belief will allow 

for potential errors in decision making (choosing the wrong 

answer despite a clear winner) and representations of 

uncertainty (the ability to claim a tie; that both options displace 

equal amounts of water) when this object discrimination is 

performed.  

 An example trial of how each of these competing beliefs 

may generate predictions of a trial’s outcome can be found in 

Figure 2. For the models of the Size, Material, and Mass 

theories, we performed 1000 pairwise comparisons of two 

random samples from normal distributions. The parameters of 

the normal distributions are defined based on the earlier 

described feature values, where the feature value (e.g., of a 

Large Ball with Size of 3) is taken as the mean, and the feature 

value affected by the Weber’s ratio as the standard deviation 

(SD), where  

𝑆𝐷 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 × 𝑊𝑒𝑏𝑒𝑟′𝑠 𝑅𝑎𝑡𝑖𝑜 = 3 × 0.22. 

Here, samples would either "win", "lose", or "tie" with one 

another, based on the overlap of the two distributions. Then, a 

final tally is taken of the comparison results, generating a new 

distribution analogous to the children's confidence ratings 

(from 1 to 5). For the Random Guessing model, a Uniform 

Distribution was used instead, such that each potential choice 

(1 to 5) held equal weight, such that  

∀𝑐 ∈ [1,5], 𝑝(𝐶ℎ𝑜𝑖𝑐𝑒 𝑐 |𝑅𝑎𝑛𝑑𝑜𝑚 𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔) =  0.2. 
The described method for object discrimination, performed 

trial-by-trial during the pretest (eight trials), was performed and 

fit to each child’s behavioral responses for each of the four 

competing theories (Size, Material, Mass, and Random). That 

is, we evaluated the probability of the observed pattern of 

independent responses in the Pretest for each child, given the 

predictions of each model. The responses were treated as 

independent due to the absence of feedback on each trial. Thus, 

for each trial, we obtained the probability of the choice made 

by the child according to each of the competing theory model’s 

predictions of the outcomes of each trial,   

𝑝(𝑆𝑖𝑧𝑒 𝑇ℎ𝑒𝑜𝑟𝑦 | 𝐶ℎ𝑖𝑙𝑑’𝑠 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑛 𝑇𝑟𝑖𝑎𝑙 𝑡) 

- then, took the product of these eight trials to compute the 

overall probability for each belief. 

 By inferring the best fitting model of these data at the 

individual level, we obtained not only a quantifiable 

representation of each child’s best fitting prior theory (the 

model that assigned the highest probability to the child’s 

responses), but also a distribution of relative weights for each 

of the four competing theories that may be guiding their 

predictions. We return to these outcomes in the Results. 

Importantly, these individualized distributions are used to 

inform the predictions made by our model during the Learning 

Phase. 
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B. Building Learning Models 

One focus of this paper is on the role of prior beliefs in 

learning. Three competing models are compared, varying in 

how evidence and prior beliefs are incorporated. The first 

“Uniform-priors” model serves as a baseline comparison to 

behavior that does not incorporate learning or prior beliefs 

throughout trials and considers the impact of all competing 

beliefs equally. The second “Sticky-prior” model allows for an 

individual's initial priors to be considered, but is strictly 

dominated by the best-fitting prior theory from the first 

modeling stage and does not include trial-by-trial belief 

updating. The third model is the Theory-based “Optimal 

Bayesian model” that learns trial-by-trial and includes each 

individual’s prior distribution of beliefs over the four described 

competing prior theories (Size, Material, Mass, Random) 

collected in the first modeling stage. These models are all 

compared on their performance in predicting children’s actual 

responses during the learning phase (34 trials) of the original 

experiment. First, children’s theory distributions were 

calculated trial-by-trial using traditional Bayesian Posterior 

Updating.  We calculated an updated posterior probability on a 

given trial t+1 as 

𝑝(ℎ𝑖|𝑑𝑡+1) =  
𝑝(𝑑𝑡+1|ℎ𝑖)𝑝(ℎ𝑖|𝑑𝑡)

∑  ℎ𝑖 ∈ 𝐻 𝑝(ℎ𝑖|𝑑𝑡+1)
 , 

for each of the four competing theories (hi) after some number 

of trials (t) with observations of data (dt), given a prior 

probability of said theory given the prior data p(hi|dt), where at 

p(hi|dt = 0) = p(hi). Thus, starting with the prior probability 

distributions calculated based on each child’s individual 

responses during the Pretest Phase (t = 0), we generated a table 

of theory posteriors for each of the 34 trials of the learning 

phase. 

As with the Pretest Phase, we constructed choice 

distributions (from “picking 1” to “picking 5”) for each of the 

four competing belief models (Size, Material, Mass, Random 

Guessing) across the 34 trials included in the Learning Phase. 

Then, given the generated priors and posteriors at each trial, 

models of each child’s decisions were generated. Here, model 

predictions of choice were generated as follows: first, at each 

trial (t), the probability (pt(ch)) of the model predicting some 

outcome (ch) given one of the four competing beliefs (h) was 

pt(hi)pt(ch| h). This generates a 5x4 (belief h X choice c) table 

for each trial for each child, detailing the possible outcomes 

given each potential belief. Then, to consider the impact of 

multiple competing beliefs, the probability that the model 

would predict a given choice (c) on a trial (t) was taken as the 

summation of each of the four competing belief probabilities, 

 

𝑝(𝑐𝑡) =  ∑  ℎ𝜖𝐻 𝑝(𝑐ℎ), 

 

such that for each outcome c, we now had a summed probability 

across that considers the weight of each of the competing 

theories. Then, the final model prediction of a child’s choice for 

each trial generated by the model was taken as the predicted 

outcome (from 1 to 5) with the highest probability within this 

summed column. 

While the model may eventually “learn” to converge on the 

correct theory (that the size of an object determines how much 

water it will displace), it may still fail to correctly weigh the 

Fig. 2. Visualization of how each individual prior theory model generates predictions of event outcomes (Sample Trial) probabilistically. Each of the four 
unique, competing prior theories (Size, Material, Mass, Random Guessing) may generate different predictions based on variance in features of the objects 
being discriminated - dependent on the titular variable being considered by each theory.  
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predictions. Our model implements not just the notion of  one 

dominating belief, but a weighted space or distribution of 

beliefs. Some beliefs may not be as “strong” as others at various 

points during the task. This is captured by the trial-by-trial 

revision of individual children’s priors and posteriors, where 

children begin with an initial distribution across the beliefs 

considered in our model (Size, Material, Mass, and Random 

Guessing) based on their pretest behaviors, but change over 

time given observed evidence in the feedback trials. 

1) Uniform-priors model 

Starting with the simplest model framework, we first define 

a model that does not rely on any bias for prior theories or 

preconceptions. Specifically, given the four competing beliefs 

described earlier (Size, Material, Mass, and Random Guessing), 

the relative weights of each belief were set equally (to 0.25, 

each) before calculating the likelihoods of potential choices 

(pt(ch)) across all 34 trials.  

2) Sticky-prior Model  

The Sticky-prior model accounts for the calculated priors from 

the first modeling stage, but only considers the predictions 

related to the dominant prior theory following the pretest. For 

example, consider the hypothetical model of a child 

immediately following the pretest with the priors for the Size, 

Material, Mass, and Random models as 0.20, 0.40, 0.25, 0.15, 

respectively. This model might be considered a “Strongly 

Material-belief Holder”.  Given the described initial prior 

theory distribution, this model remains “stuck” and only 

responds by choosing the option weighted in proportion to this 

initial distribution – tending towards Material-belief consistent 

responses.  

3) Optimal Bayesian Model  

Finally, the third model accounts for both individual differences 

in initial prior beliefs and flexible learning as performed via 

Bayesian Posterior Updating. Starting from the initial priors as 

found in the first modeling stage of the Pretest, the model of 

each child’s performance is then updated trial-by-trial using 

Bayes Rule, accounting for both the influence of children’s 

specific prior beliefs as well as the dynamics of active trial-by-

trial learning in respect to evidence.  

 In generating the predictions of the three models for the 

choices made by children at each trial, two methods were used. 

First, in generating discrete predictions for use in determining 

the “fit” of our model to children’s actual behavioral data, the 

maximum summed probability of each choice was taken, 

max(𝚺m pt(cm)). Second, in investigating model uncertainty, the 

calculation of a weighted mean was performed, generating a 

continuous prediction that may lie between each of the discrete 

options. Thus, on a given trial (t) for each possible choice option 

(c),  the model’s expected choice was calculated as: 𝚺 cpt(c).  

C. Role of prediction in model likelihood 

Finally, we also investigated potential differences in learning 

dynamics by analyzing model performance (of the best fitting 

model) between the two experimental conditions of the original 

study. Here, we posit that learning may have unfolded 

differently for children who were more actively engaged with 

the task in the Prediction condition than in the Postdiction 

condition. In the Prediction condition, children were required to 

generate predictions that may have been drawn from their prior 

beliefs and helped them to both recognize conflicting evidence 

and explicitly consider other potential beliefs. In contrast, 

children in the Postdiction condition, passively observed 

evidence as it occurred and were thus potentially less engaged 

both with the task and their own prior beliefs. We hypothesize 

here that the performance and correlation of our model in 

relation to children’s actual performance will be stronger for 

those who are actively engaging their prior beliefs in the 

Prediction condition, compared to children making post-hoc 

evaluations in the Postdiction condition. 

IV. COMPARING MODELS TO BEHAVIORAL RESULTS 

When discussing results regarding each model’s proficiency 

in predicting children’s behavior, three separate measures are 

used to evaluate performance. First, we calculate log-likelihood 

scores, capturing the probability that each model would predict 

the choices made by children during the task. Second, we look 

at the correlation between children’s actual responses and the 

responses each of the three models would predict the child 

would make at each trial. Third, we evaluate the accuracy of the 

three models from the “mini-microgenetic” experiment, scoring 

each model based on whether it correctly identifies the choice 

made trial-by-trial.  

For each of these three measures, 34 trials are analyzed for 

each of the 94 modeled children, resulting in 3,196 trials 

analyzed. However, due to technical issues with materials or 

apparatus during the original experiment, 270 trials during the 

learning phase were not properly recorded, resulting in 2,926 

trials available for analysis (see Figure 3 for each of the three 

model’s generated predictions, compared to children’s reported 

behavior from the original experiment). 

A. Capturing Children’s prior beliefs 

Overall, the results of the first modeling stage resulted in 94 

unique distributions, fit to the responses made by children 

during the pretest (see Supplemental material for individual fits 

per participant). To get a feel for the overall distribution of best 

fitting beliefs across children and conditions, we also looked at 

the max fitting belief model for each child. Overall, 21 children 

were best fit by the Size theory, 16 best fit by the Material 

theory, 32 were best fit to the Mass theory, and 25 best fit to the 

Random model, demonstrating significant variability of beliefs 

of the children at the start of the task. The distribution of best 

fitting prior theory (Size, Material, Mass, or Random) was 

similar at the start of the experiment (as would be expected 

given random assignment) between the experimental conditions 

of the original study, Prediction and Postdiction (χ2(3) = 2.13, 

p = 0.54). 

B. Quantifying transitions in belief states 

Additional modeling and analyses were performed to 

further investigate individual differences among children’s 

belief states during the training trials. Specifically, we looked 

at whether there were any differences (between conditions) or 

general trends (within the full dataset) regarding children’s 

“belief state”, trial-by-trial. First, to ensure that we were 

accounting for children’s actual belief state in conjunction 

with our model’s predictions, we calculate “choice-moderated 

priors”. That is, for each child at each trial, we calculated 

p(Ct|hi)p(hi), where Ct is the choice made by the child during 

the original experiment on trial t and hi is each of the four 
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competing beliefs. Thus, we obtained a “choice-moderated” 

belief distribution for each child, trial-by-trial. Then, using 

these choice-moderated priors, we looked at the Bayes 

Posterior Odds to determine at which trial each child was 

considered to have converged onto the “correct” Size theory 

based on our model’s predictions of their current distribution 

of beliefs on a given trial as affected by the child’s actual 

choice behavior, trial-by-trial.  

We calculated the ratio of the probability of the Size prior 

for each child based on their choices against the competing 

belief with the largest probability (Material, Mass, or Random 

Guessing), and determined the trial at which there was 

“substantial evidence” in support of the child’s model holding 

a dominant Size belief (e.g., substantial evidence was set to 

when the mentioned ratio was greater than or equal to 3). We 

find no difference regarding what trial children seemed to 

have learned the Size theory between the Prediction (mean 

trial = 14.98) and Postdiction (mean trial = 13.37) conditions 

(t(92) = 0.93, p = 0.35). One possibility is the children who 

began the experiment with substantial evidence already in 

favor of the Size belief (e.g., they had the right model initially 

and would not learn further), influenced these results. So, we 

also ran this analysis excluding these children (excluded n = 

19; with 8 in the Prediction condition and 11 in the Postdiction 

condition). However, there were no differences even after 

removing these “already-knowers” from the analysis 

(Prediction mean trial = 17.98) and Postdiction (mean trial = 

17.57) condition differences (t(73) = 0.37, p = 0.71). 

Finally, we also investigated whether learning the correct 

beliefs of water displacement during the Learning Phase was 

continuous. We looked at whether children in the experiment 

ever reverted to a belief distribution that was not dominated by 

the Size belief after the initial point of Size-belief 

convergence.  For each child, starting from the trial at which 

their Bayes Factor was greater than 3 in support of the Size 

belief up until the final trial of the Learning Phase, we looked 

at how often children shifted away from this Size-dominant 

distribution, trial-by-trial. Here, we found that 34 of the 94 

children did “flip back” to an incorrect belief at least once. 

However, only 8 of the 94 children flipped back and forth 

twice, and only 1 child did so three times. Further analysis 

comparing whether there was a difference in the frequency of 

how many children “flipped” between experimental conditions 

found no difference between the Prediction (17 of 48 flipped 

back) and Postdiction (17 of 46 flipped back) conditions (χ2(3) 

= 0.02, p = 0.88) 

C.  Model comparison of trial-by-trial learning 

In addition to their mention within related subsections, 

specific statistical results for each of the three metrics used 

during model comparison (log-likelihoods, correlation 

coefficients, and accuracy scores) have additionally been 

compiled in Table I below for ease of comparison. 

1) Model fits to children’s responses 

To analyze the performance of the Uniform-priors, Sticky-

prior, and Optimal Bayesian models to the children’s responses 

in the main training, we first calculated log-likelihood scores of 

the model fits to the children’s responses. Thus, for each child 

(k), on each trial (t), the log of the probability of actual choice 

(c) made by the child (given the model being inspected) was 

calculated: log(pt,k(c)pt,k(c| h)). Then, across all collected trials, 

the sum of all log-likelihoods was taken as the respective 

model’s “score”. We present the negative logs for ease of 

comparison, such that models with a lower score are considered 

“more likely” per the model’s predictions, and therefore better 

in performance at predicting actual human responses. Here, for 

the three competing models, this negative log-likelihood score 

revealed that the Optimal Bayesian model (score = 3,225.13) fit 

the child data better than the Sticky-prior (score = 31,763.95) 

and Uniform-priors (score = 3,695.16) models. Thus, we find 

that the Optimal Bayesian model assigns the highest probability 

Fig. 3. Comparison of children’s response behavior during the original experiment with each of the three competing model’s prediction of children's choice 

behavior during the experiment, trial-by-trial. Children’s actual choices from the Learning Phase of the experiment are plotted along the x-axis. Similarly, 

each of the competing model’s prediction of children’s behavior is plotted along the y-axis. Random jitter for all datapoints and color-coded options along 
the x-axis have been added to each figure for visualization purposes. By comparing the likelihoods, correlations, and accuracies of each model, we find that 

the Uniform-priors and the Sticky-prior models are outperformed by the Optimal Bayesian model when predicting children’s behavior. 
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to the children’s behavioral data, followed by the Uniform-

priors model and the Sticky-prior model. 

2) Correlation between model predictions and children’s 

responses 

The second comparison regarded the direct correlation 

between children’s actual responses during the experiment, and 

each model’s generated prediction of children’s choices. All 

three models resulted in significant correlation between 

predictions and children’s responses (Uniform-priors model: 

r(2924) = 0.55, p < 10-222; Sticky-prior model: r(2924) = 0.54, 

p < 10-222; Optimal Bayesian model: r(2924) = 0.80, p < 10-225). 

Performing pairwise comparisons between each model-pair 

(via Fisher’s R-to-Z transformation), revealed that the 

correlation for the Optimal Bayesian model is significantly 

higher from its competitors (versus Uniform-priors model, z = 

18.36, p ~ 0; versus Sticky-prior model, z = 18.90, p ~ 0), with 

no difference between the Sticky-prior and Uniform-priors 

models (z = 0.54, p = 0.29). 

3) Evaluating accuracy of model predicted response 

The third form of model comparison entailed scoring each 

model, trial-by-trial, on their ability to accurately predict the 

choices made by children. This allows us to further inspect each 

model’s performance more closely in both a quantitative (via 

percent accuracy) and qualitative (via frequentist statistics) 

manner. Here, each model was scored trial-by-trial, receiving 

an accuracy score of “1” if generating an exact match to 

children’s behavior, and a “0” otherwise. 

First, for the Uniform-priors model,  1480 of the 2926 trials 

(51%) were correctly predicted. Next, for the Sticky-prior 

model, 1543 of the 2926 trials (53%) were correctly predicted. 

Finally, for the Optimal Bayesian model, 2112 of the 2926 trials 

(72%) were correctly predicted. Comparing the three models, 

we find that there is a significant difference in accuracy among 

the models (one-way ANOVA; F(2, 2923) = 177.44, p < 10-75). 

Further pairwise comparisons between models find that the 

Optimal Bayesian model performed significantly better than the 

Uniform-priors (t(5850) = 17.40, p < 10-65) and Sticky-prior 

models (t(5850) = 15.68, p < 10-53), but that these latter 

competitors were not significantly different from one another 

(t(5850) = 1.65, p = 0.09). 

4) Role of Prediction in optimal learning models 

For the fourth modeling stage, an additional analysis was 

performed to investigate whether differences in learning 

activities (Prediction versus Postdiction) were revealed by the 

best performing Optimal Bayesian model. Here, we 

hypothesize that if Prediction engages model-based learning, 

the Optimal Bayesian model will perform better in 

approximating the behavior seen in the Prediction condition 

compared to that of the Postdiction condition. This would be 

shown via a better “fit” to the behavioral data of the children 

in the Prediction condition.  

 Comparing the fit of our model to each of the conditions 

separately, we performed correlations between the model’s 

predictions of the children’s choices and the actual responses 

made by children, per condition. As with the aggregate data 

analysis, we found that there were significant correlations 

between our model and the child data in both the Prediction 

condition (r(1501) = 0.86, p ~ 0) and the Postdiction condition 

(r(1421) = 0.75, p < 10-260). Comparing these correlations (via 

Fisher’s R-to-Z transformation), we find that children’s 

responses in the Prediction condition correlated significantly 

better with the optimal model children’s predictions in the 

Postdiction condition (z = 8.65, p ~ 0). 

 We also compared accuracy scores within conditions. For 

the Prediction condition, 1167 of the 1503 trials (78%) were 

correctly predicted. For the Postdiction, 945 of the 1423 trials 

(66%) were correctly predicted. Performing a pairwise 

comparison, we find that the Optimal Bayesian model 

performed significantly better at predicting the Prediction 

condition, compared to the Postdiction condition (z = 6.78, p 

<  0.001). We additionally looked at the sources of error in both 

models. In general, errors of fit occurred when the model 

predicted the “most certain” responses (1, 5) but children 

responded with some uncertainty (2, 4). Allowing for an 

uncertain, but still correct directional response improves model 

fits to 95.0% in the Prediction Condition and 92.5% in the 

Postdiction condition, with a significant difference between 

conditions remaining, χ2(2892) = 6.82, p = .009. Thus, per our 

model analysis, we find support for the finding that children in 

the Prediction condition may have been learning more 

“optimally” (in a Bayesian sense), compared to the Postdiction 

TABLE I 

STATISTICAL RESULTS OF MODEL COMPARISON TO BEHAVIORAL DATA 

Table I. Comparing the three models (Uniform-priors, Sticky-prior, and Optimal Bayesian) to the behavioral results revealed better fits and significantly 

better performance in simulating children’s behavior by the Optimal Bayesian model. 
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condition, though both conditions are well fit to the Optimal 

Bayesian model. 

V.  DISCUSSION 

The goal of this computational endeavor was to further 

understand theory-based belief revisions in contexts of 

prediction-based, perceptually noisy learning scenarios, such as 

during learning about what object properties determine the 

degree of water displacement. We approached this from a 

computational standpoint - combining Bayesian inference 

models with recent findings on the roles of prior theories, rapid 

incremental theory change, and active predictions. In short, we 

found support for the notion that prediction may bolster 

“optimal” learning by encouraging engagement with one’s prior 

theories (and potential misconceptions) when inferring 

potential outcomes and actively accumulating evidence via 

perceptual cues. Specifically, we found support for our 

hypotheses in investigating our three main questions. 

First, we found support that we can best understand the 

models that young learners start with and leverage in learning 

by building computational models that consider priors. In line 

with past research on water displacement [46,47], participants 

in both conditions were classified with “best-fitting” beliefs 

rather evenly across the four possible models. We also found 

support for the importance of leveraging malleable priors that 

evolve throughout learning in the face of evidence. The Optimal 

Bayesian model, which allowed for the consideration of 

multiple competing beliefs before determining their best 

prediction, outperformed the Sticky-prior and Uniform-priors 

model by having a higher probabilistic fit, by having a stronger 

correlation, and by having a higher accuracy when predicting 

children’s behavioral data. This demonstrates the importance of 

taking individual differences in belief starting states into 

account.  

Second, our model analysis indicates that the learning 

process during belief revision may be best explained as mainly 

unfolding continuously over time, with influence from new 

observations trial-by-trial. Our analysis also allowed us to 

consider the sometimes “non-linear” nature of learning, 

consistent with the “Sampling Hypothesis” which suggests that 

children may be sampling responses to approximate Bayesian 

models, but leading to occasional “regressions” [14,53,54]. 

Overall, children’s learning only had momentary lapses of this 

“belief regression”, with only 34 of the 94 children being 

modeled as briefly “flipping” back to an incorrect belief.   

Third, our models revealed that prediction may be one of the 

circumstances that require learners to engage their models of 

the world to support learning in a top-down fashion, compared 

to passively receiving information and evaluating past events. 

Applying the best-fitting Optimal Bayesian model to children’s 

behavior in each condition revealed a closer alignment between 

the model’s and children’s responses in the Prediction condition 

than responses in the Postdiction condition. The act of 

predicting may have encouraged children to leverage their prior 

theories more deeply, compared to children in the Postdiction 

condition that simply viewed events occurring passively. This 

suggests that children who are encouraged to make a prediction 

and, thereby, to engage their prior models, may be engaging in 

learning processes that are more “optimal” in a Bayesian sense.  

By exploring the questions posed here, we can better 

understand the mechanisms that support prediction, perception, 

and learning in humans and robots more generally. One open 

topic for investigation is the role of perceptual processes in 

prediction, theory change, and science learning. Here, one 

component of perceptual processing comes into play via the 

noise incorporated into the various theory models. Learners 

were modeled as having uncertainty about edges and processes 

- coming into play within our learning models utilizing Weber’s 

Law [50-52] when performing visual discrimination during the 

task modeled. This was an important component of noise in 

learning and feedback, and thus a key feature of the 

probabilistic modeling process described in this paper. This 

raises additional questions regarding perceptual noise over the 

course of development. How might perceptual processes be 

incorporated into models capturing learning earlier in 

development, and over longer time periods? Might children 

learn to weigh these processes more or less as their processes 

sharpen with age? It also raises questions regarding noisier 

circumstances where discrimination of visualized objects may 

include a larger number of items to evaluate, or the learning of 

other scientific concepts. How might these processes unfold as 

scene complexity and ambiguity increase? 

A. Understanding Divergences from the Model 

Our results revealed that the Optimal Bayesian model would 

typically choose the more certain option across the trials (e.g., 

mainly, if not only, choosing 1, 3, or 5). In contrast, children 

occasionally provided responses that reflected greater 

uncertainty, choosing options 2 and 4 on occasion.  There are 

multiple, non-mutually exclusive possibilities for this. One 

possible reason for this difference is that the model provides a 

computational “optimal” prediction following a “max-rule” for 

selecting responses, but children may instead by selecting 

responses following the “sampling hypothesis” (e.g., see [53]), 

leading to responses that are occasionally less likely. A second 

possibility is that our models must allow for greater perceptual 

noise (especially in mass judgments), which may lead to less 

certainty across the models. For example, children might 

explain away unexpected results (e.g., a large wood ball 

dispersing more water than a small metal ball) by updating 

beliefs about mass types generally (e.g., that metal may weigh 

less than originally assumed, or wood may weigh more) 

allowing children to preserve uncertainty in mass and material 

beliefs following these “incongruent” trials.  Finally, children 

may have had uncertainty for other reasons, due to possible 

gaps in attention, unfamiliarity with the set-up, or memory 

limitations that lead to a preference to select “less confident” 

options on occasion.  Future work could explore these potential 

sources of uncertainty and how they might best be captured by 

our framework.  

B. Future Work 

Prediction seems to be a remarkable tool by which learners 

engage models to support learning, but there exist many open 

questions regarding what mechanisms guide prediction and 

theory revision in tandem.  Several different possibilities exist, 

requiring both further empirical investigation and 

computational implementations. Both endeavors are necessary 

as we approach the intertwined goals of understanding human 
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learning in perceptually noisy environments and building 

human-like robots that interact in them.  

There are several potential influences on learning that 

warrant future investigation. One involves the role of the 

emotional-physiological response of surprise. A second is 

implementing cognitive limitations, such as executive function 

measures, as prerequisites or precursors for stronger instances 

of prediction and theory revision.  A third regards deeper 

insights into the role of engagement, specifically self-agency 

and self-directed choice. There may also be interest in further 

investigating the role of specific contexts, including how 

alterations to the environment or items within it (e.g., more 

complex objects with unique features or functions) may affect 

the difficulty of learning concepts. Finally, we discuss 

contemporary interests in stubborn misconceptions (e.g., that 

the Earth is flat), where folk psychology may be negatively 

affected by social pressures. 

1) Potential Role of surprise 

Recent work points to a beneficial role of asking learners to 

generate a prediction before presenting them new information 

that conflicts with their intuitions (for a review, see [28]). If the 

outcome following a prediction is different than what was 

expected, awareness of this conflict may increase the subjective 

value of the outcome’s informativeness, and increase the 

perceived expectancy-violation - resulting in enhanced surprise 

[45]. Indeed, several studies have reported enhanced surprise as 

a result of predicting [ 35,44,55]. Therefore, future work should 

consider two potential avenues.  

 First, surprise responses, such as the physiological response 

of pupil dilation when surprised [55], should be considered as a 

parameter in Bayesian models. Based on the cited literature, we 

hypothesize that careful inclusion of surprise as an additional 

parameter in Bayesian models may result in a stronger 

correlation between model predictions and human behavior if 

surprise directly mediates learning. Second, it becomes 

important to also quantify and estimate a “model-based 

surprise” in a predictable way - calculated based on the model’s 

assigned probabilities of outcomes potentially occurring in 

different scenarios. Here, surprise may be considered as a 

metric of how “informative” incoming information may be, 

given an individual’s current understanding (e.g., their prior 

beliefs) [56-58]. Comparing such “model surprise” to measures 

of surprise collected during experiments will yield notable 

implications – particularly in interpreting potential correlations 

as representing surprise as computationally “rational”, where 

the valuation of incoming information is bolstered and may aid 

in belief revision processes. Overall, such computational 

endeavors would help us understand the circumstances that 

influence surprise-based learning at the individual- and trial- 

level.   

2) Potential Role of executive functions 

Modeling the relationship among prediction, theory change, 

and executive function skills (such as inhibition or cognitive 

flexibility [59,60] may provide further insight into other 

relevant mechanisms that support learning. This is important to 

do because executive function skills are considered to be 

especially relevant to learning in academic contexts [61-65]. In 

particular, recent studies have found significant relationships 

between executive function and theory revision in multiple 

domains [  55,66,67]. For example, a recent experiment finds 

that in some cases, only children that reach a certain threshold 

of executive function capabilities are able to efficiently utilize 

conflicting information to update their beliefs [46 - Brod et al., 

2020]. Here, it is hypothesized that perhaps as children’s 

executive function capacities develop, then children may be 

more able to handle more complex theories when needed for 

learning [68,69].  

Thus, executive function measures can be incorporated into 

computational models of theory revision as additional 

parameters that mediate learning. Such modeling would allow 

us to investigate a number of questions: would executive 

function affect model performance straightforwardly, where 

higher executive function scores predict better performance in 

prediction and theory change? Or, perhaps, does there exist a 

threshold where a minimum executive function score is 

required for meaningful theory change?  

Such questions regarding belief revision and executive 

function can be investigated in multiple ways. One such way is 

investigating whether children with stronger executive function 

capacities are more efficient in their learning. Here, this may be 

found if children that perform better during executive function 

tasks are better simulated by ideal Bayesian learning models 

(per metrics like those described in this manuscript). Another 

computational step may entail the design of a Bayesian model 

that accounts for executive function skills – such as the ability 

to inhibit incorrect prior beliefs, or, flexibly switch focus 

towards updated, “more correct” theories. Such future 

investigations of these described computational approaches 

may shed insight into how executive function capacities may be 

necessary (at some sufficient level) for belief revision. 

3) Potential Role of agency 

In a follow-up experiment, we are working on evaluating the 

relevance of agency and choice in mechanisms of prediction 

and theory change. Recognizing one’s agency in their actions 

and perceiving control over actions taken are important factors 

in driving our motivation and behavior [70,71], is found to 

reduce speed-accuracy tradeoffs [72], and promote persistence 

and adaptation [73-75].Thus, like the comparisons made in this 

manuscript (and in the dataset’s original experiment) between 

the active engagement of making a prediction versus the more 

passive act of post-hoc evaluating, we can compare scenarios 

where learners are either actively making predictions versus 

passively viewing another person make predictions, 

themselves.  

Comparison of these two contexts varying on a learner’s 

level of “agency” may highlight the importance of “activating” 

and leveraging one’s own beliefs to facilitate learning. 

Specifically, as found here and in the original study, if 

engagement with one’s priors bolsters belief revision, then 

learning in the new “passive viewer” scenario may be less 

“optimal” per Bayesian principles. Further, applying 

computational models, like those described in this manuscript, 

to this problem will help us to more precisely characterize the 

role of agency as an additional mediator of learning. 

4) Investigations of Distinct Object Features 

Several factors may influence the revision of individual priors 

and posteriors, including contextual factors that additionally 

alter the environment or objects being interacted with. For 

example, the idiosyncrasies of different materials – such as a 

sponge and its absorption – might make learning concepts such 
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as water displacement more difficult by including additional 

relevant features (e.g., the material’s absorption rate). By 

including additional factors based on more-specific object 

features within our models, we may be able to further 

understand how scientific concepts are learned more broadly. 

For example, further experiments may carefully manipulate the 

presence or strength of various peculiar features, such as the 

described absorption rate. Here, the added complexity of 

compared objects and their features may affect the learning 

process – perhaps reducing the “speed” or “efficiency” at which 

the correct size-theory of water displacement is learned. 

Furthermore, recent studies [e.g., 76] and review [77] highlights 

the  impact of irrelevant, but salient variables during concept 

learning, suggesting that learning of the correct concepts may 

be hindered by the interference of the increased salience of 

salient, but incorrect features. From this discussed example, 

inclusion of the newly included, more complex feature of 

absorbency, (that is still irrelevant in regard to outcomes of 

water displacement) may find that learning about water 

displacement may become more difficult –perhaps requiring 

stronger inhibition to avoid this additional influence during 

learning. Importantly, while this does provide a clear target for 

extensions in future investigations, past research has not yet 

investigated children’s theories of absorption empirically, thus 

it is outside the scope of the current work. 

5) Investigations of Social Pressures & Misinformation 

Finally, an additional contextual effect in evidence-based 

learning that can be captured in future models is whether the 

evidence being evaluated is credible. Recent work investigating 

pseudoscientific or conspiratorial beliefs suggests that the 

prevalence of incorrect beliefs about the world may be related 

to the frequency that a learner encounters evidence of the false 

information (e.g., the “illusory truth effect” [78]) and may be 

bolstered by social cues that elicit inferences that frequently 

shared information is truthful [79]. These social pressures – 

where a shared incorrect theory may be influential or 

foundational within a social group (e.g., beliefs about the Earth 

being flat) – may mislead a learner into believing that this 

frequently noted evidence is true.  

Following recent work that finds that when appraising 

information provided by another social partner, such sampled 

evidence may be considered “representative” – highlighting 

features that may be more important to be focused on 

(sometimes even if such features are technically irrelevant), and 

subsequently affecting future decisions (the “intentional 

selection assumption” [80,81]). Various experiments may look 

into such social pressures as affecting belief revision. For 

example, one experiment may investigate scenarios where a 

social partner provides learners with evidence that appears 

intentionally selected, but potentially incorrect. Then, behavior 

during this social-scenario may be compared against contexts 

where information is acquired more “plainly” – such as in the 

modeled experiment. Investigation of variance in framing 

scenarios like this may highlight what enables processes that 

influence a learner’s acceptance of misinformation – perhaps 

still following principles of “ideal” Bayesian learning, despite 

being towards the goal of an incorrect theory. Thus, 

investigation of these regressed or naive theories may 

potentially highlight specific social or motivational aspects of 

evidence-based learning. 

VI. CONCLUSION 

We have provided a taste of the rich history of conceptual 

change, proposing just one specific computational modeling 

approach to address gaps between empirical findings and 

current computational implementations. We first formalized the 

prior beliefs that children may have to construct quantifiable 

representations of children’s prior theories at the individual 

level, as informed by their past behavior. Second, we described 

the intuitive computations in which they are revised in light of 

new observations to approximate children’s learning using an 

“optimal” Bayesian model - revealing dynamics of theory 

revision trial-by-trial. Third, we investigated the contexts under 

which this theory revision follows more or less “optimal” 

performance per Bayesian inference. Altogether, this work 

benefits the goal of implementing similar processes in robots 

and machines.  

The work we present here aligns well with past work on 

Bayesian models of human learning (e.g., [18,37-39,82]) while 

also extending on these past implementations. Specifically, the 

present models contribute to the literature on learning models 

in three key ways. First, and most clearly, by being the first 

model of the target task - children’s theories of water 

displacement. Second, we investigated whether differences 

occur due to variation in response modalities (predicting vs 

post-hoc evaluations) — even when information is kept 

consistent. Third, we performed a ‘finer-grain’ analysis by 

virtue of simulating the microgenetic study and assessing our 

models’ performance trial-by-trial. 

These are only the initial steps in this endeavor of building 

human-like machines that account for informed priors, model-

based learning, and theory-based predictions. Importantly, we 

must keep in mind that even human learners sometimes forego 

these processes, and may still engage in model-free, associative 

learning processes when appropriate. Nonetheless, we hope to 

have convinced readers that prediction is a powerful cognitive 

tool that may promote learning by engaging one’s prior theories 

- and thus a worthwhile avenue for future research in 

understanding the mechanisms of theory revision during 

science learning. By exploring the questions posed in terms of 

computational models, we can better understand the underlying 

structures and processes that support prediction, perception, and 

learning in humans and robots more generally. We predict that 

by expounding our theories of belief revision here, we will be 

better prepared to revise them in future work. 
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